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ABSTRACT. We study a class of integer bilevel problems, the so-called Integer Linear Multiplicative
Bilevel Problem, ILMBP, where the constraints are linear and both the upper level problem and the lower
level problem are integer linear multiplicative problems. We assume that the k-linear factors of the upper
level problem and the l-linear factors of the lower level problem to be non-negative. In this paper, we pro-
pose an algorithm based on branch-and-cut method for solving the Integer Linear Multiplicative Bilevel
Problem. First, the continuous upper level linear multiplicative problem is solved, then the optimal integer
solution obtained is tested for the optimality of the main problem by solving the lower level linear multi-
plicative problem. If this solution is not optimal for the problem ILMBP, a cut is added to the upper level
problem and a new best integer solution is determined. The integer solution is generated by the branching
process well known in the branch and bound procedure. Following, the presentation and validation of the
algorithm, an example is provided to better visualize the algorithm.

Keywords: bilevel programming, integer programming, linear multiplicative programming, branch and cut,
branch and bound.

1 INTRODUCTION

The bilevel programming problem, BLPP, is an optimization problem that is constrained by
another optimization problem. This mathematical programming model arises when two indepen-
dent decision makers, ordered within a hierarchical structure, have conflicting objectives. The
decision maker at the lower level has to optimize her objective under the given parameters from
the upper level decision maker, who, in return, with complete information on the possible re-
actions of the lower, selects the parameters so as to optimize her own objective. In this sense,
the BLPP can be perceived as a static Stackelberg game (Simaan & Cruz Jr, 1973) with two
independent decision makers.
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2 BRANCH-AND-CUT METHOD FOR SOLVING THE INTEGER LINEAR MULTIPLICATIVE BILEVEL PROBLEM

The general form of the bilevel program is:

(BP) max
(x,y)∈S

H(x,y) (1)

where, y ∈ arg max
y∈S(x)

h(x,y).

where
x ∈ Rn1 and y ∈ Rn2 (2)

H,h : Rn 7−→ R, n = n1 +n2; (3)

S ⊂ R, defines the common constraint region and

S(x) = {y ∈ Rn2 : (x,y) ∈ S} . (4)

Let S1 be the projection of S onto Rn1 . For each x ∈ S1, the lower level decision maker solves
problem (P1):

P1


max h(x,y)
s.t

y ∈ S(x).
(5)

Let M(x) be the set of optimal solutions to (5):

M(x) = {y∗ ∈ Rn2 : y∗ ∈ argmax
y

h(x,y) : y ∈ S(x)} (6)

The upper level decision maker’s feasible set, called the inducible region IR, is implicitly deter-
mined by the lower level optimization problem: IR = {(x,y∗) : x ∈ S1,y∗ ∈ M(x)} In this paper,
we assume that S is not empty. Moreover, the lower level decision maker has some room to react
to any decision made by the upper level decision maker, i.e. M(x) ̸= /0.
In these problems, the upper level is referred to as the leader and the lower level represents the
objective of the followers. There are two types of decision makers in a bilevel programming
problem BLPP. The upper level is referred to as the leader ULDM and the lower level represents
the objective of the followers LLDM. The decision is executed sequentially, from upper level to
lower level and each entity makes a decision in a hierarchical manner.

The upper level makes his decision first. Whereas, the lower level may not be satisfied with the
decision of ULDM. Bilevel programming problem arise in many real world situations, includ-
ing transportation engineering, organizational design, facility location, production planning, and
supply chain management (Wen & Hsu (1991); Wen & Yang (1990); White & Anandalingam
(1993)).

As a result, many researchers have conducted in-depth research in this field. The formal formu-
lation of BLPP was proposed in Candler & Townsley (1982); Fortuny-Amat & McCarl (1981);
Arora & Gupta (2021, 2018); Neves et al. (2023). In Golpı̂ra (2017), the Karush–Kuhn–Tucker
(KKT) conditions are employed to transform the BLPP problem into a single-level, mixed-
integer linear programming problem by considering some relaxations. Multichoice optimization
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has been applied to the bilevel transportation problem in Arora & Gupta (2021), the fuzzy pro-
gramming approach is employed in order to obtain a satisfactory solution for the decision-makers
at the two levels. In Neves et al. (2023), the Dynamic Vehicle Allocation problem is presented
and solved using the bilevel programming where the shipper’s objective is to minimize shipping
delays, while the carrier’s objective is to maximize profits.

On the other hand, multiplicative linear programming when there is only one decision level has
received a lot of attention in the literature. This attention is due to the fact that these problems
arise in many practical applications. For example, the construction of bond portfolios, economic
analysis and the design of VLSI chips (Konno & Inori (1989); IRELAND (1971); Maling et al.
(1982)). Such optimization problems often arise in game theory. Examples include computing
the Nash solution to a bargaining problem (Nash Jr (1950)) and computing an equilibrium of a
linear Fisher or a Kelly capacity allocation market (Chakrabarty et al. (2006); Jain & Vazirani
(2007); Vazirani (2012a,b)).

Solving a bilevel (more generally, hierarchical) optimization problem, even in its simplest form,
is a difficult task. Many methods have been proposed and discussed by various authors Dempe
et al. (2014); Dempe & Dutta (2012); Quynh et al. (2012); Vicente & Calamai (1994); Maachou
& Moulaı̈ (2015) with the aim of developing various ways to reduce original bilevel programming
problems to equivalent single-level ones, thus making them easier to solve using mathematical
programming software packages.

Integer bilevel programming has been addressed in Thirwani & Arora (1998); Narang & Arora
(2009); Maachou & Moulaı̈ (2022). Thirwani & Arora (1998) developed an algorithm for solving
QBLPP for integer variables. They solved the problem by linearization technique and obtained
an integer solution of the QBLPP by using Gomory cut and dual simplex method. Narang &
Arora (2009) presented an algorithm for solving an indefinite integer QBLPP with bounded vari-
ables. They solved the problem by solving the relaxed problem and developed a mixed integer
cut solution technique for finding the integer solution. Maachou & Moulaı̈ (2022) developed
a new algorithm based on the branch and cut method to solve the integer indefinite quadratic
bilevel programs where the upper level problem and the lower level problem are integer indef-
inite quadratic programs. The problem is solved in its original formulation where the decision
maker of the upper level chooses his strategy first. Then, using the optimal solution of the upper
level problem, the decision maker of the lower level has to select his best strategy optimizing his
own objective. The optimal solution of the integer indefinite quadratic problem belongs to the
efficient solutions set of the corresponding bicriteria problem.

In this paper, we consider a special class of nonlinear bilevel programming in which the upper-
level’s objective function is a product of k-linear functions and the lower-level’s objective func-
tion is a product of l-linear functions. This class of problems is refered as ILMBP. Assuming that
the k-linear factors of the upper-level’s objective function and l-linear factors of the lower-level’s
objective function are positive, maximization cases are considered for the two levels.
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4 BRANCH-AND-CUT METHOD FOR SOLVING THE INTEGER LINEAR MULTIPLICATIVE BILEVEL PROBLEM

The algorithm developed here for solving ILMBP is based on a branch and cut technique, such
that, to get the integer optimal solution of our main problem, the upper level is solved, and if its
solution is non optimal for ILMBP, a cut is added to the initial domain of the upper level to avoid
the integer solution, and a new integer solution is found. The branch and bound process, allows
us to determine the integer solution.

