
How to cite this article: CUNHA MM, SANTOS AP, NERO MA, MEDEIROS NG. Proposal of a method for evaluating the spatial 
distribution pattern of linear features. Bulletin of Geodetic Sciences. 30: e2024007, 2024.

Proposal of a method for evaluating the spatial distribution 
pattern of linear features

Marconi Martins Cunha1 - ORCID: 0000-0003-0797-8530
Afonso de Paula dos Santos2 - ORCID: 0000-0001-7248-4524

Marcelo Antonio Nero1 - ORCID: 0000-0003-2124-5018
Nilcilene das Graças Medeiros1 - ORCID: 0000-0003-0839-3729

1Universidade Federal de Viçosa, Departamento de Engenharia Civil, Viçosa - MG, Brasil.
E-mail: marconi.cunha@ufv.br, afonso.santos@ufv.br, nilcilene.medeiros@ufv.br

2Universidade Federal de Minas Gerais, Departamento de Cartografia, Belo Horizonte - MG, Brasil.
E-mail: marcelo.nero@gmail.com

Received in 11th November 2023.
Accepted in 19th March 2024.

Abstract:

Positional accuracy of cartographic products is typically evaluated using positional discrepancies and point-based 
techniques. However, using linear features has some advantages over the point-based method, such as a greater 
amount of geometric and positional information and the fact that approximately 80% of the features on a cartographic 
basis are lines. Despite these advantages, important parameters for evaluating accuracy using lines have not yet 
been established or determined, such as the spatial distribution pattern, although it is a relevant factor that can 
affect the results and determine the validity of an evaluation process. This study proposes a method based on the 
modification of the Nearest Neighbor Method for points, which can be used to evaluate the spatial distribution 
pattern of linear features. Instead of the traditional Euclidean distance used by the method for points, the method 
proposes using the Hausdorff Distance as a measure of the spacing between lines. The proposed method, called 
Nearest Neighbor Method for Linear Features (NNMLF), was applied to simulated and real data. All experiments 
with simulated data showed that the NNMLF was effective in estimating spatial distribution pattern up to the third 
order. Its use on real data showed NNMLF is simple to apply.
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1. Introduction

The increasing availability of spatial information to users also increases the need to assess the quality of data 
and products generated, to identify whether they meet user requirements (Xavier et al. 2019). Cartographic Quality 
Control (CQC) evaluates the quality of a cartographic product, in order to increase its reliability and enable its use 
in an adequate way to meet the real needs of the user. This assessment is carried out on the quality elements of 
the product. ISO 19157 standard (ISO 2013) defines that the basic quality elements to be observed and evaluated 
in cartographic products are: completeness, logical consistency, positional accuracy, temporal accuracy, thematic 
accuracy and usability. It should be noted that positional accuracy is the most used element to verify spatial data 
quality (Jakobsson and Vauglin 2002; Drobnjak et al. 2017).

Traditionally, positional accuracy assessment is performed using point-based techniques (FGDC 1998; Van 
Niel and Mcvicar 2001; Ariza-López et al. 2012; Nero et al. 2017; Ruiz-Lendínez et al. 2017; Ariza-López et al. 2018a; 
Mozas-Calvache 2021; Santo Filho et al. 2022). In these techniques, there is a statistical comparison of the positional 
discrepancies observed among well-identified homologous points of test and reference products.

However, the technological advances of GNSS (Global Navigation Satellite System) receivers and the 
development of kinematic survey methods boosted the possibility of acquiring and using lines in positional control 
(Mozas-Calvache 2007, 2021). The use of lines in CQC has some advantages over points. Cuenin (1972), Thapa (1988) 
and Li (2006) state that approximately 80% of the entities in a cartographic base are made up of linear features. 
Mozas-Calvache and Ariza-López (2011) point out that linear elements have varied geometric and positional 
information, such as vertices, angles, length of line segments, orientation, sinuosity, among others. This additional 
information can help and provide new possibilities in the positional accuracy evaluation process. In view of this, 
Mozas-Calvache and Ariza-López (2010) stated that it is possible that positional quality control in cartography using 
linear features represents an evolution of methods based on point features. This idea is also seen in studies by Seo 
and O’Hara (2009) and Wu et al. (2021).

Despite these advantages, important parameters in the evaluation of positional accuracy using linear 
features have not yet been established or determined, such as the sample size and its distribution pattern (Ariza-
López et al. 2011; Ariza-López et al. 2018b).

Spatial distribution of a sample, subject of this work, can determine the validity and quality of a sampling 
evaluation process, since a bad spatial distribution affects the representativeness of the sample, reducing the adequate 
demonstration of the population, which can result in a wrong estimate (Ariza-López and Atkinson-Gordo 2008).

