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ABSTRACT  
This work evaluates the impact of different agricultural systems on the humic fractions of 

organic matter (SOM) and soil aggregation in a medium-textured soil in a subtropical region of 

Brazil. Three managed areas and a reference area were evaluated: permanent pasture (PP), no-

till (NT), no-till+Brachiaria (NT+B) and native forest (NF). Deformed soil samples were 

collected in the layers 0-0.05; 0.05-0.10; 0.10-0.20 and 0.20-0.40 m, and unformed soil samples 

in the layers 0-0.05 and 0.05-0.10 m. After collection, total organic carbon (TOC) analysis, 

chemical fractioning of SOM and aggregate stability analysis were performed. The PP area 

presented the highest TOC and C-FA contents in the first three layers evaluated. In the 0.10-

0.20 m layer, the C-HUM contents in the NT+B area were 1.9 times higher than in the NT area, 

and in 0.20-0.40 m they were 6.6 times higher. The PP area obtained the best structural 

indicators, especially higher WMD, GMD and % of macroaggregates. The two areas using 

direct seeding presented a percentage of macroaggregates higher than 37.28% in the superficial 

layer. The PP management provided increases in TOC levels and, consequently, humic 

substances, besides the formation of more stable aggregates. The NT+B system showed 

promise in increasing TOC and humic substances, especially at depth, even with a short 

implementation period. The increase in TOC and humic substances provided by the grasses 

contributes to the formation of more stable aggregates and, consequently, to the improvement 

of the quality of medium-textured agricultural soils. 
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Efeitos de diferentes sistemas agrícolas na matéria orgânica e na 

agregação de um solo de textura média em região subtropical 

RESUMO 
O presente trabalho teve como objetivo avaliar o impacto de diferentes sistemas agrícolas 

sobre as frações húmicas da matéria orgânica (MOS) e a agregação do solo, sob solo de textura 

média em uma região subtropical do Brasil. Foram avaliadas três áreas manejadas e uma área 

de referência: pastagem permanente (PP), plantio direto (PD), plantio direto+Brachiaria 

(PD+B) e mata nativa (NF). Foram coletadas amostras de solo deformadas nas camadas 0-0,05; 

0,05-0,10; 0,10-0,20 e 0,20-0,40 m, e amostras de solo indeformadas nas camadas 0-0,05 e 

0,05-0,10 m. Após a coleta, foram realizadas análises de carbono orgânico total (COT), 

fracionamento químico da MOS; análise de estabilidade de agregados. A área PP apresentou os 

maiores teores de COT e C-AF nas três primeiras camadas avaliadas. Na camada de 0,10-0,20 

m os teores de C-HUM na área PD+B foram 1,9 vezes maiores que na área PD, e em 0,20-0,40 

m foram 6,6 vezes maiores. A área PP obteve os melhores indicadores estruturais, 

especialmente maior DMP, DMG e % de macroagregados. As duas áreas com plantio direto 

apresentaram percentual de macroagregados superior a 37,28% na camada superficial. O 

manejo do PP proporcionou aumentos nos teores de COT e, consequentemente, de substâncias 

húmicas, além da formação de agregados mais estáveis. O sistema PD+B mostrou-se promissor 

no aumento do COT e das substâncias húmicas, principalmente em profundidade, mesmo com 

um curto período de implantação. O aumento do COT e das substâncias húmicas proporcionado 

pelas gramíneas contribui para a formação de agregados mais estáveis e, consequentemente, 

para a melhoria da qualidade dos solos agrícolas de textura média. 

Palavras-chave: alterações climáticas, estabilidade de agregados, frações de carbono, substâncias 

húmicas. 

1. INTRODUCTION 

Soil quality (SQ) is fundamental to maintaining sustainable agricultural systems that meet 

global food, fiber, and energy needs (Damian et al., 2023). In recent decades, SQ has been 

discussed by the scientific community worldwide (Simon et al., 2022; Thomaz and Antoneli 

2022; Valani et al., 2022; Burak et al., 2022; Pinto et al., 2022) and defined as the ability of a 

particular soil type to function within the limits of the natural or managed ecosystem to maintain 

crop productivity (Valani et al., 2022). Given the demand for food to feed the world's 

population, human activities are causing changes in natural ecosystems (Fao, 2006). 

Intensification of land management through tillage can have negative consequences for soil 

biogeochemical cycles and lead to degradation if not adequately managed (Santos et al., 2022). 