In the following Section, the Integer Linear Multiplicative Bilevel Problem ILMBP is defined
and formulated. In Section 3, an algorithm is presented for solving the k-linear multiplicative
problem. A branch and cut method is presented in section 4 for solving the Integer Linear Multi-
plicative Bilevel Problem ILMBP and a more detailed description of the algorithm for the whole
problem is given. In section 5, a numerical example is presented for better understanding the
algorithm of the proposed method and in section 6 computational results are presented. Section
7, concludes the paper.

2 DEFINITIONS AND NOTATIONS

Let S̃ be the set of feasible solutions (x,y) ∈ Rn1 ×Rn2 , not empty and bounded, satisfying the
constraints {

A1x+A2y ≤ b
x ≥ 0,y ≥ 0

(7)

where A1 is an m×n1 matrix, A2 is an m×n2 matrix and b is a vector of Rm.

Let ci
1 be a row vector of Rn1 , ci

2 be a row vector of Rn2 for i = 1,k, p j
1 be a row vector of Rn1 , p j

2
be a row vector of Rn2 for j = 1, l, the constants αi for i = 1,k,β j for j = 1, l are real and Zn is
the set of integer numbers. the Integer Linear Multiplicative Bilevel Problem ILMBP, intended
to be studied, can be mathematically stated as:

ILMBP



max
(x,y)

F(x,y) =
k

∏
i=1

(ci
1x+ ci

2y+αi)

where y solves
max

y
f (x,y) =

l

∏
j=1

(p j
1x+ p j

2y+β j)

s.t
(x,y) ∈ D = S̃∩Zn

(8)

The decision vector x is controlled by the Upper Level Integer Linear Multiplicative Problem
ULILMP and the decision vector y is controlled by the Lower Level Integer Linear Multiplicative
Problem LLILMP.

Mathematically, the upper level problem ULILMP can be written as:

ULILMP

 max
(x,y)

F(x,y) =
k

∏
i=1

(ci
1x+ ci

2y+αi)

s.t (x,y) ∈ D

(9)
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and the lower level problem LLILMP can be written as:

LLILMP

 max
y

f (x,y) =
l

∏
j=1

(p j
1x+ p j

2y+β j)

s.t (x,y) ∈ D

(10)

Let us denote the feasible region of ULILMP S = {(x,y) ∈Rn1 ×Rn2 | x,y ∈ S̃,(ci
1x+ci

2y+αi)≥
0, i = 1,k} and z = (x,y),
ci = (ci

1,c
i
2)

T , i = 1,k, the upper level problem ULILMP can be rewritten as:

ULILMP

 max
(x,y)

F(x,y) =
k

∏
i=1

(ciz+αi)

s.t (x,y) ∈ D1 = S∩Zn
(11)

and the feasible region of LLILMP Ŝ= {(x,y)∈Rn1 ×Rn2 | x,y∈ S̃,(p j
1x+ p j

2y+β j)≥ 0, j = 1, l}
and z = (x,y),
p j = (p j

1, p j
2)

T , j = 1, l the lower level problem LLILMP can be rewritten as:

LLILMP

 max
y

f (x,y) =
l

∏
j=1

(p jz+β j)

s.t (x,y) ∈ D2 = Ŝ∩Zn

(12)

The main problem ILMBP is resolved in this paper in its original form. First, the decision maker
of the upper level selects his strategy and determines his optimal solution x∗. After employing
it, the decision maker of the lower level has to choose his best strategy y∗ optimizing his own
objective (Dempe (2002)). In the following section, we will discuss how to solve the integer
linear multiplicative problem.

3 PROCEDURE TO SOLVE THE INTEGER LINEAR MULTIPLICATIVE PROB-
LEMS

Consider the following integer linear multiplicative problem:

ILMP

 max g(z) =
k

∏
i=1

(uiz+αi)

s.t z ∈ D

(13)

where, z = (x,y) ∈ Rn1+n2 , D = X ∩Zn,X = {z ∈ Rn1+n2 | Az ≤ b, z ≥ 0,(uiz+αi)≥ 0, i =
1,k} is a non empty bounded set, b ∈Rm, ui are row vectors of Rn1+n2 ,αi are real, i = 1,k and A
is an m× (n1 +n2) matrix.
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6 BRANCH-AND-CUT METHOD FOR SOLVING THE INTEGER LINEAR MULTIPLICATIVE BILEVEL PROBLEM

Given the following multicriteria linear problem associated to ILMP

IMLP



max g1(z) = u1z+α1

max g2(z) = u2z+α2

.

.

.

max gk(z) = ukz+αk

s.t z ∈ D

(14)

Aneja et al. (1984) showed that in a two-factor continuous multiplicative problem (k = 2), the
optimal solution of (13) is an efficient solution of problem (14). Maachou & Moulaı̈ (2022) have
adapted this result to the case of an integer multiplicative problem. In what follows, we will
extend this result to the case where k ≥ 2.

Theorem 1. An optimal solution ẑ of problem ILMP is an efficient solution of integer multicriteria
linear problem IMLP.

Proof. Suppose that ẑ is an optimal solution of problem ILMP but it is not an efficient solution
of Integer Multicriteria Linear Problem IMLP.
By definition, this implies that there must exist a feasible solution denoted by z ∈ D that
dominates ẑ. In other terms,
for gi(z) = gi and gi(ẑ) = ĝi, i = 1,k we must have that either

ĝi ≤ gi, for all i ∈ {1, ...,k} and ĝi < gi for at least one i ∈ {1, ...,k} Also, by assumptions of
problem ILMP we know that ĝi > 0, i = 1,k.
Therefore, we must have that

0 <
k
∏
i=1

ĝi <
k
∏
i=1

gi

Therefore, ẑ cannot be an optimal solution. □

Thus, an Integer Linear Multiplicative Problem ILMP is equivalent to the following problem
(Nash Jr (1950)):

ILMP’

 max g(z) =
k
∏
i=1

gi(z)

s.t z ∈ DE

(15)

where gi(z) = (uiz + αi), i = 1,k and DE is the set of efficient solutions of the Integer
Multicriteria Linear Problem IMLP.

To solve the Integer Linear Multiplicative Problem ILMP, one would first have to generate the
whole set DE , the set of efficient solutions of the Integer Multicriteria Linear Problem IMLP,
and then choose the best optimal value of g.
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Many methods have been presented to determine the efficient set of IMLP using the concept of
efficiency.

Definition 1. A solution z is dominated by the other solution z∗,
if gi(z∗)≥ gi(z), for i = {1, ...,k} and gi(z∗)> gi(z), for at least one i = {1, ...,k}.

Definition 2. A feasible solution z is called an efficient solution for IMLP problem if and only if
there is no other z̃ ∈ DE , such that gi(z̃) ≥ gi(z), for i = {1, ...,k} and gi(z̃) > gi(z), for at least
one i = {1, ...,k}. Otherwise, z is dominated by z̃. In the next section, we present in detail the
method we used to generate the efficient set of IMLP.

