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Abstract: Species of the genus Podocarpus L’Hér. ex Pers.present biological activities, 
such as analgesic, antioxidant, antifungal, acting in the fight against anemia, depurative 
and fortifying. Podocarpus lambertii Klotzch ex Endl. is a Brazilian native species 
popularly known as maritime pine and lacks information about its phytochemical 
profile and possible biological activities. The study was conducted to determine the 
phytochemical composition of soluble plant extracts of acetone (EA), ethyl acetate (EAE) 
and hexane (HE) from leaves of P. lambertii; evaluate the antimicrobial potential by the 
broth microdilution technique; antioxidant potential by the DPPH method, as well as 
to evaluate the biofilm inhibition capacity by the crystal violet assay and reduction of 
the yellow tetrazolium salt (MTT). Phytochemical screening detected the presence of 
flavonoids, triterpenoids, steroids, tannins, alkaloids and saponins. All extracts showed 
antimicrobial activity on the microorganisms tested, and the EA showed the best results. 
High free radical scavenging potential was observed only in EAE (96.35%). The antibiofilm 
potential was observed in the EAE extract. The results contribute to the knowledge of the 
species and indicate the potential of P. lambertii extracts as a source of plant bioactives 
for the development of new alternative strategies to control resistant microorganisms.

Key words: Antibiofilm, antioxidant, biological activities, phenolic compounds, plant 
extract.

INTRODUCTION 
In many regions, especially in undeveloped 
or developing countries, the use of medicinal 
plants for the treatment of the most diverse 
clinical conditions is based on cultural traditions 
and beliefs in these alternative methods, still 
representing one of the main supports for health 
care and maintenance (Santos et al. 2021).

Brazil holds the greatest genetic diversity in 
the world, with estimates of 350,000 to 550,000 
existing species, of which 55,000 plant species 
have already been recognized and cataloged, 

and only 1% of the flora has been investigated 
due to this popular knowledge (Silva Filho 2009, 
Carneiro et al. 2014). Sectors such as industrial, 
pharmaceutical ,  environmental already 
highlight the bioactive compounds (secondary 
metabolites) of plant extracts as: antimicrobial 
agents (Weber et al. 2014, Santos et al. 2021), 
antioxidants (Santos et al. 2021), pesticides, 
larvicides (Santana et al. 2018), sedatives (Mello 
& Zacharias 2019), aromas (Baser & Buchbauer 
2015), among others.

The Podocarpaceae family comprises 18 
genera and approximately 173 species spread 
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around the world (Klock et al. 2005, Souza 
2015). Among the species, P. lambertii, known 
as maritime pine, stands out as a native and 
endemic species of the southern region of Brazil 
(Embrapa 2004, Iganci & Dorneles 2019). The 
study of this species is still incipient and, as a 
result, little is known from a scientific point of 
view about the pharmacological and chemical 
potential of this plant, justifying its academic 
exploration.

Taking into account the numerous biological 
activities already described in species within the 
Podocarpaceae family, further studies with the 
species P. lambertii are essential. The possibility 
of discovering new natural bioactives that can 
be employed in public health, industry and 
countless other application possibilities makes 
these studies increasingly relevant, allowing the 
validation of ethnobotanical knowledge and 
valorization of native flora.

Therefore, the aim of this study was to 
determine the main groups of secondary 
metabolites from the phytochemical screening 
of plant extracts from P. lambertii leaves, 
investigating the antimicrobial, antioxidant, 
and antibiofilm potential against pathogenic 
microorganisms.

MATERIALS AND METHODS
Collection and identification of P. lambertii 
P. lambertii leaves were collected in the 
Paulo Gorski Ecological Park, located in the 
municipality of Cascavel, western region of the 
state of Paraná (24°57’51.61 “S and 53°26’14.80 
“O). The collections were performed on random 
days, between 08:00 am (morning) and 12:00 pm 
(noon), in both rainy and dry periods, between 
August 2019 and March 2020. An exsiccate of 
the plant was delivered to the Herbarium of 
the Western Paraná State University (UNOP) 

for botanical identification and registration 
UNOP10730.

Chemical and reagents

Preparation of plant extracts

Plant extracts were prepared according to the 
methodology proposed by Pandini et al. (2015). 
The dried and ground leaves were added in the 
proportion of 10 g for each 100 mL of acetone 
P.A (AE), ethyl acetate P.A. (EAE) or hexane P.A 
(HE) and kept in rotary shaker at 220 rpm for 
24 hours. After this period, the solution was 
filtered using Whatman No. 1 filter paper and 
centrifuged in conical tubes at 3800 rpm for 15 
minutes. Then, the supernatant of the extracts 
was submitted to rotoevaporation for total 
elimination of solvents. The crude extracts were 
stored protected from light in a freezer at 4°C. 
The yield was calculated as a function of the 
extract mass and the raw material mass, in 
grams of material used.