When it comes to spatial distribution of the point-type control elements, there are metrics, statistics or 
methods that evaluate their distribution, such as the Nearest Neighbor Method, presented by Clark and Evans 
(1954), and Ripley’s K Function, introduced by Ripley (1977). In Cartographic Quality Control, Nearest Neighbor 
Method was applied at the studies of Santos et al. (2016) and Silva (2020); while Ripley’s K Function was used in 
research by Zanetti (2017) and Oliveira et al. (2018). Standards from some countries also provide guidelines for the 
spatial distribution of checkpoints, such as the National Standard for Spatial Data Accuracy (NSSDA) (FGDC 1998), 
from the United States of America (USA), and UNE 148002:2016 – Control of la Calidad Positional en Conjuntos de 
Datos Espaciales (AENOR 2016), from Spain.

On the other hand, the assessment of positional accuracy through distribution pattern of linear features 
seems to have been little or not explored at all in some aspects. An analysis in the literature shows us, for example, 
that there is no method to evaluate the spatial distribution for linear features. Therefore, the aim of this paper 
is to propose a method for evaluating the spatial distribution pattern of linear features used in the evaluation of 
positional accuracy.
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2. The proposed method

The proposed method was named Nearest Neighbor Method for Linear Features (NNMLF). As the name 
suggests, this method is based on a modification of the Nearest Neighbor Method for points.

The Nearest Neighbor Method compares the average between an observed distance and an expected distance 
in a theoretical set of point features that have a random distribution pattern. This theoretical set is obtained by 
partitioning the study area into hexagons of the same size, with a point in the center of each hexagon, which 
means that each element is equidistant from the other six and the space between the elements is maximized (Clark 
and Evans 1954; Lee and Wong 2001). Figure 1a illustrates the theoretical distribution of 30 points, showing the 
distances d between six of them.

This method has distances as input parameter, and this is the basic premise for its adaptation to the method 
based on linear features. The main idea of the proposed method is to obtain a set of distances that represent the 
average spacing between the linear features and compare it with a theoretical spatial distribution pattern, as we do 
in the traditional method. The theoretical pattern can be the same used at the Nearest Neighbor Method, assuming 
that the area is divided into hexagons of the same size, with a linear feature in the center of each hexagon (Figure 1b). 
Although the lines have different geometric parameters, such as direction, length and sinuosity, the same theoretical 
distribution pattern can be used because the distances that maximize the spacing are obtained between the hexagon’s 
centers, just like in the point-based method. The use of the same theoretical pattern makes it possible to apply the 
framework of the point-based method to the NNMLF, whose input parameters will also be distances but between lines.

Source: (a) Adapted from De Vos (1973).

Figure 1: Theoretical spatial distribution pattern for points (a) and lines (b).

As a measure of spacing between lines, we chose to use the Hausdorff Distance metric. Hausdorff Distance 
is widely used for information retrieval and analysis of geometric similarity between vector objects (for points, 
lines or polygons) or images (Huttenlocher et al. 1992; Ariza-López and Mozas-Calvache 2012; Chehreghan and Ali 
Abbaspour 2017; Marošević 2018; Wang et al. 2019). According to Atkinson-Gordo and Ariza-López (2002), this 
distance is recurrently applied to the evaluation of positional quality (Mozas-Calvache and Ariza-López 2015; Santos 
et al. 2015; Mozas-Calvache et al. 2017a, 2017b; Saito et al. 2019) and in processes to control the effectiveness of 
cartographic generalization (Zhai et al. 2017; Guo et al. 2019; Liu et al. 2020). In these cases, the Hausdorff Distance 
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portrays the distance between pairs of homologous lines, whereas in this research the Hausdorff Distance will 
represent the spacing of different linear features. This application is also provided by Hangouet (1995).

The NNMLF algorithm is given by the ten-step procedural sequence listed below.

1)   Obtain a set of n lines, from which you want to evaluate the spatial distribution pattern.

2)   Determine the size A of the area of the region where the linear features to be evaluated are located.

3)   Extract the coordinates of all lines’ vertices from the set of n lines.

As discussed by Hangouet (1995), the Hausdorff Distance does not need to be calculated only from vertices. 
However, using any point on the segment of a line for the calculation would make proposed method’s implementation 
computationally difficult. Therefore, NNMLF is based only on the coordinates of lines’ vertices.

4)   Considering a line i as belonging to the set of n lines, that is, i ∈ {1, 2, 3, ..., n}, calculate the smallest 
Euclidean distance of each vertex of line i in relation to any segment from line 1. In this step, the Euclidean distance 
is obtained between a vertex of line i and a vertex or any point on the line segments that make up line 1, always 
choosing the one that provides the smallest distance. Repeat the process, calculating the smallest Euclidean distance 
from the vertices of line i for any segment of lines 2, 3, ..., n, except for line i itself.

5)   Repeat step 4 for all lines belonging to the set of n lines. That is, ∀i ∈ {1, 2, 3, ..., n}.