3.1 Method for finding the integer efficient solutions multicriteria linear problem IMLP

To generate the efficient set of IMLP, we use a strategy based on the branch and cut method,
which is described as follows:

3.1.1 Description of the method

Let DE , D̄E be the sets of all efficient solutions and dominated solutions, respectively, of the
integer multicriteria linear problem (14) initialized to the empty set, l = 0 and X0 = X .
The search for the efficient set is an implicit exploration structured as a tree. At each node l of
the tree, we optimize one of k functions gi, i ∈ {1, ...,k} on the subdomain Xl (the choice of
function will not change the final efficient set, but may change the order of the elements in it. In
the following, we choose the first function). The subproblem associated with a node l is defined
as follows:

Pl

{
max g1(z) = u1z+α1

s.t z ∈ Xl
(16)

where, z = (x,y) ∈ Rn1+n2 . In our method, the problem Pl is solved using the simplex method
(eventually dual simplex method). Three situations may arise during problem-solving:

1. The problem Pl has no solution: The node has no descendant and it is fathomed.

2. The problem Pl has non integer solution: Let ẑ j
(l) be one component of the non integer

optimal solution ẑ(l) such that ẑ j
(l) = ν j where ν j is a fractional number. The node l of the

tree is then separated into two nodes, l1 and l2, (l1 > l, l2 > l, l1 ̸= l2), which partition the
feasible set Xl into two parts (Xl1 and Xl2) by adding to Xl new branching constraints
ẑ j

(l) ≤ ⌊ν j⌋ and ẑ j
(l) ≥ ⌊ν j⌋+1, respectively.

3. The problem Pl has an integer solution: Let ẑ(l) the optimal solution of Pl .

- We update the sets DE , D̄E . The integer optimal solution ẑ(l) is then compared
to the solutions of the set DE . Thus, the sets DE and D̄E are updated as follows:
At the node l, corresponding to the solution ẑ(l), if there exists y ∈ DE such that

Pesquisa Operacional, Vol. 44, 2024: e278191



8 BRANCH-AND-CUT METHOD FOR SOLVING THE INTEGER LINEAR MULTIPLICATIVE BILEVEL PROBLEM

(g1(y), ...,gk(y)) dominates (g1(ẑ(l)), ...,gk(ẑ(l))), then DE is not updated and D̄E =

D̄E ∪ {ẑ(l)}. Otherwise, if there is no solution y ∈ DE such that (g1(y), ...,gk(y))
dominates (g1(ẑ(l)), ...,gk(ẑ(l))), then the solution ẑ(l) is added to the set DE and
all solutions where y ∈ DE and (g1(ẑ(l)), ...,gk(ẑ(l))) dominates (g1(y), ...,gk(y)) are
removed, D̄E = D̄E ∪{y}.

- The cutting plane: At node l, let Il , Nl be the index sets of basic and nonbasic
variables respectively (for j ∈ Nl ,z j = 0) of the integer optimal solution ẑ(l) at the
optimal simplex table. We define the constraint:

∑
j∈Hl

z j ≥ 1. (17)

where, Hl =
{

j ∈ Nl | ∃i ∈ {1, ...,k}, ūi
j > 0

}
∪
{

j ∈ Nl | ūi
j = 0,∀i ∈ {1, ...,k}

}
and

ūi
j is the jth component of the reduced gradient vector ūi for each objective function

gi, i ∈ {1, ...,k} at the optimal simplex table.

The inequality (17) is called efficient cut (Chergui & Moulaı̈ (2008)).

If Hl = /0 then the remaining domain contains no efficient solution and the node l is
fathomed (Proposition 1). Conversely, if Hl ̸= /0, then the node l has a successor l+1.
The corresponding domain of the node l +1, the successor of l, is given by applying
(17) to ẑ(l):

Xl+1 =

{
z ∈ Xl : ∑

j∈Hl

z j ≥ 1

}
(18)

Each node l of the tree is fathomed if the corresponding problem Pl is unfeasible or Hl = /0.
The algorithm can be summarized as follows:
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Algorithm 1 Generating the efficient set of IMLP
Step 1: Initialization l = 0, X0 = X , DE = /0, D̄E = /0.

Step 2: General Step.

While there is a non-fathomed node in the tree, choose the node l not yet fathomed and solve the
corresponding linear problem (16).

• If the problem (16) is unfeasible, then the corresponding node l is fathomed.

• Otherwise, let (ẑ(l)) be an optimal solution of the problem (16).

1. If ẑ(l) is integer, goto Step 2a.

2. Otherwise, goto Step 2b.

Step 2a:

• If the vector (g1(ẑ(l)), ...,gk(ẑ(l))) is not dominated by the vector (g1(z), ...,gk(z)) for any
z ∈ DE then DE = DE ∪{ẑ(l)} and D̄E = D̄E .

• If there is a solution z ∈ DE such that (g1(ẑ(l)), ...,gk(ẑ(l))) dominates (g1(z), ...;gk(z)) then
DE = DE\{z}∪{ẑ(l)} and D̄E = D̄E ∪{z}.

Determine sets Nl , Hl ;

1. If Hl = /0 then the node l is fathomed and goto Step 2;

2. Otherwise, add the efficient cut ∑
j∈Hl

z j ≥ 1 to problem (16) and goto Step 2, a new node is

created, l = l +1.

Step 2b: Branching Process Since there is at least one non-integer value among the values ẑ(l), choose
one of them such that ẑ j

(l) = ν j, where ν j is a fraction. Partition the feasible set Xl into two parts
(Xl1 and Xl2) (l1 > l+1, l2 > l+1, l1 ̸= l2) by adding to Xl new branching constraints ẑ j

(l) ≤ ⌊ν j⌋
and ẑ j

(l) ≥ ⌊ν j⌋+1, respectively, and goto Step 2.

3.2 Theoretical results

The following theoretical marks show that the Algorithm 1 determines the set of integer efficient
solutions to problem (14) in a finite number of iterations.

Theorem 2. Assume that Hl ̸= /0 at the current integer solution ẑ(l).
If z ̸= ẑ(l) is an integer efficient solution of problem (14) in domain Xl , then z ∈ Xl+1 (the node
l +1 is the successor of node l).

Proof. Let z ̸= ẑ(l) be an integer solution in domain Xl such that z /∈ Xl+1 , this implies

z ∈

{
z ∈ Xl : ∑

j∈Hl

z j < 1

}
(19)
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10 BRANCH-AND-CUT METHOD FOR SOLVING THE INTEGER LINEAR MULTIPLICATIVE BILEVEL PROBLEM

Therefore, z satisfy the inequalities

∑
j∈Hl

z j < 1 (20)

∑
j∈Nl\Hl

z j ≥ 1 (21)

This means that z j = 0 for all j ∈ Xl , and z j ≥ 1 for at least one index j ∈ Nl \Hl . From the
simplex table corresponding to the solution ẑ(l) we deduce the following equality for all criteria
i ∈ {1, ...,k}:

uiz = uiẑ(l)+ ∑
j∈Nl

ū j
iz j = uiẑ(l)+ ∑

j∈Hl

ū j
iz j + ∑

j∈Nl\Hl

ū j
iz j (22)

Then,
uiz = uiẑ(l)+ ∑

j∈Nl\Hl

ū j
iz j (23)

Thus, uiz ≤ uiẑ(l) for all criteria i ∈ {1, ...,k}, with uiz < uiẑ(l) for at least one criterion since
ui

j ≤ 0 for all j ∈ Nl \Hl .