Therefore, systems are constantly being investigated to look for strategies to mitigate the 

negative effects. Some studies indicate that pastures have a high potential for sequestering 

carbon (C), as estimates show that C stocks may be 50% higher in pastures than in forests 

worldwide (Fao, 2006; Damian et al., 2023). Well-managed pastures not only help to increase 

C stocks, but also contribute to the formation of stable aggregates (Rosset et al., 2019; Ozório 

et al., 2019); this greater stabilization favors the infiltration of water into the soil, reducing 

compaction, reducing the risk of erosion (Damian et al., 2023). 

In contrast to well-managed pastures, production systems with no-till soybean and maize 

cultivation (NT), where there is no crop rotation, can slowly contribute to improving edaphic 

quality in terms of increasing C stocks, especially in subtropical and tropical regions where 

climatic factors hinder the permanence of SOM in the soil (Rosset et al., 2016; Ofstehage and 

Nehring, 2021). In addition, in several regions of Brazil, pasture is increasingly cultivated with 
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maize as a second crop. This practice, in addition to maximizing agricultural productivity, aims 

to increase C content and promote improvements in soil properties (Farias et al., 2022; Rosset 

et al., 2019) and reduce fertilizer use (Nunes et al., 2020) in different soil types and textures 

and geographic regions (Pedruzzi et al., 2022; Maia et al., 2019). 

The impact of soil management systems can be directly studied with quantitative and 

qualitative analyses of SOM (Rosset et al., 2016; 2022; Assunção et al., 2019). The main studies 

evaluating the impact of these management systems use quantification of the contents and 

stocks of the chemical fractions of SOM (Rosset et al., 2016; Collins et al., 2019), since the 

different systems significantly affect the content of fulvic acids (FA), humic acids (HA), and 

humic substances (HUM) (Tadini et al., 2022a; Assunção et al., 2019). In addition to the studies 

dealing with SOM, the analysis of aggregate stability is fundamental to the understanding of 

SQ (Rosset et al., 2019), through its direct relationship with chemical (Silva et al., 2019b; 

Lacerda-Junior et al., 2019; Luz et al., 2019), physical (Falcão et al., 2020; Ozório et al., 2019), 

and biological properties (Luz et al., 2019; Soares et al., 2019; Castioni et al., 2018). 

Considering the above and the need for studies on the edaphic quality of different 

production systems with different implementation times, soil types and textures, especially in 

tropical and subtropical regions (Pedruzzi et al., 2022; Maia et al., 2019; Santos et al., 2019), 

the hypothesis of this study is that the long management history in well-managed pastures, as 

well as the introduction of Brachiaria as an intercrop with maize in the second crop in only 4 

years, can favor the process of humification of SOM and does not cause changes in the structural 

properties of the soil. Against this background, this study investigated whether pasture, no-till 

and no-till systems with Brachiaria in winter change the properties of organic matter and soil 

structure in medium textured soils. 

2. MATERIAL AND METHODS 

2.1. Location, climate and soil collections from the study areas 

Soil samples were collected in farming systems with known implementation history in the 

municipality of Terra Roxa, western Paraná, Brazil (Figure 1). The climate of the region is 

subtropical (Cfa), according to the Koeppen classification (Caviglione et al., 2000). According 

to a detailed soil survey conducted by the State of Paraná (Bhering, 2007), the area was 

classified as Argissolo Vermelho-Amarelo Distrófico, which has a sandy texture in the 

superficial horizons (Santos et al., 2018). The classification corresponded to the Paleudalfs in 

the USDA Soil Taxonomy (Soil Survey Staff, 2014) or the Rhodic Acrisols in the FAO 

classification system (Iuss Working Group WRB, 2015), which have 666, 147 and 187 g kg-1 

of sand, silt and clay, respectively, in the 0-0.40 m layer (Santos et al., 2018). 

Four different areas were evaluated. The trajectories are shown in Figure 2: 

• Area of permanent pasture (PP) of 4.1 ha (24º11 ́37.77" S - 54º06 ́49.17" W, 307 m 

elevation). The area consists of pasture with Coast Cross species (Cynodon dactylon 

(L.) Pers), which is considered resistant to low temperatures and with a high leaf/stem 

ratio. The area has been continuously grazed by dairy cows for 44 years, with a 

livestock stocking rate of 2 units/animal per hectare, with periodic reforms about 

every 15 years and the application of 2.1 Mg ha-1 of limestone. 

• Area with no-till (NT) of 11 ha (24º11 ́27.82" S - 54º06 ́52.04" W, 325 m altitude) 

tilled successively with soybeans (summer) and corn (second crop). Historically, this 

area consisted of native forests of the Atlantic Forest biome, which were cleared in 

the 1970s. It was later managed with conventional tillage in succession of 

soybean/corn for 20 years and no-till for the last 24 years. The area is fertilized every 

3-4 years with limestone (about 1.2 Mg ha-1) or dolomitic limestone (1.2 Mg ha-1). 

