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1.	 Introduction 

Junglerice (Echinochloa colona (L.) Link) is one of the most globally significant 
weeds due to its various attributes, notably its competitiveness and adaptation 
to diverse environments (Damalas et  al., 2008; Tahir, 2016). However, it has also 
been described as having low phenotypic plasticity (Awan et  al., 2014). Phenotypic 
plasticity is a characteristic that allows individuals to modify a set of traits in response 
to environmental changes, thereby serving as a critical adaptive strategy for evolution 
(Pigliucci et al., 2006; Munier-Jolain et al., 2014).

Damalas et al. (2008) described the ability of junglerice to optimize solar radiation 
utilization through stem arrangement modifications. In addition, several studies 
have shown that junglerice plants can exhibit different growth habits through 
morphological variations, such as height ranging from 10 to 100 cm (Cabrera et al., 
1970; Tahir, 2016) or stem arrangements varying from prostrate to erect (Damalas 
et al., 2008; Awan et al., 2014; Catindig et al., 2019).

In several weed species, plant height is one of the variables most sensitive to 
intraspecific density changes. However, unlike that observed in broadleaf species, 
grasses like Alopecurus myosuroides may be seriously affected by self-shading (Munier-
Jolain et  al., 2014). Moreover, increased intraspecific density often leads to lower 
biomass of stems, roots, and leaves (self-thinning), reducing total biomass and directly 
impacting seed production (Springer, 2020; Zhao et al., 2021).

Understanding the adaptive strategies used by junglerice individuals in response 
to variations in population density is crucial to understand the expected response, 
particularly regarding weed-crop interactions (Swanton et  al., 2015). Moreover, 
identifying variations in the relationships between individuals within a population is 
relevant to understanding potential changes within a community from an evolutionary 
ecology perspective (Callaway et al., 2003).

We postulated that when junglerice plants grow under different population 
densities, they can modify their vegetative and reproductive aerial structures as 
a density-dependent morphological plasticity response, allowing them to acquire 
different growth habits. The prediction is based on a wide density-dependent variation 
in the vegetative and reproductive aerial structures, so a plant acquires a prostrate 
or erect habit if it grows at a lower or higher density, respectively, with density-
dependent adjustment. This adjustment allows for finding critical density values in 
weed productivity. This study aimed to evaluate the morphology of the vegetative and 
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reproductive aerial structures of junglerice and characterize 
the growth habit of individuals based on population density. 
This may allow for determining both the possible plasticity 
of individuals and the degree of density dependence.

2.	 Material and Methods

2.1  Experimental field and junglerice densities

The experiment was conducted at the National Institute 
of Agricultural Technology (INTA) in Pergamino (Buenos 
Aires, Argentina), in a field where soybeans was grown during 
2014, 2015, and 2016. Different densities of junglerice were 
identified and maintained throughout the plant cycle based 
on the natural infestation levels from each year, categorized 
as low, medium, and high density. The density values (DENS) 
were as follows: 2 pl m-2, 156 pl m-2, and 300 pl m-2 in 2014; 
4 pl m-2, 45 pl m-2, and 250 pl m-2 in 2015; and 0.25 pl m-2, 
35 pl m-2, and 250 pl m-2 in 2016. 

Four 2  m x 2  m plots were delimited for each density 
value (twelve plots per year). Since the seedlings emerged 
simultaneously, the population maintained an even-
aged throughout. Any seedlings that emerged later were 
manually removed. At plant maturity, one junglerice plant 
from each plot was randomly selected to be evaluated.

2.2  Measurements

Plant height (PLH, cm), measured from the base to the 
most distant panicle, and plant width (PLD, cm), measured 
as the diameter of a cylinder projected from the edges of the 
plant toward the base, were recorded, and the growth habit 
was characterized as prostrate, semi-prostrate or erect. 
Subsequently, the plants were cut from the soil surface 
and transported to the laboratory. The primaries (PT1), 
secondaries (PT2), and tertiaries (PT3) tillers per plant were 
counted, and the total number of tillers per plant (PTT) was 
determined by summing up the previous three categories, 
and seeds were extracted and placed in glasses. Then, both 
plants and seeds were dried in an oven at 52 °C for 48 hours. 
Seed weight (SEW, g) and seed number (SEN) per plant were 
measured, the hundred-seed weight (HSW, g) was calculated, 
and aerial dry matter (PLW, g) was measured.