Phytochemical screening of extracts

The qualitative phytochemical screening for 
secondary metabolites present in the extracts 
followed the methodology of Matos (1997) 
and Weber et al. (2014), with modifications. 
Colorimetric visualization tests and/or 
precipitate formation after addition of specific 
reagents were performed. The classes of 
secondary metabolites identified were: saponins 
through reaction with distilled water and 
hydrochloric acid P.A.; steroids and triterpenoids 
through Liebermann-Burchard reaction; 
tannins through reaction with ferric chloride, 
and coumarins through fluorescence reaction 
with potassium hydroxide; anthocyanins, 
anthocyanidins, aurones, chalcones, flavanonols, 
flavones, flavonols and xanthones (flavonoids) 
from pH changes in the medium; alkaloids using 
Dragendorff reagent.
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Quantitative estimation of secondary metabo-
lite from P. lambertii leaves

Total Phenolic Content (TPC)

The TPC of the extract was determined according 
to the Folin-Ciocalteu method of Slinkard & 
Singleton (1977) and Tabasum et al. (2016), with 
some modifications. In summary 1.0 mL of 
extract (1.0 mg.mL-1) was mixed with 2.5 mL Folin–
Ciocalteu reagent 10% (w/v). After 5 min, 2.0 mL 
of Na2CO3 (75%) was added to the mixture and 
incubated at 50 °C for 10 min with intermittent 
stirring. The absorbance of the samples was 
measured at 765 nm against the blank. Gallic 
acid was used as a calibration substance using 
1.0 mg.mL-1 as a standard solution with different 
dilutions for the calibration curve (y = ax + b). 
The amount of TPC was calculated as mg of 
gallic acid equivalents in milligrams per gram 
(mg GAE/g) of extract and calculated as mean 
value ± SD (n = 3).

Total Flavonoid Content (TFC)

TFC was determined using Arvouet-Grand et 
al. (1994). A 1.0 mL aliquot of the extract was 
mixed with 0.2 mL of 10% (w/v) AlCl3 solution 
in methanol, 0.2 mL (1 M) of potassium acetate 
(CH3CO2K) and 5.6 mL of distilled water. The mixture 
was incubated for 30 min at room temperature, 
followed by measuring the absorbance at 415 
nm against the blank. Quercetin was used as 
a calibration substance using 1.0 mg.mL-1 as a 
standard solution with different dilutions for 
the calibration curve (y = ax + b). TFC quantity 
was expressed as mg/g of quercetin equivalents 
in milligrams per gram (mg QE/g) of extract and 
calculated as mean value ± SD (n = 3).

Total Tannin Content (TTC)

TTC was determined using Folin-Ciocalteu 
phenol reagent with tannic acid as standard, 
adapted from the method reported by Son et 

al. (2013). 1.0 mL of extracts was added to 1.0 
mL of 0.2 M Folin-Ciocalteu phenol reagent in 
a test tube and incubated for 4 min at room 
temperature. Then 800 μL of 7.5% sodium 
carbonate (Na2CO3) solution was added. The 
reactions were incubated in a dark chamber at 
room temperature for 2 h followed by measuring 
the absorbance at 725 nm against the blank. 
Tannic acid was used as calibration substance 
using 1.0 mg.mL-1 as standard solution with 
different dilutions for the calibration curve (y 
= ax + b). TTC quantity was expressed as mg of 
tannic acid equivalent per gram (mg TAE/g) of 
extract and calculated as mean value ± SD (n = 
3).

Total Alkaloid Content (TAC)

TA C  w a s  a l s o  q u a n t i f i e d  b y  t h e 
spectrophotometric method. This method is 
based on the reaction between alkaloid and 
bromocresol green (BCG), adapted from the 
method reported by Tabasum et al. (2016). The 
plant extract (1.0 mg.mL-1) was dissolved in 2 N 
HCl and then filtered. The pH of the phosphate 
buffer solution was adjusted to neutral with 0.1 
N NaOH. 1.0 mL of this solution was transferred 
to a separating funnel, and then 5 mL of BCG 
solution along with 5 mL of phosphate buffer 
were added. The mixture was stirred and the 
complex formed was extracted with chloroform 
by vigorous stirring. The extract was collected 
in a 10 mL volumetric flask and diluted to 
volume with chloroform. The absorbance of the 
complex in chloroform was measured at 470 nm. 
TAC quantity was expressed as mg of atropine 
equivalent per gram (mg AE/g) of extract and 
calculated as mean value ± SD (n = 3).

Bacterial strains  
The extracts were tested against different 
microorganisms from the American Type 
Culture Collection (ATCC) being three Gram 
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negative strains: Escherichia coli (ATCC 25922), 
Salmonella enterica Enteritidis (ATCC 13076), 
Pseudomonas aeruginosa (ATCC 27853), four 
Gram- positive: Staphylococcus aureus (ATCC 
25923), Enterococcus faecalis (ATCC 19433), 
Staphylococcus epidermidis (ATCC 12228) Listeria 
monocytogenes (ATCC 1911), and one yeast 
Candida albicans (ATCC 10231).

Evaluation antimicrobial activity

Sutitle inoculums preparation

For the antimicrobial activity test, the 
microorganisms were recovered in Brain Heart 
Infusion (BHI) enrichment broth and incubated 
for 24 h at 35±2°C. After this period, the strains 
were repotted onto Mueller Hinton Agar (MHA) 
medium and standardized in saline solution 
(0.85%) resulting in a final concentration of 1×10 
5 CFU. mL -1 for bacteria and 1×10 6 CFU. mL -1 for 
yeast, according to the McFarland scale.