In addition, agricultural gypsum is applied during the same period when limestone is 
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fertilized, which is the recommended dose due to the presence of exchangeable 

aluminum. Generally, 200 kg ha-1 of formulated NPK in the ratio 04-30-10 is applied 

on the area when soybean is sown, and 200 kg ha-1 of formulated NPK in the ratio 

10-15-15 is applied when corn is sown. 

• Area with no-till soybean (summer) and maize in consortium with Brachiaria 

ruziziensis (second crop) (NT+B) of 28 ha (24º11 ́31.10" S – 54º06 ́52.52" W, 323m 

elevation). Historically, this area consisted of native forest of the Atlantic Forest 

biome, which was cleared in the 1970s and later managed for 20 years with 

conventional cropland under soybean/corn succession. In the last 20 years, the area 

has also been managed under no-till with soybeans and corn, and in the last 4 years, 

Brachiaria ruziziensis has been introduced in an integrated crop with corn as a second 

crop. Calcium is applied to the area every 4 years to correct soil acidity, with an 

average application of about 2 Mg ha-1. For soybean cultivation, an average of 200 kg 

ha-1 of NPK formulate is applied in a 15-15-15 ratio in addition to KCl in the cover. 

For winter corn seeding, the area is treated with about 240 kg ha-1 of the formulated 

NPK in the 15-15-15 ratio and ammonium sulfate in the cover. In addition, soybean 

and corn crops are inoculated prior to seeding. 

• Native forest area (NF) of the Atlantic forest biome with the phyto physiognomy of a 

deciduous seasonal forest of 28 ha (24º11 ́31.10" S - 24º06 ́52.52" E, 307 m altitude) 

- NF consisting of a permanent protected area, isolated, without access of animals, 

without anthropic modification. 

 
Figure 1. Experimental location map, with data from the use systems studied in the municipality of 

Terra Roxa, Paraná, Brazil (Source: QGIS, version 3.28 "Firenze"). PP: Permanent pasture, NT: no-

till, NT+B: no-till + Brachiaria, NF: Native forest. 
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Figure 2. Soil management history of the study areas. PP: 

Permanent pasture, NT: No-till, NT+B: No-till + Brachiaria, NF: 

Native forest. 

The samples were collected in September 2019 after the soybean harvest in the NT and 

NT+B areas; in the NT+B area, the Brachiaria had not been desiccated before collection. It is 

important to note that all areas are close to each other, as can be seen in Figure 1, and have the 

same characteristics in terms of relief, climate and soil class. For the collections, five 400 m2 

plots were demarcated in each study area where soil samples were taken. Each plot represented 

a replicate, and each composite sample was represented by 5 simple samples within the 
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evaluated systems in the 0-0.05; 0.05-0.10; 0.10-0.20; and 0.20-0.40 m layers. In addition, 

undeformed samples with a volumetric ring with a volume of 100 cm3 were taken in layers 0-

0.05; 0.05-0.10; 0.10-0.20; and 0.20-0.40 m, and undeformed samples in layers 0-0.05 and 0.05-

0.10 m, where the soil structure was preserved in a monolith with dimensions of 0.2 x 0.2 x 

0.05 m, were taken. In order to chemically characterise the soil in the study areas, analyses were 

carried out in the layers 0-0.20 and 0.20-0.40 m, the results of which are listed in Table 1. 

Table 1. Soil chemical characterization of the different land use systems in the 0-0.20 and 0.20-

0.40 m layers. 

Systems 

pH P K+ Ca2+ Mg2+ Al3+ H+Al SB CTC V% m% 

 mg.dm-3 cmolc dm-3   

0-0.20 m 

PP 5.61 93.57 0.23 6.32 1.95 0.00 4.72 8.47 13.19 64.51 0.00 

NT 6.86 36.29 0.21 4.77 1.51 0.00 0.25 6.52 6.75 96.42 0.00 

NT+B 6.41 50.96 0.19 3.40 1.01 0.00 1.27 4.90 6.17 78.51 0.00 

NF 4.32 14.52 0.19 2.28 0.7 0.43 6.15 3.09 9.25 32.51 14.82 

 0.20-0.40 m 

PP 5.98 43.29 0.40 4.16 1.66 0.00 2.36 6.04 8.40 71.72 0.00 

NT 5.87 39.36 0.21 2.54 1.18 0.19 2.15 3.87 6.02 64.46 4.98 

NT+B 5.78 38.32 0.11 2.14 0.75 0.07 2.29 3.05 5.34 57.28 2.32 

NF 4.05 4.11 0.08 0.59 0.70 1.14 5.47 1.32 6.79 19.41 46.21 

PP: Permanent pasture, NT: No-till, NT+B: No-till + Brachiaria, NF: Native forest. Chemical 

characterization - Calcium Chloride (pH); Mehlich (P and K+); KCl 1N (Ca+2, Mg+2 and Al+3); 

Calcium Acetate pH 7.0 (H + Al). 