2.3  Statistical analysis

The data obtained were analyzed by means of principal 
component analysis (PCA) to group characteristics 
associated with the growth habit. To examine the 
relationship between the variables measured and the growth 
habits, a general linear model (GLM) was applied, and a 
cluster-based method (DGC) was used to identify groups of 
nonhomogeneous means (Di Rienzo et al., 2002).

The height-biomass ratio (HBR) index (cm g-1), which 
represents the proportional relationship between PLH 
and PLW (Perthame et  al., 2022), was calculated. A GLM 
analysis was conducted on all the variables measured 

per plant, including HBR, and a mean comparison was 
performed using the DGC test. Also, the slopes of the log-
log relationships for the variables PLD, PLW, PTT, SEN, and 
SEW were determined as a function of DENS. Subsequently, 
these slopes were compared with the -3/2 and -4/3 power 
law exponents to assess the adaptive responses of plants to 
changes in density (Radosevich et al., 2007).

Finally, PLW, PTT, SEN, and SEW per unit area (m2) 
were estimated, and the relationship between variables and 
population density was fitted using hyperbolic (Eq. 1) or 
parabolic (Eq. 2) functions. Model selection was based on the 
Akaike Information Criterion (AIC). All data analyses were 
performed using InfoStat 2020p (Di Rienzo et al., 2020).

Y = a × (1 – b×e-γ×x)� (Eq. 1)

Y = –δ × x2 + ρ × x� (Eq. 2)

where Y is the estimated PLW, PTT, SEN, or SEW per 
area, is the maximum of the parameter, is the inflection 
point, is the slope, , and are proportional parameters of the 
slope and asymptote, and is the density of junglerice.

3.	 Results

3.1  Growth habits

The bivariate plot of the first two principal components 
revealed three distinct groups of individuals (Figure 1). 

Figure 1 - Principal component analysis (PCA) of the variables 
measured for each junglerice (Echinochloa colona) individual: 
density (DENS, pl m-2), plant height (PLH, cm), plant width 
(PLD, cm), number of primaries (PT1, pl-1), secondaries (PT2, 
pl-1), tertiaries (PT3, pl-1) and total (PTT, pl-1) tillers, plant weight 
(PLW, g pl-1), seed number (SEN, pl-1) and seed weight (SEW, g). 
Growth habit: prostrate (circles; PC1>0, PC2>0), semi-prostrate 
(triangles; PC1>0, PC2<0) and erect (squares; PC1<0)
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The first group consisted of plants with a prostrate growth 
habit, which grew at the lowest density (isolated plants). 
These plants exhibited the highest PLW, PLD, PTT, SEN, 
and SEW values. The second one comprised plants with a 
semi-prostrate growth habit that grew at 2 or 4 pl m-2, and 
the third one included the tallest plants with an erect habit.

PLD and PLW were significantly different among 
the three growth habits (p<0.001). Additionally, PLH 
was statistically significant (p<0.001) for plants with 
an erect growth habit, while SEW was higher (p<0.001) 
in the prostrate individuals (Figure 2). Furthermore, 
PTT showed significant differences among the described 

growth habits (p<0.001), and variations in the hierarchy 
of tillers were observed. Specifically, PT1 did not differ 
between prostrate and semi-prostrate plants, while PT2 
exhibited differences among all three growth habits 
(p<0.001). It is worth mentioning that PT3 was only 
observed in prostrate plants (Figure 2).

3.2  Morphological changes as a density-dependent response

Only HSW (r=0.92) and PLH (r=0.28) had a positive 
relationship with DENS (Table 1, Figure 3). This means that 
heavier seeds were observed at higher densities (r=0.92) 
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and, to a lesser extent, in taller plants (r=0.40). This can 
be attributed to the fact that PLH reached its maximum 
exponentially at 45 pl m-2 (147.3 ± 7.9 cm) and gradually 
decreased to 96.5 ± 10.6 cm at 300 pl m-2.