Hence, the criterion vector (g1(z), ...,gk(z)) is dominated by (g1(z∗(l)), ...,gk(z∗(l))) and z is not
efficient. □

Proposition 1. Suppose that Hl = /0 at the current integer solution ẑ(l), then there are no efficient
solutions in the remaining domain Xl \ ẑ(l).

Proof. Assume Hl = /0, then z∗(l) is an optimal integer solution for all criteria. Therefore, z∗(l)

is an ideal point in the domain Xl , and Xl \{z∗(l)} does not contain efficient solutions. □

Theorem 3. The proposed algorithm generates all efficient integer solutions of the integer
multicriteria linear problem (14) in a finite number of iterations, if such solutions exist.

Proof. Let X be a finite bounded set containing D , the set of integer feasible solutions of the
IMLP problem. Since there are only finitely many integer solutions, the efficient set DE has finite
cardinality. As a result, the search tree will have a fixed number of branches. Consequently, the
algorithm ends after a finite number of steps. □

3.3 An algorithm to solve the Integer Linear Multiplicative Problems ILMP

Using Theorem 1, we propose the following algorithm (Algorithm 2) to solve the ILMP problem
(15).
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Algorithm 2 Solving Integer Linear Multiplication Problems ILMP
Step 0: Initialization From ILMP, we determine the corresponding integer multicriteria

problem IMLP.

Step 1: Using the above algorithm (Algorithm 1), we generate the set of all integer efficient
solutions of the IMLP problem .

Step 2: Let DE be the set of integer efficient solutions of IMLP then, the integer optimal solution
of the problem ILMP is z∗ = arg max

z∈DE
g(z) and gopt = g(z∗).

4 A METHOD TO SOLVE THE INTEGER LINEAR MULTIPLICATIVE BILEVEL
PROBLEMS ILMBP

An exact method based on the branch and cut technique is given in depth in this section. The
convergence of the method is then demonstrated.

4.1 Description of the method

The following general steps solve the Integer Linear Multiplicative Bilevel Problem ILMBP:

- Step 1: In first, we initialize Fopt =−∞, fopt =−∞, zopt = /0, p = 0 and S0 = S.

- Step 2: Using the Algorithm 2, we solve the upper level problem (24) over the subdomain
Sp corresponding to the node p.

ULILMP

 max
(z)

F(z) =
k

∏
i=1

(ciz+αi)

s.t z ∈ Sp

(24)

If the problem (24) has no solution, the main problem is unfeasible and the algorithm
stops. If not, proceed to step 3.

- Step 3: Let z∗(p) = (x∗(p),y∗(p)) be the integer optimal solution of the upper level and
Fopt = F(z∗(p)). Ip, Np are the index sets of the basic and nonbasic variables, respectively,
of the optimal solution z∗(p) obtained by Algorithm 2. This solution is then tested for the
optimality of the main problem by solving the lower level problem (25) (Dempe (2002)):
We fix x = x∗(p) and use again the Algorithm 2 described above to solve the lower level
problem (25),

LLILMP

 max
y

f (x,y) =
l

∏
j=1

(p j
1x∗(p)+ p j

2y+β j)

s.t (x∗(p),y) ∈ Ŝp

(25)

The integer optimal solution is ỹ. There are two possible scenarios:
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1. If y∗(p) = ỹ, then z∗(p) = (x∗(p),y∗(p)) is the reached integer optimal solution of the
main problem (8), Fopt = F(z∗(p)), fopt = f (z∗(p)), zopt = z∗(p) and the algorithm
stops.

2. Otherwise, if y∗(p) ̸= ỹ or the lower level (29) is unfeasible, go to step 4.

- Step 4: Instead of initializing DE = /0 and D̄E = /0 in Algorithm 2, we initialize DE =D p−1
E

and D̄E = D̄ p−1
E (for p ≥ 1) in order to avoid re-searching previously discovered solutions.

We then proceed to update the sets D p
E and D̄ p

E .

– D p
E = D p

E\{z∗(p)} and D̄ p
E = D̄ p

E .

- If there is a solution z̄ ∈ D̄ p
E such that the vector (F1(z̄), ...,Fk(z̄)) is not dom-

inated by the vector (F1(z), ...,Fk(z)) for any z ∈ D p
E , then D p

E = D p
E ∪ {z̄},

D̄ p
E = D̄ p

E\ {z̄}, goto step 5.

- Step 5: The solution z∗(p) in this step is not optimal for the main problem ILMBP, we want
to eliminate this solution from the domain Sp and continue the exploration from node p,
where Sp+1 is the corresponding domain of node p+ 1, the successor of p, obtained by
applying the inequality (27) to z∗(p):

Sp+1 =

{
z ∈ Sp : ∑

j∈Np

z j ≥ 1

}
(26)

The inequality (27) is defined as follows:

∑
j∈Np

z j ≥ 1. (27)

where Np is the set of indices of nonbasic variables of the optimal solution z∗(p) obtained
by Algorithm 2. The integer solution z∗(p) of the upper problem (24) is eliminated by the
inequality (27), which is known as a Dantzig cut, and it is added to the successor nodes of
p.

DE = D p
E , D̄E = D̄ p

E , p = p+1, and goto step 2.

During each iteration of Algorithm 3, the upper level is solved using Algorithm 2 (which uses
Algorithm 1). The obtained solution is then tested for optimality of the main problem. If this so-
lution is not optimal, we remove it from the domain and continue the exploration. The algorithm
stops if the optimal solution for the main problem is obtained or if there is no solution at the
upper level.

The algorithm used to obtain an integer optimal solution to our main problem (8) is can be
summarized as follows:
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Algorithm 3 An algorithm to solve the ILMBP problem
Step 1: Initialization p = 0, Fopt =−∞ and fopt =−∞, zopt = /0.

Solve the upper level problem ULILMP0. Using the above Algorithm 2, the sets of efficient and
dominated solutions DE and D̄E respectively are determined,

D0
E = DE , D̄0

E = D̄E .

• If ULILMP0 is unfeasible, then the bilevel integer optimal solution of the main problem (8)
does not exist, and the algorithm stops.

• Otherwise, let z∗(0) = (x∗(0),y∗(0)), the optimal solution of the upper level (ULILMP0), Fopt =

F(z∗(0)) and goto step 3.

Step 2: General Step. Use the above Algorithm 2 to solve the following upper level problem at node p.

ULILMPp

 max
(z)

F(z) =
k

∏
i=1

(ciz+αi)

s.t z ∈ Sp

(28)

The sets of efficient and dominated solutions, DE and D̄E respectively, are then updated, D p
E = DE ,

D̄ p
E = D̄E . Let z∗(p) = (x∗(p),y∗(p)) be the optimal solution of the upper level ULILMPp.