2.2. Analyses carried out 

Bulk density (Db) analysis was performed according to the methodology of (Almeida et 

al., 2017). Total organic carbon (TOC) was determined by oxidizing the MOS with potassium 

dichromate in a sulfuric acid medium under constant heating and titrated with an ammoniacal 

ferrous sulfate solution (Yeomans and Bremner, 1988). The chemical fractionation of MOS 

was performed according to the differential solubility technique developed by the International 

Society for Humic Substances (Swift, 1996), as described by Benites et al. (2003). The fractions 

(humic substances - HS) were divided into fulvic acid (FA), humic acid (HA) and humic 

substances (HUM) and then the carbon content (C) of each fraction was determined (Yeomans 

and Bremner, 1988). The following ratios were calculated from the C analyzes of HA, AH and 

HUM to verify the humification processes of the MOS: HA/FA and alkaline extract (AE)/HUM. 

In addition, SH stocks were calculated using the equivalent mass method (Reis et al., 2018). 

For aggregate stability analysis, the air-dried samples were first manually dissected along 

the aggregate lines of weakness so that the entire sample was converted into aggregates ranging 

in size from 8.00 mm to 4.00 mm. A 50 g portion was taken from these aggregates, which were 

wetted with water by capillary action for 10 minutes on filter paper. The samples were then 

sieved in water by the method described by Kemper and Chepil (1965) in a Yoder-type 

mechanical shaker (Yoder, 1936) on a set of sieves with 2.00; 1.00; 0.50; 0.25 and 0.125 mm 

mesh. After sieving in water, the weighted mean diameter (WMD) (Kiehl, 1979) and geometric 

mean diameter (GMD) (Kemper and Rosenau, 1986) were calculated using the mass obtained 



 

 

7 Effects of different agricultural systems on organic … 

Rev. Ambient. Água vol. 19, e2952 - Taubaté 2024 

 

in each sieve class. After the WMD calculations, the degrees of order (LOrd) were determined 

(Vezzani, 2001), changing the original methodology by replacing the percentage of rock body 

mass > 2.00 mm with the WMD of the aggregates. In addition, the percentage of aggregates 

retained on the sieves was divided into 3 classes according to Costa Junior et al. (2012), which 

represent macroaggregates (> 2.00 mm), meso aggregates (0.250 mm - 2.00 mm) and 

microaggregates (< 0.250 mm). 

Data analysis was based on a completely randomized experimental design. Data were 

tested for normality and homogeneity of variance using the Shapiro-Wilk test and Bartlett's test. 

Subsequently, data were subjected to analysis of variance with application of F-test and means 

were compared using R Core Team (2020) software with t - Student's test p=0.05. All tests were 

performed using the ExpDes.pt package (Ferreira, 2018b). As complementary techniques, 

Principal Component Analysis - PCA (Silva et al., 2022) was used for multivariate analysis. 

Correlations between soil organic matter chemical fraction data and soil aggregation variables 

were evaluated using Pearson correlation, assuming p=0.05 as the significance criterion. 

3. RESULTS 

3.1. Chemical fractions of soil organic matter 

In the permanent grassland (PP), the highest total organic carbon (TOC) contents were 

observed in the first three layers studied, with contents exceeding 27.80 g kg-1 at the surface. In 

the 0.20-0.40 m layer, the highest TOC contents were observed in PP and no-till + Brachiaria 

(NT+B), with contents of 11.05 and 7.05 g kg-1, respectively. The no-till (PD), PD+B and native 

forest (FN) systems were also similar in terms of TOC content along the evaluated profile (0-

0.40 m) (Table 2). In the PP area, the highest levels of fulvic acids (C-FA) were observed up to 

0.20 m, with levels of 4.64, 3.44, and 2.66 g kg-1, in layers 0-0.05; 0.05-0.10; and 0.10-0.20 m, 

respectively. In layers 0-0.05 and 0.05-0.10 m, the NT, NT+B and NF domains were similar, 

and in the last two layers, the NF domain had the lowest C-FA contents. 

For humic acid (C-HA) contents, PP, NT and NF areas did not differ in layers 0.05-0.10; 

0.10-0.20 and 0.20-0.40 m, with higher contents. In NT+B, the lowest contents were observed 

in layers 0-0.05; 0.10-0.20 and 0.20-0.40 m. In PP, NT+B and NF, the highest contents of humic 

substance (C-HUM) were observed in layers 0.10-0.20 and 0.20-0.40 m, respectively. The 

different land use systems did not differ in the 0.05-0.10 m layer for this most recalcitrant 

fraction of the SOM (Table 2). 