Determination of minimum inhibitory 
concentrations (MIC’s) / minimum bactericidal 
concentration (MBC) and minimum fungicidal 
concentration (MFC) of the plants extract

The antimicrobial activity of P. lambertii extracts 
was evaluated following the Clinical and 
Laboratory Standards Institute (CLSI 2018) and 
Scur et al. (2014) standards with modifications, 
and the Minimum Inhibitory Concentration (MIC) 
was performed by broth microdilution method. 
AE, EAE and HE were solubilized in methanol 
(P.A), filtered and diluted in Mueller Hinton Broth 
(MHB). In 96-well flat-bottomed microplates, 150 
μL of MHB was dispensed in all wells, 150 μL of 
the plant extract was added in the first well, with 
serial dilutions at concentrations of 200 - 0.09 
mg.mL -1 for the extracts. Then, a 20 µl aliquot 
with microorganisms was added at 1x105 CFU.
mL -1 in each well and the plates were incubated 
at 35±2°C for 24 h. For the positive control, the 

commercial antibiotic gentamicin (bacteria) 
and the antifungal nystatin (C. albicans) were 
used at the same concentrations as tested in 
experiments. As a negative control, inoculum 
was added to MHB without the presence of 
extract to verify the viability of the tested 
microorganism. As colorimetric developer, 
20 µL of 0.5% triphenyl tetrazolium chloride 
(2,3,5-tryphenyl-2H-tetrazolium chloride) (TTC) 
solution was used in each well of the plate. The 
presence of red coloration was interpreted as 
negative evidence of the inhibitory effect. The 
MIC assay was performed in triplicate, allowing 
to determine the lowest concentration of the 
extracts capable of inhibiting microbial growth. 
After incubation, turbidity was observed and 
each well received a 20 μl aliquot of TTC to 
reveal wheter or not bacteria were inhibited. 
After performing the MIC assay, before the 
addition of TTC, a 2 μl aliquot was removed and 
inoculated in MHA for MBC/MFC determination 
and the plates were incubated for 24 h at 35±2°C, 
observing bacterial growth.

The MIC and MBC/MFC were classified 
according to Araújo (2011) and Pandini et al. 
(2015), with the activity in 4 classes: high (<12.5 
mg.mL-1), moderate (12.5 to 25 mg.mL -1), low (50 
to 100 mg.mL -1) and very low (>100 mg.mL-1) .

Evaluation of antioxidant activity 
The antioxidant activity was analyzed according 
to the methodologies proposed by Weber et al. 
(2014) with modifications, by the 2,2-diphenyl-
1-picrylhydrazyl (DPPH) free radical reduction 
method. For the determination of the percent 
antioxidant activity (%AA), the sample was 
prepared with 1 mg of extract and 1 mL of 
methanol P.A. in 1.5 mL conical tube, homogenized 
in a tube shaker for 30 seconds. A 0.1 mL aliquot 
was transferred to 3.9 mL of 0.2 mM DPPH 
methanolic solution and homogenized. The 
readings were measured in a spectrophotometer 
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(Femto, 600plus) with absorbance of 515 nm 
and the reduction was monitored every minute 
until complete stabilization, making up the pre-
test assay. The final absorbance reading for the 
calculation was expressed by: , where 
Abs0 is the absorbance of the control and Abs1 
is the absorbance of the sample.

After obtaining the %AA of the extracts, 
the concentrations used to obtain the IC50 
(amount of antioxidant substance needed to 
reduce the initial DPPH concentration by 50%) 
were defined. The concentrations were defined 
based on the %AA values obtained in the pre-
test assay; when this was higher than 80%, the 
following concentrations were used: 0.1, 0.25, 0.5, 
0.75, 1 mg.mL-1 ; below 80%, the concentrations 
were 1, 2.5, 5.0, 7.5 and 10 mg.mL-1. The readings 
of all reactions were performed using methanol 
as blank, free radical reagent (DPPH) and 
methanol as negative control, and butylated 
hydroxytoluene (BHT) as positive control 
at concentrations of (0.05, 0.025, 0.01, 0.005 
and 0.0025 mg.mL-1). The spectrophotometer 
calibration was performed with methanol. The 
tests were performed in triplicate. The data 
obtained by calculations of the DPPH radical 
scavenging capacity and IC50 were evaluated 
using the Tukey 5% test (p<0.05), using the Sisvar 
software. The experiments were performed in 
triplicate of samples and assays.

Activity of plant extracts on the development 
of preformed biofilms 
The potential of AE, EAE and HE extracts was 
evaluated on biofilm development (24 h - 
irreversible fixation). In summary a 20 µL aliquot 
of inoculum at McFarland’s concentration of 
0.5 (1x106 CFU.mL-1) of Escherichia coli (ATCC 
25922), Pseudomonas aeruginosa (ATCC 27853), 
Staphylococcus aureus (ATCC 25923) was added 
to 130 µL of Brain Heart Infusion (BHI) medium 
supplemented with 1% glucose, added to 96-well 

flat-bottomed microplates and incubated at 37°C 
for 24 h without shaking (irreversible fixation). 
The medium was then removed and aliquots of 
150 µL at concentrations of 100 to 0.09 mg.mL-1 

for extracts and then incubated again at 37°C 
for 24 h without shaking. Untreated biofilm 
controls (BHI supplemented with 1% glucose 
and inoculum), positive control (Gentamicin) 
and inoculum and color interference control 
(BHI and the concentrations of the extract 
diluted in DMSO without inoculum) were used. 
Biomass was quantified using the crystal violet 
(CV) staining method and cell viability by 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H- 
tetazolium bromide (MTT) reduction assay.