• If ULILMPp is unfeasible or F(z∗(p)) > Fopt (for p ≥ 1), then the corresponding node p is
fathomed.

• Otherwise, Fopt = F(z∗(p)) and goto step 3.

Step 3: Put x = x∗(p) and solve the lower level problem

LLILMP

 max
y

f (x,y) =
l

∏
j=1

(p j
1x∗(p)+ p j

2y+β j)

s.t (x∗(p),y) ∈ Ŝp

(29)

using the same technique as in Algorithm 2 above.

• Let ỹ be the integer optimal solution of the lower level problem (29).

1. If y∗(p) = ỹ then z∗(p) = (x∗(p),y∗(p)) is the bilevel integer optimal solution of the main
problem (8), Fopt = F(z∗(p)), fopt = f (z∗(p)), zopt = z∗(p) and the algorithm stops.

2. Otherwise, goto step 4.

Step 4: Update the set D p
E and the set D̄ p

E . D p
E = D p

E\{z∗(p)} and D̄ p
E = D̄ p

E .

• If there is a solution z̄ ∈ D̄ p
E such that the vector (F1(z̄), ...,Fk(z̄)) is not dominated by the

vector (F1(z), ...,Fk(z)) for any z ∈ D p
E , then D p

E = D p
E ∪{z̄}, D̄ p

E = D̄ p
E\ {z̄}, goto step 5.

Step 5: Determine the set Np corresponding to the integer solution z∗(p) obtained by Algorithm 2. A
Dantzig cut (27) is added to the corresponding domain to the integer solution z∗(p). DE = D p

E ,
D̄E = D̄ p

E , p = p+1, and goto step 2.
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Theorem 4. The proposed algorithm generates an optimal integer solution of the program
ILMBP in a finite number of iterations, if such a solution exists.

Proof. Let D be the set of integer feasible solutions of the ILMBP problem, be a finite bounded
set contained in the set of the feasible solutions S̃. The set D has finite cardinality because it
contains finite integer solutions. Thus, at each step p of Algorithm 3, if an integer solution z∗(p)
of the main problem is not optimal, the Dantzig cut (27) is constructed and eliminates z∗(p),
then a new node is determined. Therefore, when the set Sp does not contain an integer optimal
solution, the subtree rooted at node p is explored. Eventually, after a finite number of steps, all
nodes are fathomed, and the search tree has a finite number of branches. As a result, the algorithm
concludes within a finite number of steps. □

5 A DIDACTIC EXAMPLE

To illustrate the use of the algorithm, consider the following problem:

(ILMBP)



max
x1

F(x1,y1,y2) = (x1 +2y2 +3)(3y1 +2)(2x1 + y1 +2)(y2 +1)

where (y1,y2) solves

max f (x1,y1,y2) = (y1 +1)(x1 + y1 − y2 +3)
s.t
3x1 + y1 +2y2 ≤ 5

y1 + y2 ≤ 3
x1 +2y1 + y2 ≤ 2

3y1 +2y2 ≤ 6
x1 ≥ 0,y1 ≥ 0,y2 ≥ 0, integers

(30)

To solve the ILMBP, we use Algorithm 3.

Initialization p = 0, Fopt =−∞ and fopt =−∞, zopt = /0.
Solve the upper level problem ULILMP0, by using Algorithm 2, the set of efficient and dominated
solutions, respectively, DE and D̄E are determined, D0

E = DE , D̄0
E = D̄E .

For (y1,y2) = (x2,x3), the Upper Level Integer Linear Multiplicative ULILMP0 can be written
as:

(ULILMP0)



max F(x1,x2,x3) = (x1 +2x3 +3)(3x2 +2)(2x1 + x2 +2)(x3 +1)
s.t
3x1 + x2 +2x3 ≤ 5
x2 + x3 ≤ 3
x1 +2x2 + x3 ≤ 2
3x2 +2x3 ≤ 6
x1 ≥ 0,x2 ≥ 0,x3 ≥ 0, integers

(31)
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To solve the upper level problem ULILMP0, consider the corresponding Integer Multicriteria
Linear Problem IMLP:

(IMLP)



max g1(x1,x2,x3) = (x1 +2x3 +3)
max g2(x1,x2,x3) = (3x2 +2)
max g3(x1,x2,x3) = (2x1 + x2 +2)
max g4(x1,x2,x3) = (x3 +1)
s.t
3x1 + x2 +2x3 ≤ 5
x2 + x3 ≤ 3
x1 +2x2 + x3 ≤ 2
3x2 +2x3 ≤ 6
x1 ≥ 0,x2 ≥ 0,x3 ≥ 0, integers

(32)

For l = 0, X0 = X , DE = /0, D̄E = /0, Fopt = −∞, fopt = −∞ and zopt = /0. The program P0 is
solved. The integer optimal solution z∗(0) = (0,0,2), is given in Table 1 .

Table 1 – Simplex table for node 0.

B0 x1 x2 x6 Rhs
x4 1 -3 -2 1
x5 -1 -1 -1 1
x3 1 2 1 2
x7 -2 -1 -2 2

c1
1 j + c1

2 j − z1(1)
j -1 -4 -2 -7

d1
1 j +d1

2 j − z1(2)
j 0 3 0 -2

c2
1 j + c2

2 j − z2(1)
j 2 1 0 -2

d2
1 j +d2

2 j − z2(2)
j -1 -2 -1 -3

The criterion vector is (7,2,2,3), DE = {(0,0,2)}, D̄E = /0.

H1 = {1,2}. The efficient cut x1 + x2 ≥ 1 is added to P0 constraints. We obtain P1, solve the
problem, and the integer optimal solution z∗(1) = (1,0,1) is given in Table 2.

The criterion vector is (6,2,4,2). Since this solution is efficient, we have DE =

{(0,0,2),(1,0,1)}, D̄E = /0. H2 = {2,8}, apply the efficient cut x2 + x8 ≥ 1, and solve the new
problem P2, the optimal solution z∗(2) = (8/5,1/5,0) is given by Table 3, which is not an integer.
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Table 2 – Simplex table for node 1.

B1 x2 x6 x8 Rhs
x4 -4 -2 1 0
x5 0 -1 -1 2
x3 1 1 1 1
x7 1 -2 -2 4
x1 1 0 -1 1

c1
1 j + c1

2 j − z1(1)
j -3 -2 -1 -6

d1
1 j +d1

2 j − z1(2)
j 3 0 0 -2

c2
1 j + c2

2 j − z2(1)
j -1 0 2 -4

d2
1 j +d2

2 j − z2(2)
j -1 -1 -1 -2

Table 3 – Simplex table for node 2.