Stocks of fulvic acids (Stock-FA), humic acids (Stock-HA), and humic substances (Stock-

HUM) showed the same pattern of differences observed for the C content of each fraction. In 

the PP area, the highest values of Stock-FA were observed in the first three layers, with Stock 

values that were 85, 111, and 145% higher than in the NF area, in layers 0-0.05; 0.05-0.10; and 

0.10-0.20 m, respectively. In layers 0-0.05 and 0.05-0.10 m, the NT, NT+B, and NF areas were 

similar for the stock-FA. The highest stock-HA was also observed at PP, especially in the layer 

in the 0-0.05 m stratum (Table 2). 

For stock-HUM in the 0.05-0.10 m layer, the different land-use systems differed, with 

values ranging from 6.82 to 12.68 mg ha-1. In the layers 0.10-0.20 m and 0.20-0.40 m, the areas 

PP, NT+B and NF had higher contents of stock-HUM. It is worth noting that in NT stock-HUM 

were observed, which corresponded to 51.82 and 14.98% of the total amount obtained from the 

surface NT+B in the layers 0.10-0.20 and 0.20-0.40 m, in other words, when the insertion of 

Brachiaria in the system, there was an increase in the percentage of intermediate carbon in 

terms of stability (Table 2). 

In the first two layers evaluated, the areas did not differ in the ratio of humic acids to fulvic 

acids (C-HA/C-FA). In the 0.10-0.20 m stratum, the managed plots were conspicuous by lower 

values than the NF area. In the last layer evaluated, the PP and NF systems showed the highest 

HA/FA ratios. The managed systems showed the lowest values for the alkaline extract/C-HUM 
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(AE/C-HUM) ratio in the 0-0.05 m layer. Comparing the AE/C-HUM values of the NT and 

NT+B areas in the subsurface layer, lower AE/C-HUM values were observed in the NT+B 

system (Table 2). 

Table 2. Total organic carbon (TOC), fulvic acid carbon (C- FA), humic acid carbon (C-HA) and humin 

(C-HUM), fulvic acid carbon stock (Stock-FA), humic acid carbon stock (Stock-HA) and humin (Stock-

HUM), HA/FA ratio and alkali-humin extract (AE/HUM-C) of the different management systems under 

medium-textured soil. 

Averages followed by equal letters in the column, in each layer, do not differ by the t-student test 

(p≤0.05).  MS: Management systems, PP: Permanent pasture, NT: no-till, NT+B: no-till + Brachiaria, 

NF: Native forest. 

3.2. Soil Aggregate Stability 

In the PP, we observed the highest values of weighted mean diameter (WMD) and 

geometric mean diameter (GMD) in the 0-0.05 m (Figure 3A) and 0.05-0.10 m (Figure 3B) 

layers, with values exceeding 3.87 mm for WMD and 2.84 mm for GMD, respectively. The 

NT, NT+B and NF ranges were similar in the two layers studied, with WMD values varying 

between 1.46 and 3.04 mm and GMD between 0.74 and 2.02 mm. 

The aggregate order level (OLev) result showed a similar pattern to the WMD and GMD 

results, with the highest OLev values in the PP area in both layers studied, with a value 2.48 

times higher than that of the reference area in the 0-0.05 m layer and 3.65 times higher in the 

0.05-0.10 m layer. 

In the PP area, a higher percentage of aggregates retained in the macroaggregate class (> 

2.00 mm) was observed in the two layers studied, with values higher than 80% in the 0-0.05 m 

layer and higher than 70% in the 0.05-0.10 m layer (Figures 4 A and B). The NT, NT+B and 