PLD exhibited the strongest inverse relationship with 
DENS (r=-0.57). An isolated plant (without neighboring 
plants around it) reached a width of 220  cm, while at the 
maximum density evaluated (300 pl m-2), the plants did not 
exceed 13 cm in width (Figure 3). Additionally, the increase in 
density influenced PLD, PLW, PTT, SEN, and SEW, as indicated 
by the negative slopes in the log/log relationships (Table 2).

The HBR index and DENS were positively related (Figure 
3). Although the height of individuals increased up to a density 
of 45 plants m-2 and then decreased, along with the drastic 
reduction in PLW across the density gradient evaluated, this 
behavior contributed to the dynamics of the HBR index.

Between 0.25 and 2 pl m-2, PLH values and HSW did 
not differ significantly (p<0.001), while PLW decreased by 
approximately half (from 151.9 to 62.8 g pl-1). Subsequently, 
at densities of 4, 35, and 45 pl m-2, PLH exhibited a 
statistically significant increase (60.7  cm, 103.8  cm, and 
147.3  cm, respectively), while PLW and HSW remained 
similar. This change in PLH, accompanied by similar PLW, 
resulted in a significant reduction in PTT per plant (73, 18, 
and 11 tillers pl-1). From 45 pl m-2 onwards, a significant 
reduction in individual PLH was observed as DENS 
increased to 300 pl m-2. This reduction may be associated 
with the earlier description of the HBR index, where plants 
might allocate fewer photoassimilates to aerial structures.

3.3  Population adjustment with density-dependent relationship

The estimates of PLW (p=0.0003), PTT (p<0.0001), SEN 
(p=0.0005), and SEW (p=0.0002) per unit area (m2) exhibited 

significant changes depending on DENS. These findings and 
the modifications observed in each individual confirmed 
the density-dependent behavior of junglerice.

The best fit for PLW per m² was achieved using the 
monomolecular model, with an estimated asymptote of 
999.2 ± 94.6 g m-2 (p<0.0001). At a DENS equal to or greater 
than 35 pl m-2, PLW showed no significant differences 
(Figure 4). Additionally, PTT, SEN, and SEW per m2 showed 
a better fit with the polynomial function. In the density 
gradient evaluated, these variables did not reach a constant 
final yield but reached a maximum value and began to 
decrease (Figure 4).

Based on the estimates from the polynomial functions, 
a maximum production of 243,419 seeds m-2, 1571 tillers 
m-2, and 268 g m-2 of seeds can be achieved at population 
densities of approximately 193, 222, and 259 pl m-2, 
respectively.

4.	 Discussion

4.1  Plasticity in growth habit

As observed in the results obtained, junglerice plants 
showed a variation in their growth habit (prostrate, semi-
prostrate, or erect) depending on the population density in 
which they grew. Therefore, the type of growth habit and 
aerial morphology could be considered attributes from 
an intra-specific competitive perspective as a strategy to 
achieve a better capture of aerial resources (Bannett et al., 
2016; Thiel et  al., 2018), which does not agree with that 
proposed by Liu et al. (2022), who associated this species 
with a defined and less plastic growth habit.

Although it has been considered that junglerice have 
low phenotypic plasticity (Awan et  al., 2014) and that, 
within the Echinochloa genus, this species exhibits 

Table 1 - Correlation index (R), mean, standard deviation (Dev), and coefficient of variation (CV) of the variables measured in the 
experiment for each junglerice (Echinochloa colona), plant (pl-1) density (DENS): plant height (PLH, cm), plant width (PLD, cm), 

plant weight (PLW, g), number primaries, secondaries, tertiaries, and total tiller (PT1, PT2, PT3, and PTT, respectively) hundred-
seed weight (HSW, g), seed number (SEN, n°), and seed weight (SEW, g)