Crystal violet staining test

The assay was carried out according to 
Christensen et al. (1982) adapted by Bandeira et 
al. (2022). The 96-well flat-bottomed microplates 
were washed three times with 1X phosphate 
buffered saline (PBS) 1X pH 7.2. Then, for cell 
fixation, 150 µL methanol P.A. was added to the 
wells (Neon) for 20 minutes. After methanol 
removal, 150 µL of 1% crystal violet (Scientific 
Exodus) was added for 15 min. The wells were 
then washed under running water to remove 
the unabsorbed dye. At this point, biofilms were 
observed as purple rings next to the well. A 150 
µL aliquot of 95% ethanol was added and left 
in contact for 30 min for biofilm decolorization. 
After this time, the contents of the microplates 
were transferred to a new sterile plate and 
the absorbance (OD) was measured at 570 nm 
using Epoch model microplate reader. The data 
were calculated in overall mean absorbance 
by Microsoft Excel 2010 program, and the 
percentage of biofilm inhibition was determined 
using the following equation:

% growth inhibition = [(Ac-At)/Ac]*100
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Where Ac: mean absorbance of the untreated 
control; At: mean absorbance of the test with 
extract.

The result was classified according to 
Famuyide et al. (2019) where: < 50% indicate 
low antibiofilm activity; > 50% indicate high 
antibiofilm activity. Negative values indicate 
increase in mature biofilm biomass.

Testing the cell viability of the biofilms formed

Metabolic viability analysis of mature biofilms 
was assessed by MTT reduction at a concentration 
of 0.5%. After methanol removal, an aliquot of 
180 µL and 20 µL of MTT were added to each well, 
and the plates were incubated in the dark at 37 
°C for 2.5 h. After this period, the medium was 
removed and the dye (MTT) was resolubilized 
with 150 µL of DMSO for 15 min. The reading 
was performed using a microplate reader at 
a wavelength of 570 nm. Cell viability data of 
the mature biofilms were expressed as overall 
mean optical density (OD) and the percent cell 
viability (CV%) was determined by the equation: 
experimental OD / untreated control OD x 100 
(Jia et al. 2010, Bandeira et al. 2022, Laskoski et 
al. 2022) and classified into: Percent cell viability 
values: < 50% indicate low cell activity; > 50% 
indicate high cell activity (Famuyide et al. 2019).

The activity of the extracts and oil on the 
mature biofilm was measured by the reduction 
(%) of the absorbance value when compared to 
the untreated control, since the

tested sample is a biofilm producer. As 
a criterion for expressing the results of the 
antibiofilm potential of AE, EAE and HE of P. 
lambertii, both biofilm biomass by crystal 
violet assay and cell viability by MTT assay were 
determined from the MIC, 2X MIC and 4X MIC 
concentrations of each bacterial strain tested.

Statistical analysis

The experimental results were expressed as 
mean ± standard deviation. The experiments 
were performed in triplicate of samples and 
assays. The data obtained were evaluated by 
Analysis of Variance (ANOVA) and Tukey 5% test 
(p<0.05).

RESULTS AND DISCUSSION 
Extract yields 
The following yields were obtained from the 
preparation of P. lambertii plant extracts with 
different solvents: AE (6.76%), EAE (7.60%) and 
HE (4.51%). A better yield of our extracts was 
obtained when compared with the results 
of Abdillahi et al. (2008), who evaluated four 
different Podocarpus species, and acetone 
(average 3%) and hexane (average 2%) extracts. 
Many variables influence the yield of metabolites 
in plant extracts, from temperature, extraction 
time, solid-solvent ratio, among others. 
However, the most important factor is solvent 
selection, which due to its complex chemical 
characteristics, such as polarity and solubility, 
directly influence the yield of extracts (Cabana 
et al. 2013, Fernández-Agulló et al. 2013, Dirar et 
al. 2019, Kong et al. 2020).

Phytochemical screening of the extracts (Qua-
litative and Quantitative)
After obtaining AE, HE and EAE extracts from P. 
lambertii leaves, the phytochemical screening 
was performed. Five groups of compounds were 
verified: tannins, alkaloids, flavonoids, steroids, 
and saponins. Coumarins, anthocyanins, 
anthocyanidins and triterpenoids were not 
detected in the extracts (Table I).

The AE showed the greatest diversity of 
secondary metabolites, with the presence 
of five different classes, followed by HE and 
EAE extracts, which presented four classes. 
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Alkaloids, flavonoids, steroids and saponins 
were common in all extracts tested. Tannins 
were detected only in AE (Table II). The literature 
demonstrates that plant extracts commonly rich 
in phytoconstituents mainly use acetone and 
ethyl acetate as extracting solvents (Santana et 
al. 2022).