MS 

TOC C-FA C-HA 
C-

HUM 

Stock-

FA 

Stock-

HA 

Stock-

HUM 
HA/FA 

AE/C-

HUM 

g kg-1 Mg ha-1   

0-0.05 m 

PP 27.89a 4.64a 4.36a 14.29a 6.49a 6.10a 20.02a 0.94a 0.66ab 

NT 17.60b 2.68b 2.73b 12.44a 3.75b 3.82b 17.42a 1.01a 0.44b 

NT+B 14.38b 1.82b 1.01c 6.79b 2.55b 1.41c 9.51b 0.68a 0.41b 

NF 18.24b 2.50b 1.98b 4.65b 3.50b 2.77b 6.51b 0.77a 1.58a 

0.05-0.10 m 

PP 18.72a 3.44a 2.52a 8.15a 5.36a 3.97a 12.68a 0.72a 0.74a 

NT 8.93b 2.09b 1.77ab 5.04a 3.25b 2.76ab 7.85a 0.86a 1.06a 

NT+B 9.94b 1.33b 0.92b 6.03a 2.07b 1.44b 9.39a 0.69a 0.38a 

NF 10.87b 1.63b 1.23b 4.38a 2.54b 1.91b 6.82a 0.77a 0.77a 

0.10-0.20 m 

PP 13.89a 2.66a 1.71a 5.74a 4.47a 2.87a 9.64a 0.64b 0.81a 

NT 6.35b 1.75b 1.35ab 3.12b 2.94b 2.27ab 5.25b 0.76b 1.00a 

NT+B 7.71b 1.33bc 0.92b 6.03a 2.23bc 1.55b 10.13a 0.69b 0.38b 

NF 7.69b 1.08c 1.79a 7.77a 1.82c 3.02a 13.04a 2.06a 0.37b 

0.20-0.40 m 

PP 11.05a 2.53a 1.18a 5.51a 4.03a 1.87a 8.76a 0.48a 0.69b 

NT 5.99b 2.03ab 1.48a 1.16b 3.24ab 2.35a 1.84b 0.72b 3.67a 

NT+B 7.05ab 1.23b 0.40b 7.71a 1.96b 0.64b 12.28a 0.37b 0.23b 

NF 5.61b 0.36c 1.48a 7.51a 0.57c 2.36a 11.95a 6.46a 0.24b 
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NF areas did not differ, with 48.42; 37.28 and 56.29% in the 0-0.05 m layer and 21.66; 25.59 

and 37.25% in the 0.05-0.10 m layer, respectively. The macroaggregate area expressed at PP 

was 29.04% higher than the NF area in the first layer and 37.78% higher in the 0.05-0.10 m 

layer. 

 
Figure 3. Weighted mean diameter (WMD), geometric mean diameter (GMD) and aggregates order 

level (OLev) in different management systems under medium texture soil in layers 0-0.05 (A) and 

0.05-0.10 m (B). PP: Permanent pasture, NT: No-till, NT+B: No-till + Brachiaria, NF: Native forest. 

 

Figure 4. Percentage of aggregates of the different use systems evaluated. > 2.00 mm: 

macroaggregates; 0.250 mm-2.00 mm: mesoaggregates; > 0.125 mm: microaggregates. PP: Permanent 

pasture, NT: No-till, NT+B: No-till + Brachiaria, NF: Native forest in the layers 0-0.05 m (A) and 

0.05-0.10 m (B). 

3.3. Multivariate and correlation analysis between variables 

In the principal component analysis (PCA), the first two axes explained 86.7% of the data 

variations, allowing us to verify the separation of the PP area from the other assessed areas 

(Figure 5). The variables TOC, C-FA, C-HA, C-HUM, Stock-FA, Stock-HA, Stock-HUM 

showed the strongest association with PP. In addition to variables related to humic substances, 

PP was associated with soil aggregation variables, WMP, GMD and macroaggregates. 

Variables representing the proportion of aggregates with smaller size (0.250 mm and 2.00 mm 

and < 0.250 mm) were associated with the areas NT, NT+B and NF.  

A positive correlation was observed between the results of TOC, WMD and GMD and 

macroaggregates, with R2 greater than 0.6 for the three variables, and it was also possible to 

observe an inversely proportional correlation between TOC and microaggregates. In addition, 

the contents and stocks of C- FA, C- HA and C- HUM were correlated with WMD, GMD and 

macroaggregates, indicating that they influence the formation of larger aggregates (Figure 6). 
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Figure 5. Principal component analysis (PCA): total organic carbon 

(TOC), carbon of fulvic acids (C-FA), humic acids (C-HA), and 

humin (C-HUM), carbon stock of fulvic acids (Stock-FA), humic 

acids (Stock-HA) and humine (Stock-HUM), weighted mean 

diameter (WMD), geometric mean diameter (GMD), 

macroaggregates (> 2.00 mm), mesoaggregates (0.250 mm - 2.00 

mm), and microaggregates (< 0.250 mm). PP: Permanent pasture, 

NT: No-till, NT+B: No-till + Brachiaria, NF: Native forest. 