SEW SEN HSW PTT PT3 PT2 PT1 PLW PLD PLH DENS

DENS -0.40 -0.39 0.92 -0.47 -0.27 -0.38 -0.56 -0.53 -0.57 0.28 1

PLH -0.50 -0.51 0.40 -0.55 -0.41 -0.48 -0.57 -0.59 -0.80 1 -

PLD 0.82 0.79 -0.62 0.81 0.67 0.79 0.67 0.90 1 - -

PLW 0.83 0.76 -0.57 0.85 0.79 0.90 0.58 1 - - -

PT1 0.42 0.37 -0.49 0.84 0.46 0.69 1 - - - -

PT2 0.76 0.69 -0.38 0.97 0.91 1 - - - - -

PT3 0.70 0.69 -0.33 0.84 1 - - - - - -

PTT 0.70 0.64 -0.45 1 - - - - - - -

HSW -0.40 -0.48 1 - - - - - - - -

SEN 0.98 1 - - - - - - - - -

SEW 1 - - - - - - - - - -

Mean 3.35 5452 0.89 31 2 14 15 31.99 50.7 92.9 -

Dev 4.99 10238 0.32 48 7 28 18 44.92 62.3 38.6 -

CV 1.49 1.88 0.36 1.53 3.38 1.99 1.17 1.4 1.23 0.42 -
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Figure 3 - Effect of junglerice (Echinochloa colona) plant density 
(DENS) on (A) size, represented by the plant height (PLH, circles) 
and plant width (PLD, triangles); (B) productivity, indicated 
by the plant dry weight (PLW, circles) and the hundred-seed 
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Table 2 - Double logarithmic reciprocal relationships among junglerice (Echinochloa colona) plant width (PLD), plant weight 
(PLW), the total number of tillers (PTT), seed number (SEN), and seed weight (SEW) as a function of plant density. Results 

of the linear regression model include slope (b), experimental error (EE), lower limit (LL), and upper limit (UL) for the 95% 
confidence interval, t-statistic (T), p-value, and regression coefficient (r2) for each variable

b EE LL (95%) UL (95%) T p-value r2

PLD -0.456 0.026 -0.508 -0.403 -17.668 <0.0001 0.91

PLW -0.508 0.044 -0.599 -0.417 -11.439 <0.0001 0.81

PTT -0.436 0.041 -0.519 -0.353 -10.759 <0.0001 0.79

SEN -0.460 0.057 -0.576 -0.345 -8.135 <0.0001 0.69

SEW -0.325 0.056 -0.439 -0.211 -5.829 <0.0001 0.53
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the least morphological variation (Tahir, 2016), the 
results here observed demonstrate that all the variables 
evaluated presented considerable variability (CV between 
0.36 and 3.38) (Table 1). In other words, the present 
results confirm that junglerice exhibits substantial 
morphological variability. Still, under the conditions of 
the experiment, it is not possible to ascertain whether 
this is due to phenotypic plasticity or interpopulation 
variation (Mortimer, 1997).

4.2  Individual plasticity and density dependence

Regarding the behavior of HSW as affected by DENS, 
results showed that the plant strategy is to produce heavier 
seeds as the population density increases, which would 
allow it to prioritize the allocation of photoassimilates for 
grain filling, resulting in heavier seeds with potentially 
higher germination viability (Massimi, 2018).

The behavior of PLH in the plants evaluated expressed 
an increase followed by a decrease along the density 
gradient, indicating non-constant growth. This observation 
partially agrees with the findings of Awan et al. (2014), who 
recorded taller plants at higher densities but did not detail 
the increase in PLH at low densities.

Although PLW, PTT, SEN, and SEW were negatively 
affected by higher DENS, the theories of individual 
productivity adjustment through logarithmic 
transformation did not correspond to slope values like 
-3/2 or -4/3, as proposed by the reciprocal log/log law 
(Radosevich et  al., 2007). Instead, the slopes of these 
relationships were equal to or greater than -1/2 (Table 2).

Since root biomass was not determined, the fact 
that the HBR index was positively related to DENS could 
indicate an increase in photoassimilates allocated to the 
roots, as suggested by other authors based on functional 
balance (Foxx, Fort, 2019). However, the increase in the 
HBR index as affected by DENS indicates a response to 
potential shading caused by neighboring plants (Perthame 
et al., 2022).