The differences observed in the composition 
of the extracts can be explained by the 
abundance of metabolites present, the yield 
during the extraction process, and the polarity 
characteristics of the solvent used (Fernández-
Agulló et al. 2013, Pimentel et al. 2013).

No studies were found in the literature 
related to the presence of phytochemicals in P. 
lambertii, but our results corroborate studies 
in species of the genus Podocarpus from New 
Zealand, such as P. elongatus (Aiton) L’Hér. ex 
Pers., P. falcatus, P. henkelii Stapf ex Dallim. & A. 
B. Jacksque, which found the presence of several 
types of flavonoids, such as monoflavonoids, 
biflavonoids and flavonoid glycosides (Abdillahi 
et al. 2010).

Flavonoids, alkaloids, steroids and saponins 
are classes of biologically active compounds 
found in all P. lambertii leaf extracts and exert 

antimicrobial, pharmacological, and important 
ecological functions (Silva & Paiva 2012, Takshak 
& Agrawal 2019, Guimarães et al. 2019, Reddy et 
al. 2020, Fakhri et al. 2020), as well as surfactant 
(Ribeiro et al. 2013), anticancer (Nadaraia et al. 
2019), and immunomodulatory (Orczyk et al. 
2020) capacity.

Tannins present in greater quantities only 
in AE are water-soluble polyphenols and also 
exhibit an antimicrobial action mechanism that 
constitutes substrate deprivation and enzyme 
inhibition (Sharma 2019, Reddy et al. 2020). 
The efficacy of these secondary compounds 
has already been proven in several other plant 
species, thus confirming the potential of P. 
lambertii as a raw material for the extraction 
of bioactive compounds (Nicácio et al. 2017, 
Sharma 2019, Reddy et al. 2020).

There are no reports in the literature 
regarding the presence of phytochemicals 
in P. lambertii. Our results of phytochemical 
quantification revealed a high total phenolic 
content in EAE (111.76 mg GAE/g). Previous 
studies showed that the total phenolic content 
in leaves of P. elongatus and P. henkelli is 6.94 mg 
GAE/g and 6.85 mg GAE/g, respectively (Abdillahi 

Table I. Phytochemical screening of secondary metabolites present in Podocarpus lambertii leaf extracts.

Classes of Metabolites Hexanic
(EH) Acetonic (EA) Ethyl Acetate (EAE)

Tannins - + -

Alkaloids + + +

Cumarins - - -

Anthocyanins - - -

Flavonoids + + +

Triterpenoids - - -

Steroids + + +

Saponins + + +

Anthocyanidins - - -
(+) presence; (-) absence.
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et al. 2011). In the present study, the maximum 
flavonoid and alkaloid levels were observed in 
EAE (140.50 mg QE/g and 322.94mg AT/g) (Table II). 
These results corroborate with studies in other 
species of the genus Podocarpus, which found 
the presence of different types of flavonoids, 
biflavonoids, glycosides, encompassing a wide 
variety of steroidal and terpenic compounds 
(Abdilahi et al. 2010). Extracts with high phenolic 
content do not always present a high amount of 
condensed tannin, as was evident with the leaf 
extract of P. elongatus in the study conducted 
by Abdillahi et al. (2011). This result was also 
identified in our study with P. lambertii.

Antimicrobial activity 
In the broth microdilution assay, all P. lambertii 
leaf extracts were tested for their ability to 
inhibit the growth (MIC) or cause death (MBC/
MFC) of microorganisms (Table III). 

The activity of the extracts varied according 
to the extracting solvent and the microorganism 
tested. AE, HE and EAE extracts showed 
antimicrobial potential against the 12 standard 
strains tested and AE showed high antimicrobial 
activity (12.5 mg.mL-1). Gram-positive bacteria 
Staphylococcus aureus, Enterococcus faecalis 
and Staphylococcus epidermidis were more 
susceptible than gram-negative bacteria 
Escherichia coli and Pseudomonas aeruginosa.

HE and EAE extracts showed antimicrobial 
activity ranging from 12.5 to 100 mg.mL-1, 

classified from high to very low. These extracts 
show similar antimicrobial properties and 
phytochemical compounds. HE and EAE extracts 
showed alkaloids, flavonoids, steroids and 
saponins, while AE showed a high amount of 
tannins in its composition (Table II), which may 
explain the better performance in antimicrobial 
action (high activity).

In Abdillahi et al. (2008) study, the acetonic 
extracts obtained from the leaves of four 
Podocarpus species exerted better antimicrobial 
activity on Candida albicans when compared 
to the other tested extracts (ethanolic, 
dichloromethane, petroleum ether), through 
microdilution test. This result corroborates 
our study, in which P. lambertii species also 
showed better results with the acetonic extract 
compared to the other extracts tested.

Due to the proven antimicrobial properties 
of secondary metabolites in plants, it is 
suggested that the antimicrobial potential 
of P. lambertii plant extracts is related to its 
phytochemical profile. The flavonoids present 
in the three extracts tested are hydroxylated 
phenolic substances with proven antimicrobial 
activity in the literature. These in turn act in the 
formation of complexes with extracellular and 
soluble proteins, which bind to the bacterial 
cell wall causing irreversible damage to the cell 
(Samy & Gopalakrishanakone 2010, Toledo 2023).