 

Figure 6.  Pearson's correlation between the variables: total 

organic carbon (TOC), carbon of fulvic acids (C-FA), 

humic acids (C-HA), and humin (C-HUM), carbon stock of 

fulvic acids (Stock-FA), humic acids (Stock-HA) and 

humin (Stock-HUM), weighted mean diameter (WMD), 

geometric mean diameter (GMD), macroaggregates (> 2.00 

mm), mesoaggregates (0.250 mm - 2.00 mm), and 

microaggregates (< 0.250 mm). Indications with (X) are 

non-significant correlations (p≤0.05). 
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4. DISCUSSION 

The higher TOC levels observed in the PP area in three of the four strata studied (Table 2) 

can be explained by the potential that well-managed pastures have in accumulating C (Santos 

et al., 2019; Segnini et al., 2019). Well-managed pastures have a high potential to deposit plant 

material and consequently constantly renew soil TOC (Chatterjee et al., 2018). In addition to 

the high production of biomass in the above-ground part, willows do not suffer from soil 

disturbance, associated with a great capacity to produce roots that reach very deep layers and, 

when they enter the decomposition process, contribute to increasing the TOC content in the 

subsoil (Zanini et al., 2021). 

This effect of pasture roots at depth can also be observed in the accumulation of TOC in 

the 0.20-0.40 m layer in NT+B, a Brachiaria system grown with maize as a second crop. This 

suggests that even with a short cultivation period of 4 years, the system has the potential to 

increase and possibly surpass the TOC content of NT over the years and approach PP. In the 

long term, it is possible that the NT+B area could increase the C content in the surface layers 

(Bieluczk et al., 2020). 

Of the humic fractions, HUM had the highest contents and stocks among the systems. As 

with the TOC contents, the PP system had the highest contents and consequently the highest 

stocks of HUM. Despite the low plant diversity in the PP systems, the high biomass produced, 

long establishment history, and non-transformation resulted in higher stocks of the most stable 

fractions in these medium texture soils (Locatelli et al., 2022; Lavallee et al., 2020; Signor et 

al., 2018). 

Compared to NT and NT+B, application of Brachiaria resulted in a 93% increase in stock 

HUM in the 0.10-0.20 m layer (Table 2). In the 0.20-0.40 m layer, the increase was 567%, 

corresponding to an average increase of 2.61 Mg ha-1 for each year after planting. These results, 

as well as those of the constituents, highlight the importance and influence of grasses, mainly 

through the action of their roots in deeper soil layers, which contribute to greater accumulation 

of organic matter and subsequent humification of this organic matter (Pires et al., 2022; Mattei 

et al., 2020; Oliveira et al., 2019). Subtropical climatic conditions also favor slower 

decomposition compared to tropical climatic conditions, which contributes to the humification 

process of SOM (Pellegrini et al., 2022; Leizeaga et al., 2022). Even if Brachiaria has been 

cultivated in the area for a short time, this grass promotes the humification process of SOM, 

leading to stabilization of carbon in the soil. 

The lower contents and stock-HUM in the subsurface layers of the NT system could be 

mainly related to the low diversity of plant substances present in this area, which do not 

diversify the organic matter and its recalcitrance (Petitjean et al., 2019; Soares et al., 2019). 

The successive cultivation of soybeans and corn on NT, a common practice in the region, leads 

to poorly diversified root systems with little development at depth, especially in the layer up to 

0,20 m, which reduces the efficiency of the NT system in accumulating carbon at depth. 

The higher stock-FA and stock-HA in the area PP in three of the four evaluated layers 

(Table 2) reflects the long time of establishment of this system (Silva et al., 2022; Assunção et 

al., 2019). The presence of higher stock-FA in systems where there is no turnover reflects the 

constant input of plant material into the soil and a gradual and slow decomposition process of 

the SOM, which not only favors the presence of less stable fractions, but also leads to an 

increase in the more stable fractions (stock-HUM) over the years (Silva et al., 2022; Tadini et 

al., 2022b; Assunção et al., 2019; Pegoraro et al., 2018; Rosset et al., 2016). 

Systems that efficiently produce high amounts of HS, especially the more stable fractions, 

are very important for agricultural production, as they help to maintain production capacity, 

improve cation retention and water storage in the soil (Firmino et al., 2022; Tisdall and Oades, 

1982). Based on these results, it is plausible to state that in areas with no-till associated with 

grasses (even with few years of implementation) and in well-managed pastures, the chemical 
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structure of HS is richer, widely distributed in depth and, consequently, with higher contents 

and stable stocks of HS, which is directly related to the formation of stable aggregates that 

ensure the protection of the SOM (Machado et al., 2020). 

The aggregation indices WMD, GMD and OLev were higher in the area PP compared to 

the other areas in the two layers studied (Figure 2), which is directly related to the high TOC 

content in this area (Table 2). This relationship can be explained by the interaction of C with 

soil particles, which act as one of the main binders for the formation of aggregates (Tisdall and 

Oades, 1982; Jastrow, 1992; Six and Paustian, 2014; Six et al., 2004, Six et al., 1999). In 

addition to high TOC content, well-managed grasses also contribute to the processes of 

aggregate formation and stabilization of tropical soils, mainly due to the high density of their 

roots, by releasing organic exudates to the soil that stimulate microbial activity and soil fauna 

(Salton et al. 2014). Under these conditions, more complex structures are formed whose 

byproducts also contribute to the stabilization of aggregates (Loss et al., 2011). 