B2 x4 x6 x9 Rhs
x2 -1/5 2/5 -1/5 1/5
x5 1/5 -7/5 -4/5 14/5
x3 0 1 1 0
x7 3/5 -16/5 -7/5 27/5
x1 2/5 -4/5 -3/5 8/5
x8 1/5 -2/5 -4/5 4/5

c1
1 j + c1

2 j − z1(1)
j -2/5 -6/5 -7/5 -23/5

d1
1 j +d1

2 j − z1(2)
j 3/5 -6/5 3/5 -13/5

c2
1 j + c2

2 j − z2(1)
j -3/5 6/5 7/5 -27/5

d2
1 j +d2

2 j − z2(2)
j 0 -1 -1 -1

The solution z∗(2) = (8/5,1/5,0) is not an integer, the branching process generates two nodes
node1, node2 corresponding to the following constraints:
node1 : x1 ≥ ⌈ 8

5⌉.

node2 : x1 ≤ ⌊ 8
5⌋.

node1: The constraint x1 ≥ ⌈ 8
5⌉ is added to the P2 constraints, making the augmented problem

unfeasible, then the node is fathomed.
node2: The constraint x1 ≤ ⌊ 8

5⌋ is added to the P2 constraints, we get P3, solve the problem, the
integer optimal solution z∗(3) = (1,1/2,0) is given in Table 4.
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Table 4 – Simplex table for node 3.

B3 x6 x9 x10 Rhs
x2 0 -1/2 -1/2 1/2
x5 -1 -1/2 1/2 5/2
x3 1 1 0 0
x7 -2 -1/2 3/2 9/2
x1 0 0 1 1
x8 0 -1/2 1/2 1/2
x4 -2 -3/2 -5/2 3/2

c1
1 j + c1

2 j − z1(1)
j -1 -2 -2 -4

d1
1 j +d1

2 j − z1(2)
j 3/2 0 3/2 -7/2

c2
1 j + c2

2 j − z2(1)
j -3/2 0 1/2 -9/2

d2
1 j +d2

2 j − z2(2)
j 0 -1 -1 -1

The solution z∗(3) = (1,1/2,0) is not an integer, the branching process generates two nodes
node1, node2 corresponding to the following constraints:
node1 : x2 ≥ ⌈ 1

2⌉.

node2 : x2 ≤ ⌊ 1
2⌋.

node1: The constraint x2 ≥ ⌈ 1
2⌉ is added to P3 constraints, we get P4, solve the problem, the

integer optimal solution z∗(4) = (0,1,0) is given in Table 5.

Table 5 – Simplex table for node 4.

B4 x6 x9 x11 Rhs
x2 0 0 -1 1
x5 -1 -1 1 2
x3 1 1 0 0
x7 -2 -2 3 3
x1 0 -1 2 0
x8 0 -1 1 0
x4 -2 1 -5 4
x10 0 1 -2 1

c1
1 j + c1

2 j − z1(1)
j -2 -1 -2 -3

d1
1 j +d1

2 j − z1(2)
j 0 0 3 -5

c2
1 j + c2

2 j − z2(1)
j 0 2 -3 -3

d2
1 j +d2

2 j − z2(2)
j -1 -1 0 -1
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z∗(4) = (0,1,0), the criterion vector is (3,5,3,1), is not dominated, therefore we update DE =

{(0,0,2),(1,0,1),(0,1,0)}, D̄E = /0. H4 = {9,11}, the efficient cut x9 + x11 ≥ 1 is added to P4

constraints, making the augmented problem unfeasible, then the node is fathomed.

node2: The constraint x2 ≤ ⌊ 1
2⌋ is added to the P4 constraints, constraints, which makes the

augmented problem unfeasible. Consequently, the node is fathomed.

The efficient solution z∗(1) ∈ DE which maximize the value of the objective function of the prob-
lem ULILMP0 is (1,0,1). Therefore, z∗(1) is the optimal solution of the upper level ULILMP0

and Fopt = 96. D0
E = DE , D̄0

E = D̄E . goto step 3.

Step 3: Put x1 = x∗(1)1 = 1 and solve the lower level problem LLILMP by the same technique
cited in above Algorithm 2.

(LLILMP)



max f (1,y1,y2) = (y1 +1)(y1 − y2 +4)
s.t
s.t
y1 +2y2 ≤ 2

y1 + y2 ≤ 3
2y1 + y2 ≤ 1

3y1 +2y2 ≤ 6
y1 ≥ 0,y2 ≥ 0, integers

(33)

The optimal solution is (x̃2, x̃3) = (0,0) ̸= (0,1) = (x1
2,x

1
3), then z∗(1) = (1,0,1) is not optimal

for the Integer Linear Multiplicative Bilevel Problem ILMBP, goto step 4.

Step 4: Update the set D0
E and the set D̄0

E . D1
E = D0

E\{z∗(1)} and D̄1
E = D̄0

E ∪{z∗(1)}.

Step 5: N0 = {2,6,8}. We reduce the feasible region of ULILMP0 using the cut x2 +x6 +x8 ≥ 1,
we obtain the new problem ULILMP1 and solve it.

Step 2: Use the above Algorithm 2 to solve the problem ULILMP1. To do, add the cut x2 + x6 +

x8 ≥ 1 to the program P1, corresponding to the solution z∗(1) = (1,0,1) and use the dual simplex
method to solve the new problem P5. The optimal solution z∗(5) = (0,0,1) is given by Table 6:
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Table 6 – Simplex table for node 5.

B5 x2 x9 x8 Rhs
x4 -1 -3 4 3
x5 0 0 -1 2
x3 1 0 1 1
x7 1 0 -2 4
x1 0 1 -2 0
x6 1 -1 1 1

c1
1 j + c1

2 j − z1(1)
j -2 0 -1 -5

d1
1 j +d1

2 j − z1(2)
j 3 0 0 -2

c2
1 j + c2

2 j − z2(1)
j 1 4 -2 -2

d2
1 j +d2

2 j − z2(2)
j -1 -1 0 -2

The criterion vector, which is dominated is (5,2,2,2). Therefore, DE = {(0,0,2),(0,1,0)}, D̄E =

{(1,0,1),(0,0,1)}. H5 = {2,8}, use the efficient cut x2 + x8 ≥ 1, we determine a new program
P6. The optimal solution z∗(6) = (11/7,0,1/7) is indicated by Table 7:

Table 7 – Simplex table for node 6.

B6 x2 x10 x4 Rhs
x9 5/7 -4/7 -1/7 1/7
x5 2/7 -3/7 1/7 20/7
x3 5/7 3/7 -1/7 1/7
x7 11/7 -6/7 2/7 40/7
x1 -1/7 -2/7 3/7 11/7
x6 10/7 -1/7 -2/7 2/7
x8 2/7 -3/7 1/7 6/7

c1
1 j + c1

2 j − z1(1)
j -9/7 -1/7 -4/7 -34/7

d1
1 j +d1

2 j − z1(2)
j 3 0 0 -2

c2
1 j + c2

2 j − z2(1)
j 9/7 -6/7 4/7 -36/7

d2
1 j +d2

2 j − z2(2)
j -5/7 1/7 -3/7 -8/7

As this optimal solution is not integer, the branching process generates two nodes node7, node8

corresponding to the following constraints:

node7 : x1 ≥ ⌈ 11
7 ⌉

node8 : x1 ≤ ⌊ 11
7 ⌋

node7 : The constraint x1 ≥ ⌈ 11
7 ⌉ is added to Table 7, making the augmented problem unfeasible,

then the node is fathomed.
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node8 : The constraint x1 ≤ ⌊ 11
7 ⌋ is added to Table 7 to yield Table 8 with optimal solution z∗(7)

= (1,0, 1
3 )

Table 8 – Simplex table for node 7.