The tannins present in AE also belong to 
the group of phenolic compounds. They are 

Table II. Total phenolic, flavonoid, tannin, and alkaloid content of Podocarpus lambertii leaf extracts.

Phytochemical constituents (µg/mL) AE HE EAE

Total Phenolic mg GAE/g 62.95 ± 0.003 b 25.15 ± 0.003 b 111.76 ± 0.003 a

Total Flavonoids mg QE/g 33.93 ± 0.002 b 21.43 ± 0.005 b 140.50 ± 0.005 a

Total Tannins mg TAE/g 64.60 ± 0.005 a 3.15 ± 0.002 b 8.61 ± 0.006 b

Total Alkaloids mg AT/g 113.59 ± 0.003 b 82.85 ± 0.003 b 322.94 ± 0.004 a
Values followed by the same letter, on the same line do not differ by Tukey’s test (p-value <0.05); mean ± standard deviation; 
AE=acetone extract; HE= hexane extract; EAE = Ethyl Acetate Extract. GAE= gallic acid; QE= quercetinic acid; TAE= tannic acid; AT= 
atopine; Source: authors.
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characterized by their astringent properties, 
inhibiting Gram-positive bacteria that cause 
food spoilage (B. subtilis), contaminated 
foodborne pathogens (S. aureus), as well 
as Gram-negative bacteria (E. coli) (Samy & 
Gopalakrishnakone 2010, Gyawali & Ibrahim 
2014). Their action mode may be related to the 
formation of complexes with microbial enzymes 
and proteins, inactivating their functions (Samy 
& Gopalakrishnakone 2010, Mendez et al. 2012, 
Gyawali & Ibrahim 2014). Saponins found in 

AE, HE and EAE have been reported for their 
antimicrobial potential, acting on the bacterial 
cell membrane and increasing its permeability 
(Simões et al. 2004, Gyawali & Ibrahim 2014).

As a rule, all extracts inhibited the growth 
or caused the death of the pathogenic strains, 
suggesting that the compounds present in these 
extracts, especially the phenolic compounds 
(tannins), play an important antimicrobial role 
against the tested strains.

Table III. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of plant extracts 
obtained from Podocarpus lambertii leaves against the pathogenic microorganisms tested.

Microorganism Extracts MIC/MBC

Gram negative Hexane (HE) Acetone (AE) Ethyl Acetate (EAE)

S. Enteritidis
ATCC 13076 25/100 12.5/25 25/50

S. Typhimurium
ATCC 14028 25/25 12.5/25 25/50

Escherichia coli
ATCC25922 25/50 3.12/3.12 25/50

P. aeruginosa
ATCC 27853 25/25 6.25/6.25 12.5/100

P. mirabilis
ATCC 25933 25/50 6.25/200 25/100

K. pneumoniae
ATCC13883 25/50 6.25/12.5 12.5/100

S. Abaetetuba ATCC 35640 25/25 12.5/50 25/50

Gram positive

S. aureus
ATCC 25923 6.25/25 1.56/6.25 12.5/25

E. faecalis
ATCC 19433 25/50 1.56/6.25 25/100

S. epidermidis
ATCC 12228 25/50 1.56/6.25 25/100

B. subtillis
CCCD B005 25/50 3.12/6.25 12.5/100

Yeast

C. albicans
ATCC 10231 25/50 12.5/25 25/100

Activity High (≤12.5 mg.mL-1); Moderate (25 mg.mL-1); Low (50 mg.mL-1); Very low (100 to 200 mg.mL-1); Source: authors.
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Antioxidant activity  
The antioxidant capacity of P. lambertii extracts 
was determined by the DPPH (2,2-diphenyl-1-
picrylhydrazyl) free radical scavenging assay 
(Table IV). This assay is a direct and reliable 
method for measuring the anti-radical capacity 
of plant extracts (Cabana et al. 2013).

EAE extract showed higher DPPH radical 
scavenging at the concentration of 1 mg.mL-1, 
obtaining an antioxidant percentage of 96.36%, 
and IC50 values considered significantly equal 
when compared to the commercial antioxidant 
BHT (p<0.05).

The antioxidant activity of EAE is probably 
associated with the presence of phenolic 
compounds, since they were found in high 
amounts as shown in Table II, highlighting 
alkaloids (322.94 mg AT/g) and flavonoids (140.50 
mg QE/g),which have recognized antioxidant 
activity (Ali et al. 2011). The efficiency of these 
compounds is linked to hydrogen transfers that 
neutralize the action of free radicals (Brewer 
2011). Flavonoids act as metal chelators and 
singlet oxygen deactivators, consequently 
reducing free radicals (Mello & Filho 2002, 
Boligon 2014).

It is noteworthy that IC50 values are inversely 
proportional to the percentage of DPPH 
scavenging, and the higher the percentage of 
scavenging, the lower the IC50 value. Therefore, 
HE and AE extracts require relatively high 

concentrations to reach the maximum 
antioxidant potential (80%), thus making their 
use unfeasible.