The results observed in the PP system are evident in several studies comparing PP and no-

till systems (Medeiros et al., 2022; Pinto et al., 2022; 2021; Falcão et al., 2020; Ferreira et al., 

2020; Medeiros et al., 2020; Santos et al., 2020; Wuaden et al., 2020; Ozório et al., 2019; 

Rosset et al., 2019). No differences were observed in soil aggregation parameters in the NT, 

NT+B and NF areas, indicating the benefits that the production systems (NT, NT+B) have on 

the formation of soil aggregates, similar to the NF results. This is mainly due to the constant 

input of SOM by the cultural remains, apart from not disturbing the soil (Ferreira et al., 2020; 

2018a; Pinto et al., 2021). 

It is important to note that after four years, the incorporation of Brachiaria in the systems 

NT+B did not produce significant improvements in soil aggregation compared to the plot 

without Brachiaria. This can be attributed to the short implementation period, as the most 

significant effect of the application of grass was observed in deeper layers, in quantitative and 

qualitative variables of SOM (Table 2), possibly contributing to greater structuring at depths 

greater than 0.10 m. 

As with the WMD, GMD, and OLev variables, the PP site had the highest proportion of 

water-stable macroaggregates. It is important to note that despite the differences compared to 

the PP area, the NT and NT+B areas had a proportion of macroaggregates greater than 37.28% 

in the 0-0.05 m layer. The formation of macroaggregates is important for productive systems 

because it is directly related to the infiltration of water into the soil (Rauber et al., 2021), reduces 

the density and resistance to water penetration (Cavalcanti et al., 2020; Castioni et al., 2019), 

and favors gas exchange with the atmosphere (Lima et al., 2021). Moreover, the formation of 

stable aggregates is the most important factor contributing to C storage, since the SOM is 

trapped in the aggregates (Vicente et al., 2019; Rosset et al., 2019; Oliveira et al., 2019) and is 

protected from the attack of decomposers (Salgado et al., 2019; Assunção et al., 2019); on the 

other hand, the aggregates benefit from the C, which has cementing properties when formed 

(Sarto et al., 2020; Batistão et al., 2020). 

Based on the PCA analysis (Figure 5), it was clear how the PP domain stands out from the 

others. The results confirm the potential that well-managed pastures have to increase quantity 

(Oliveira et al., 2021; Martins et al., 2020; Santos et al., 2020; Troian et al., 2020; Knicker et 

al., 2012) and quality (Assunção et al., 2019; Silva et al., 2019a; Rosset et al., 2022) of SOM, 

as well as promoting soil aggregation (Rosset et al., 2019; Vicente et al., 2019). The PCA 

results also show the grouping of the NT and NT+B areas with the NF area, indicating that 

these studied production areas did not induce changes in the evaluated variables compared to 

the NF area, a pattern already observed by other authors (Medeiros et al., 2022; Ferreira et al., 

2020; Gmach et al., 2019). 

The results indicate the importance of TOC and HS in the formation of aggregates (Tisdall 

and Oades, 1982; Jastrow, 1992; Six and Paustian, 2014; Six et al., 2004), especially due to the 
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low clay contents in the study area (Muggler et al., 1997; Castro and Logan, 1991). This 

relationship between macroaggregates and TOC and HS contents favors the productivity of 

these areas, as this relationship between SOM and aggregate stability directly affects soil 

properties (Moitinho et al., 2020), since these aggregates protect the SOM, especially the more 

stable fractions (Assunção et al., 2019; Merlo et al., 2022; Pessoa et al., 2022), thus ensuring 

the storage of this C in the soil (Nascimento et al., 2022). 

5. CONCLUSIONS 

Permanent pasture with 44 years of implementation increased the content of total organic 

carbon and humic substances in relation to the area with native vegetation. 

The system of no-till with 24 years of implementation and no-till + Brachiaria with 4 years 

of implementation of the consortium favored the carbon contents of fulvic acids, humic acids 

and humic fractions. 

The no-till + Brachiaria systems with only 4 years of implementation helped increase the 

carbon content of the more recalcitrant and chemically stable fractions compared to the no-till 

systems without the use of Brachiaria. 

The permanent grassland area provided an improvement in soil aggregation, which can 

provide greater soil resistance to physical degradation. 

The increase in the carbon content of fulvic acids, humic acids and humic substances 

contributes to the formation of stable aggregates, improving the quality of medium texture 

agricultural soils. 
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