B7 x2 x11 x10 Rhs
x9 2/3 -1/3 -2/3 1/3
x5 1/3 1/3 -1/3 8/3
x3 2/3 -1/3 1/3 1/3
x7 5/3 2/3 -2/3 16/3
x1 0 1 0 1
x6 4/3 -2/3 -1/3 2/3
x8 1/3 1/3 -1/3 2/3
x4 -1/3 -7/3 -2/3 4/3

c1
1 j + c1

2 j − z1(1)
j -4/3 -2/3 -1/3 -14/3

d1
1 j +d1

2 j − z1(2)
j 3 0 0 -2

c2
1 j + c2

2 j − z2(1)
j 1 0 -2 -4

d2
1 j +d2

2 j − z2(2)
j -2/3 -1/3 1/3 -4/3

As this optimal solution is not integer, the branching process generates two nodes N9, N10

corresponding to the following constraints:

node9 : x3 ≤ ⌊ 1
3⌋

node10 : x3 ≥ ⌈ 1
3⌉

node9 : The constraint x3 ≥ ⌈ 1
3⌉ is added to Table 8, making the augmented problem unfeasible,

then the node is fathomed.
node10 : The constraint x3 ≤ ⌊ 1

3⌋ is added to Table 8 to obtain Table 9 with optimal solution z∗(8)

= (1, 1
2 ,0)
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Table 9 – Simplex table for node 8.

B8 x12 x10 x11 Rhs
x9 1 -1 0 0
x5 1/2 -1/2 1/2 5/2
x3 1 0 0 0
x7 5/2 -3/2 3/2 9/2
x1 0 0 1 1
x6 2 -1 0 0
x8 1/2 -1/2 1/2 1/2
x4 -1/2 -1/2 -5/2 3/2
x2 -3/2 1/2 -1/2 1/2

c1
1 j + c1

2 j − z1(1)
j 0 -1 -2 -4

d1
1 j +d1

2 j − z1(2)
j -3/2 3/2 9/2 -7/2

c2
1 j + c2

2 j − z2(1)
j -1/2 -3/2 3/2 -9/2

d2
1 j +d2

2 j − z2(2)
j 0 0 -1 -1

As this optimal solution is not integer, the branching process generates two nodes node11, node12

corresponding to the following constraints:

node11 : x2 ≤ ⌊ 1
2⌋

node12 : x2 ≥ ⌈ 1
2⌉

node11 : The constraint x2 ≤ ⌈ 1
2⌉ is added to Table 9 to yield Table 10 with optimal solution

z∗(9) = (1,0,0), the criterion vector is (4,2,4,1), which is not dominated, therefore, we update
DE = {(0,0,2),(1,0,0),(0,1,0)}, D̄E = {(1,0,1),(0,0,1)}.
H9 = /0, then the node is fathomed.
node12 : The constraint x2 ≥ ⌊ 1

2⌋ is added to Table 9 to yield Table 11 with optimal solu-
tion z∗(10) = (0,1,0), the criterion vector is (3,5,3,1), is not dominated, therefore, DE =

{(0,0,2),(1,0,0),(0,1,0)}, D̄E = {(1,0,1),(0,0,1)}.
H10 = {6,10,11}. The efficient cut x6+x10+x11 ≥ 1 is added to Table 11, making the augmented
problem unfeasible, then the node is fathomed.
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Table 10 – Simplex table for node 9.

B9 x13 x11 x12 Rhs
x9 -2 -1 -2 1
x5 -1 0 -1 3
x3 0 0 1 0
x7 -3 0 -2 6
x1 0 1 0 1
x6 -2 -1 -1 1
x8 -1 0 -1 1
x4 -1 -3 -2 2
x2 1 0 0 0
x10 -2 -1 -3 1

c1
1 j + c1

2 j − z1(1)
j -1 -2 0 -4

d1
1 j +d1

2 j − z1(2)
j 0 0 -3 -2

c2
1 j + c2

2 j − z2(1)
j -2 0 -1 -4

d2
1 j +d2

2 j − z2(2)
j 0 -1 0 -1

Table 11 – Simplex table for node 10.

B10 x10 x6 x13 Rhs
x9 -1/2 -1/2 0 0
x5 -1/2 1/2 1 2
x3 1/2 -1/2 0 0
x7 -1 1 3 3
x1 -1/2 3/2 2 0
x11 1/2 -3/2 -2 1
x8 -1/2 1/2 1 0
x4 1/2 -7/2 -5 4
x2 0 0 -1 1
x12 -1/2 1/2 0 0

c1
1 j + c1

2 j − z1(1)
j -1/2 -1/2 -2 -3

d1
1 j +d1

2 j − z1(2)
j 0 0 3 -5

c2
1 j + c2

2 j − z2(1)
j -3 1 -3 -3

d2
1 j +d2

2 j − z2(2)
j 1/2 -1/2 0 -1

The efficient solution z∗(0) ∈ DE which maximize the value of the objective function of the
problem ULILMP1 is (0,0,2). Therefore, z∗(0) is the optimal solution of the upper level
ULILMP1 and Fopt = 84. Goto step 3.
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Step 3: Put x1 = x∗(0)1 = 0 and solve the lower level problem LLILMP by the same technique
cited in above Algorithm 2.

(LLILMP)



max f (0,y1,y2) = (y1 +1)(y1 − y2 +3)
s.t
s.t
y1 +2y2 ≤ 5

y1 + y2 ≤ 3
2y1 + y2 ≤ 2

3y1 +2y2 ≤ 6
y1 ≥ 0,y2 ≥ 0, integers

(34)

The optimal solution is (x̃2, x̃3) = (1,0) ̸= (0,2) = (x1
2,x

1
3), then

z∗(0) = (0,0,2) is not optimal for the Integer Linear Multiplicative Bilevel Problem ILMBP, goto
step 4.

Step 4: Update the set D1
E and the set D̄1

E . D2
E = D1

E\{z∗(0)} and D̄2
E = D̄1

E ∪ z∗(0).

There is a solution (0,0,1) ∈ D̄2
E such that the criterion vector (5,2,2,2) is not dominated, then

D2
E = D2

E ∪{(0,0,1)} and D̄2
E = D̄2

E\{(0,0,1)}, goto step 5.

Step 5: For N1 = {1,2,6} we reduce the feasible region of ULILMP1 with the use of the cut
x1 + x2 + x6 ≥ 1. We obtain the new problem ULILMP2 and solve it.

Step 2: Use the above Algorithm 2 to solve the problem ULILMP2. To do, add the cut x1 + x2 +

x6 ≥ 1 to the program P0, corresponding to the solution z∗(0) = (0,0,2) and use the dual simplex
method to solve the new problem P11. The integer optimal solution z∗(11) =(1,0,1) is given in
Table 12.

Table 12 – Simplex table for node 11.