AE and HE extracts, despite also having 
phenolic compounds, except for the tannins 
present only in AE, did not show significant 
antioxidant activity, which may be related to 
their amount of phenolic compounds and/or 
their type of action to interrupt the free radical 
chain (Lai et al. 1991).

The results of antioxidant activity reported 
in the literature are difficult to compare, as they 
are influenced by the method of determination. 
Several methods have been described to 
evaluate the antioxidant activity of chemical 
compounds present in plant extracts (Molyneux 
2004, Pandini et al. 2015).

Evaluation of the activity of plant extracts 
on preformed bacterial biofilm (irreversible 
fixation)
HE, AE and EAE extracts were tested at MIC, 2X 
MIC and 4X MIC concentrations on each bacterial 
strain evaluated and as there was no statistically 
significant difference between concentrations, 
the results expressed refer to the MIC. The data 
from the colorimetric assays were calculated 
as overall averages of the optical density (OD) 
of the biofilm biomass quantified by crystal 
violet staining and the evaluation of biofilm 
cell viability was assessed MTT reduction (Table 
V-VII).

Table IV. Percentage of antioxidant activity of Podocarpus lambertii leaf extracts by the DPPH method.

Test solution % reduction DPPH
[1 mg.mL-1]

Mean ± standard deviation of % 
DPPH reduction IC50

BHT(controle) 98.00 0.01 ± 0.003 a 1.31

EAE 96.35 0.25 ± 0.009 a 1.56

AE 19.38 0.28 ± 0.015 b 3.34

HE 2.84 0.68 ± 0.003 c 8.46
AE=acetone extract; HE= hexane extract; EAE=Ethyl Acetate Extract; mean ± standard deviation. Values followed by the same 
letter do not differ by Tukey’s 5% test. Source: authors.
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The results showed that only EAE showed 
high antibiofilm activity on Pseudomonas 
aeruginosa strain, which can be explained by 
the high content of total phenolic compounds 
(111.76 mg GAE/g), flavonoids (140.50 mg QE/g) 
and alkaloids (322.94 mg AT/g), as described 
in Table II. HE and EAE extracts showed low 
inhibition of preformed biofilm biomass (<50%) 
on Escherichia coli strains, 4.85% and 30.99% 
respectively, and Pseudomonas aeruginosa 
was weakly inhibited by HE (low inhibition). For 
Staphylococcus aureus strains tested against 
HE and EAE and all strains against AE, biofilm 

inhibition was not observed, indicating biomass 
increase.

This increase in biomass can be explained 
by the fact that bacteria in planktonic form are 
more susceptible to antimicrobial agents than 
cells in a biofilm system. Bioactives are not able 
cross the extracellular matrix of the biofilm easily 
(Lewis 2001, Sandasi et al. 2008). The inability 
of AE, HE and EAE extracts to inhibit biomass 
growth of all strains may be related to several 
factors, such as the biofilm growth pattern and 
the required concentration of antibacterial 
agents. In this state, the concentration of biofilm-
producing cells can be 1000 times higher than 

Table V. Antibiofilm activity of hexane extract of Podocarpus lambertii leaves on cell viability of preformed 
biofilms of standard bacteria by crystal violet and of 3-4,5-dimethyl-thiazol-2-yl-2,5-diphenyltetrazolium (MTT) 
reduction method.

HE Violet Crystal Rehearsal Test with MTT

Microorganisms Control HE %I Controle HE % VC

Escherichia coli
(ATCC 25922) 0.16±0.017 0.15±0.017 4.85 0.05±0.003 0.07±0.022 74.04

Pseudomonas aeruginosa
(ATCC 27853) 1.87±0.199 1.42±0.632 24.22 0.05±0.002 0.10±0.026 51.65

Staphylococcus aureus
(ATCC 25923) 0.24±0.011 0.43±0.088* NI 0.06±0.007 0.10±0.006* 62.32

Mean OD ± standard deviation; NI= no inhibition; CV= Crystal Violet; HE = hexane extract; %I = percentage of inhibition; %CV= 
percentage of cell viability; NI= no inhibition. Values followed * differ by the Tukey Test (p>0.05). Percent inhibition (CV) values: 
< 50% indicate low antibiofilm activity; > 50% indicate high antibiofilm activity. Negative values indicate an increase in the 
biomass of the formed biofilm. Percent cell viability (MTT) values: < 50% indicate low cell activity; > 50% indicate high cellular 
activity.

Table VI. Antibiofilm activity of acetone extract of Podocarpus lambertii leaves on cell viability of preformed 
biofilms of standard bacteria by crystal violet and 3-4,5-dimethyl-thiazol-2-yl-2,5-diphenyltetrazolium (MTT) 
reduction method.