The variation in population density led to a reduction in 
PTT, with greater height observed as a photomorphogenic 
response to favor increased interception of 
photosynthetically active radiation (PAR) in response to 
density change (Lecarpentier et al., 2019). These results do 
not align with those obtained by Mutti et al. (2019), who 
observed that junglerice could not adjust PLH to achieve 
greater interception of PAR with increasing plant density, 
as observed in E. phyllopogon. Furthermore, this finding is 
consistent with descriptions by several authors regarding 
the behavior of junglerice, where increased density of 
neighboring plants results in reduced PLH and where the 
addition of nitrogen to the soil reverses this situation, 
significantly increasing height (Awan et  al., 2014; Mutti 
et al., 2019).

4.3  Population plasticity and density dependence

PLW per unit area (m2) fitted the “law of constant 
final yield” (Harper, Gajic, 1961). This means that, despite 
the decrease observed in individual plant weight (with 
increasing density), the accumulation of population-level 
aboveground dry matter continues to increase until it 
reaches a maximum asymptote, as stated by this law. Given 
that aerial biomass of weeds serves as a precise estimator 
for competition with crops but also demands time for 
quantification (Gerhards et  al., 2017), it is important 
to consider that, at values equal to or greater than 35 pl 
m-2 under the experimental conditions evaluated, the 
accumulation of aerial dry matter per plant decreases, and 
the accumulation of aerial dry matter per unit area tends to 
remain constant. This response is like the observations of Al 
Mamun (2014), who explained this population adjustment 
in E. crus-galli due to increased intraspecific competition 
among plants.

Unlike PLW, the variables PTT, SEN, and SEW did 
not fit the hyperbolic function but quadratic polynomial 
functions. While these functions are not recommended for 
studying additive models (Oliveira et al., 2018), the results 
of this experiment are consistent with those of Weiner et al. 
(2001), who observed that the total number of stems and 
seed production decrease with the progressive increase in 
the number of individuals, and consequently, the potential 
increase in intraspecific competition leads to reduced 
productivity. Additionally, these findings align with the 
description of density-dependent relationships defined by 
a parabolic curve (Begon et al., 2006).

Maximum production of SEN, PTT, and SEW per unit 
area is achieved at approximately 5.5 to 7.5 times the 
density required to reach maximum PLW per unit area. 
Furthermore, results showed that SEN per unit area was 
the first variable to be negatively affected (more sensitive) 
as density increased, unlike SEW per unit area. This may be 
associated with the harvest index (HI) and HSW because 
HSW increased with the increase in DENS and led to 
fewer but heavier seeds, thus allowing SEW per unit area 
to continue increasing. Regarding HI, a higher SEW/PLW 
ratio was obtained with increasing density (r2=0.55). This 
relationship indicates that, even at 45 pl m-2, the HI did not 
exceed 12%, while at a density of 300 pl m-2, it reached a 
value of 38%.

The morphological plasticity of vegetative and 
reproductive aerial structures measured in junglerice plants 
would give the weed the capacity to adapt to a wide range 
of densities. Thus, an isolated individual has the potential 
to maximize productivity and achieve PLW and SEN values 
equivalent to those produced by 50 plants at the maximum 
density evaluated (300 pl m-2). However, the maximum SEN 
per unit area would occur at a population density rarely 
reached in production fields, which means that the SEN 
per unit area observed in this study was higher than that 
reported in cultivated fields (De Marco et al., 2018).
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This behavior could indicate a competitive advantage 
since each junglerice plant can modify its vegetative and 
reproductive aerial structures. Thus, in the event of weed 
control failure within a crop, a population can maintain 
constant aerial dry matter and optimize propagule 
production by adjusting the number and weight of seeds to 
ensure offspring survival.

5.	 Conclusion

Junglerice exhibits a wide morphological plasticity 
that is density dependent. In the present study, while the 
production of aerial dry weight followed the law of constant 
final yield, the number of tillers and the number and weight 
of seeds per unit area showed a nonlinear dome-shaped 
relationship. Critical DENS were identified by fitting these 
nonlinear functions to significantly maximize productivity. 
This indicates an intraspecific interaction between vegetative 
and reproductive structures in a population density gradient.

Considering the plastic nature observed in individuals, 
monitoring this weed in the field is important. If, after 
applying a control method, the aerial dry matter is not 
significantly affected, the number of seeds per unit area 
becomes a variable highly sensitive to changes in density. 
Consequently, reducing the re-entry of propagules into the 

soil seed bank could be achieved by targeting the decrease 
in seed production.
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