B11 x2 x6 x8 Rhs
x4 -4 -3 1 0
x5 0 0 -1 2
x3 1 0 1 1
x7 1 0 -2 4
x1 1 1 -1 1

c1
1 j + c1

2 j − z1(1)
j -3 -1 -1 -6

d1
1 j +d1

2 j − z1(2)
j 3 0 0 -2

c2
1 j + c2

2 j − z2(1)
j -1 -2 2 -4

d2
1 j +d2

2 j − z2(2)
j -1 0 -1 -2

Fopt < F(z∗(11)), then the node is fathomed.
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The efficient solution z∗(4) ∈ DE = {(1,0,0),(0,1,0),(0,0,1)} which maximize the value of the
objective function of the problem ULILMP2 is (0,1,0). Therefore, z∗(4) is the optimal solution
of the upper level ULILMP2 and Fopt = 45. Goto step 3.

Step 3: Put x1 = x∗(0)1 = 0 and solve the lower level problem LLILMP by the same technique
cited in above Algorithm 2.

(LLILMP)



max f (0,y1,y2) = (y1 +1)(y1 − y2 +3)
s.t
s.t
y1 +2y2 ≤ 5

y1 + y2 ≤ 3
2y1 + y2 ≤ 2

3y1 +2y2 ≤ 6
y1 ≥ 0,y2 ≥ 0, integers

(35)

The optimal solution is (x̃2, x̃3) = (1,0) = (1,0) = (x4
2,x

4
3), then

z∗(4) = (0,1,0) is the integer optimal solution of the Integer Linear Multiplicative Bilevel
Problem ILMBP, Fopt = 45 and fopt = 10.

To summarize the proposed Branch & Cuts method throughout this example, we present a tree
representing states of the nodes during the process (Figure 1).
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node0z∗(0) = (0,0,2) node15 z∗(15) = (1,0,1)

node1z∗(1) = (1,0,1) node7 z∗(7) = (0,0,1)

node8 z∗(8) = (11/7,0,1/7)

node9 z∗(9) = (1,0,1/3)node9

unfeasible

node10
z∗(10) = (1,1/2,0)

node11

unfeasible

node12

z∗(12) = (1,0,0)

node13z∗(13) = (0,1,0)

node14unfeasible

node2 z∗(2) = (8/5,1/5,0)

node3 z∗(3) = (1,1/2,0)node4 unfeasible

node5 z∗(5) = (0,1,0)node6unfeasible

unfeasible

x1 + x2 ≥ 1

x1 + x2 + x6 ≥ 1

x2 + x8 ≥ 1

x2 + x6 + x8 ≥ 1

x2 + x8 ≥ 1

x1 ≤ ⌊ 11
7 ⌋x1 ≥ ⌈ 11

7 ⌉

x3 ≤ ⌊ 1
3 ⌋x3 ≥ ⌈ 1

3 ⌉

x2 ≤ ⌊ 1
2 ⌋x2 ≥ ⌈ 1

2 ⌉

x2 + x10 + x11 ≥ 1

x1 ≥ ⌈ 8
5 ⌉ x1 ≤ ⌊ 8

5 ⌋

x2 ≤ ⌊ 1
2 ⌋x2 ≥ ⌈ 1

2 ⌉

x9 + x11 ≥ 1

Figure 1 – Tree representing states of nodes during Branch and Cut algorithm for solving ILMBP problem.

6 NUMERICAL EXPERIMENTS

The method was implemented in the Visual Studio 2015 environment and tested on randomly
generated (ILMBP) problems. The data is randomly generated by a discrete uniform distribu-
tion in the interval [1,30] for constraints coefficients, [50,100] for right hand side coefficient b j.
The vectors ci

1, p j
1,c

i
2, p j

2 and the scalars α i,β j are generated in [1,10] to ensure the necessary
condition of positivity for (ci

1x+ ci
2y+α i) and (p j

1x+ p j
2y+β j) for i ∈ {1, ...,k}, j ∈ {1, ..., l}.

The Integer Linear Multiplicative Bilevel Programs are solved using the library IBM CPLEX
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12.8 for C++ programs. For each instance (n1,n2,m,k, l) (number of upper variables, num-
ber of lower variables, number of constraints, number of factors to the upper problem, number of
factors to the lower problem), a series of 10 problems were solved. Computational experiments
were carried out on a 2.4 GHZ ACER computer, Intel(R) Core (TM) i5 processor and 4 GB

memory. The obtained performance of the Algorithm 3 is summarized in Table 13 where mean,
maximum number of CPU time (in seconds) are reported. As can be observed, the proposed
Algorithm 3 is quick to execute (cpu(second)) for small and medium dimensions.

Table 13 – Computational results.

k l n1 m n2 CPU(s)
Mean Max

5 5 5 10 5 1.65 2.82
10 10 10 13.72 18.7
10 20 10 8.13 20.21
20 20 10 38.30 56.23
20 30 10 21.28 28.84
20 30 20 47.06 72.66
20 40 20 55.16 89.02
20 40 30 128.91 220.98
20 50 30 131.98 241.93
30 50 30 249.84 279.76
30 60 30 255.7 297.81
40 60 30 559.91 738.83
40 70 30 580.31 662.88
50 70 30 1113.62 1228.86
40 80 40 1217.02 1506.73
40 80 50 2304.6 2526.94
40 90 50 2416.11 2575.7
40 90 60 4220.07 4419.8
40 100 60 4368.74 4782.02

10 10 5 10 5 1.83 3.34
10 10 10 13.1 25.37
10 20 10 10.73 20.56
20 20 10 35.88 62.69
20 30 10 20.41 25.15
20 30 20 81.75 153.84
20 40 20 74.71 188.1
20 40 30 190.87 297.93
20 50 30 142.79 188.83
30 50 30 318.63 398.29
30 60 30 365.57 666.59
40 60 30 705.42 838.83
40 70 30 780.43 1139.49
50 70 30 1375.11 1609.09
40 80 40 1473.51 1694.83
40 80 50 2917.5 3345.03
40 90 50 2826.23 3234.92
40 90 60 4833.1 5158.01
40 100 60 5331.13 5656.49
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7 CONCLUSION

In this study, we have presented a novel algorithm for solving the Integer Linear Multiplicative
Bilevel Problem ILMBP. The algorithm is based on the branch and cut method. If the obtained
integer optimal solution is not optimal for the main problem, a cut (27) is introduced that truncate
the integer optimal solution of the upper problem (24), which allows us to select a new integer
solution. The suggested algorithm offers the integer optimal solution, if one exists, and is an
exact method.

The integer optimal solution of the main problem is reached in a finite number of iterations.
We have provided a didactic example to explain the main steps of the algorithm. Moreover, to
evaluate the algorithm, we conducted a numerical study where we calculated the computation
time for random instances of different sizes and the results are acceptable.

Combinatorial linear multiplicative bilevel problems are a specific case of this mathematical
program, hence our novel approach can be used to solve them. However, the technique can be
improved by employing bounds in the branching process to determine the upper level’s optimal
solution more rapidly. This paper should spur researchers to create more effective methods for
solving this issue. Future works might take into account the similar issue with nonlinear factors.
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MAACHOU N & MOULAÏ M. 2024. Branch-and-cut method for solving the Integer Linear Multiplicative

Bilevel Problem. Pesquisa Operacional, 44: e278191. doi: 10.1590/0101-7438.2023.043.00278191.

Pesquisa Operacional, Vol. 44, 2024: e278191