AE Violet Crystal Rehearsal Test with MTT

Microorganisms Control AE %I Controle EA % VC

Escherichia coli
(ATCC 25922) 0.16±0.018 0.85±0.214* NI 0.05±0.003 0.06±0.002 86.83

Pseudomonas aeruginosa
(ATCC 27853) 1.87±0.199 2.03±0.685* NI 0.05±0.002 0.06±0.002* 85.65

Staphylococcus aureus
(ATCC 25923) 0.24±0.011 0.51±0.140 NI 0.06±0.007 0.16±0.169 39.69

Mean OD ± standard deviation; CV= Crystal Violet; AE = acetone extract; %I = percentage of inhibition; %CV= percentage of cell 
viability; NI= no inhibition; Values followed * differ by the Tukey Test (p>0.05). Percent inhibition (CV) values: < 50% indicate low 
antibiofilm activity; > 50% indicate high antibiofilm activity. Negative values indicate an increase in the biomass of the formed 
biofilm. Cell viability percentage (TTC) values: < 50% indicate low cell activity; > 50% indicate high cellular activity.
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that of bacteria in the planktonic state (Frank & 
Patel 2007, Hoiby et al. 2010, Pereira 2014, Chen 
et al. 2018).

Despite the low antibiofilm activity and/
or increased biomass of the extracts, low 
cell viability was observed for the S. aureus 
strain (39.69%) in the AE extract and for the P. 
aeruginosa strain with EAE (44.13%). Probably, 
the phytochemical compounds were not able 
to break the polymer matrix of the biofilm and 
there was no disaggregation of the biomass 
when stained with crystal violet, but in the MTT 
assay the antibiofilm potential of these extracts 
was indeed observed. 

The secondary compounds found in the 
phytochemical screening (Table I) and in the 
total phenolic compounds content (Table II) 
of EAE, HE and AE extracts are similar (except 
for AE, which has a higher tannin content) and 
have proven antibiofilm activity in the literature. 
However, in our study, the activity of EAE on the 
mature biofilm of P. aeruginosa strain (Cushnie 
& Lamb 2011, Gandhi et al. 2017, Nuño et al. 2018) 
was evidenced. These substances are present in 
different concentrations, lower or even present 
a synergistic effect between them, increasing 
the biomass of the formed biofilm, besides 
activating genes that will produce excess 

cellular matrix, suggesting a defense strategy 
for survival stress situations from the external 
environmental (Costa et al. 2015). In addition, 
low penetration of these compounds may occur, 
or even increased efflux pumps, which expel 
these antimicrobial agents from bacterial cells 
(Jamal et al. 2018).

To date there are no reports in the literature 
regarding the ability of plant extracts from 
species of the family Podocarpaceae and/or 
the genus Podocarpus to reduce and/or destroy 
preformed biofilms. This study is the first 
scientific report on this biological activity of P. 
lambertii.

In summary, the results of the antibiofilm 
potential tests by the crystal violet assay indicate 
that EAE presented activity on mature biofilm of 
P. aeruginosa and AE on S. aureus and E. coli. 
As for the MTT assay, only AE was effective in 
reducing biofilm viability for S. aureus and EAE 
for P. aeruginosa, causing damage to the cellular 
activity of the formed biofilms.

CONCLUSION
EAE, AE and HE extracts obtained from P. lambertii 
leaves revealed flavonoids, steroids, tannins, 
alkaloids and saponins in the phytochemical 

Table VII. Antibiofilm activity of ethyl acetate extract of Podocarpus lambertii leaves on cell viability of preformed 
biofilms of standard bacteria by crystal violet and 3-4,5-dimethyl-thiazol-2-yl-2,5-diphenyltetrazolium (MTT) 
reduction method.

EAE Violet Crystal Rehearsal Test with MTT

Microorganisms Control EAE %I Controle EAE % VC

Escherichia coli
(ATCC 25922) 0.16±0.018 0.11±0.012* 30.99 0.05±0.003 0.10±0.004* 52.10

Pseudomonas aeruginosa 
(ATCC 27853) 1.87±0.199 0.66±0.147* 64,75 0.05±0.002 0.115±0.002* 44.13

Staphylococcus aureus
(ATCC 25923) 0.24±0.011 0.41±0.142 NI 0.06±0.007 0.10±0.001* 61.28

Mean OD ± standard deviation; NI= no inhibition; CV= Crystal Violet; EAE = ethyl acetate extract; %I = percentage of inhibition; 
%CV= percentage of cell viability; Values followed * differ by the Tukey Test (p>0.05). Percent inhibition (CV) values: < 50% 
indicate low antibiofilm activity; > 50% indicate high antibiofilm activity. Negative values indicate an increase in the biomass of 
the formed biofilm. Cell viability percentage (TTC) values: < 50% indicate low cell activity; > 50% indicate high cellular activity.
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prospecting, proving that the plant is an 
efficient reservoir of bioactive compounds, 
which add medicinal value to the species. In 
addition, the tested extracts have antimicrobial 
and fungicidal activity on the tested standard 
strains, highlighting the efficacy of AEon all 
microorganisms. EAE showed antioxidant activity 
with DPPH radical scavenging percentage of 
96.35%, demonstrating the potential to prevent 
and/or control oxidative stress. The biofilm 
biomass formation inhibition activity was 
effective in EAE on P. aeruginosa. As for cell 
viability, AE reduced the metabolic activity of S. 
aureus and EAE of P. aeruginosa. Therefore, the 
results of the extracts obtained from P. lambertii 
leaves represent a source for the manufacture 
of natural products for the development of 
new alternative strategies to controlresistant 
microorganisms.

However, further investigations on its 
pharmacological properties in vitro and in vivo 
are needed.
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