6)   For each line belonging to the set of n lines, take the average of all the smallest distances calculated in 
relation to all other lines.

7)   Obtain the Hausdorff Distance between all pairs of lines in the set of n lines. Consider j a line also belonging 
to the set of n lines, that is, j ∈ {1, 2, 3, ..., n}. Since dij is the average of the smallest distances from line i to line j and 
dji is the average of the smallest distances from line j to line i, the Hausdorff Distance (dh) is defined as the largest 
value between dij and dji, calculated according to Equation 1.

𝑑𝑑ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑𝑖𝑖𝑖𝑖, 𝑑𝑑𝑗𝑗𝑗𝑗}

𝑅𝑅(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘)
𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) =
∑ 𝑑𝑑𝑑𝑑1𝑛𝑛
𝑖𝑖=1 (𝑘𝑘)

𝑛𝑛

𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) = 𝛾𝛾1𝑘𝑘√
𝐴𝐴
𝑛𝑛

𝑍𝑍(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) − 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)
𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘)

𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘) = 𝛾𝛾2𝑘𝑘√
𝐴𝐴
𝑛𝑛2

                                                                                (1)

As the average of the smallest distances from line i to line j will probably be different from the average of the 
smallest distances from line j to line i, this step is important to obtain a unique distance between each pair of lines, 
as in the case of distance between points. According to Mozas-Calvache (2007), this difference is provided by the 
asymmetry of this type of measurement based on lines. Hangouet (1995) cites asymmetry as one of the properties 
of the Hausdorff Distance.

In its classical approach, the values of dij and dji are given by the maximum distances of the smallest distances 
from line i to line j and from line j to line i, respectively. However, Maiseli (2021) alerts to the fact that, by using 
maximum values in the calculation of dij and dji, this way of obtaining the Hausdorff Distance becomes very sensitive 
to gross errors or noise. To get around this problem, Mozas-Calvache (2007) proposed using the average of the 
smallest distances, instead of the maximum values, to obtain dij and dji. That is why this way of calculating the 
Hausdorff Distance was used in the proposed NNMLF method.

8)   For each line, select the smallest observed Hausdorff Distance, which represents the distance to the 
nearest neighbor (dvi).

This step must be modified when you want the nearest neighbor of orders greater than 1. For example, if 
you want to obtain the nearest neighbor of second order, you must select the second smallest observed Hausdorff 
Distance; and so on.

The description of the distribution pattern of a set of features based only on the first-order distance to the 
nearest neighbor is not complete, as it disregards other spatial relationships (Clark and Evans 1954). Therefore, it is 
interesting to use higher orders in the analysis of the spatial distribution pattern, regardless of the feature’s type. 
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With the steps presented here, it is possible to evaluate the NNMLF up to the sixth order.

9)	 With the set of smaller distances obtained in the previous step, as shown by Clark and Evans (1954) 
and Lee and Wong (2001), the R index must be calculated, given by Equation 2.𝑑𝑑ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑𝑖𝑖𝑖𝑖, 𝑑𝑑𝑗𝑗𝑗𝑗}

𝑅𝑅(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘)
𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) =
∑ 𝑑𝑑𝑑𝑑1𝑛𝑛
𝑖𝑖=1 (𝑘𝑘)

𝑛𝑛

𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) = 𝛾𝛾1𝑘𝑘√
𝐴𝐴
𝑛𝑛

𝑍𝑍(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) − 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)
𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘)

𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘) = 𝛾𝛾2𝑘𝑘√
𝐴𝐴
𝑛𝑛2

                                                                                  (2)

ROBS(k) and RESP(k) are given by Equations 3 and 4, respectively.

𝑑𝑑ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑𝑖𝑖𝑖𝑖, 𝑑𝑑𝑗𝑗𝑗𝑗}

𝑅𝑅(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘)
𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) =
∑ 𝑑𝑑𝑑𝑑1𝑛𝑛
𝑖𝑖=1 (𝑘𝑘)

𝑛𝑛

𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) = 𝛾𝛾1𝑘𝑘√
𝐴𝐴
𝑛𝑛

𝑍𝑍(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) − 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)
𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘)

𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘) = 𝛾𝛾2𝑘𝑘√
𝐴𝐴
𝑛𝑛2

                                                                           (3)

𝑑𝑑ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑𝑖𝑖𝑖𝑖, 𝑑𝑑𝑗𝑗𝑗𝑗}

𝑅𝑅(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘)
𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) =
∑ 𝑑𝑑𝑑𝑑1𝑛𝑛
𝑖𝑖=1 (𝑘𝑘)

𝑛𝑛

𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) = 𝛾𝛾1𝑘𝑘√
𝐴𝐴
𝑛𝑛

𝑍𝑍(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) − 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)
𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘)

𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘) = 𝛾𝛾2𝑘𝑘√
𝐴𝐴
𝑛𝑛2

                                                                                (4)

Where,

•	 k is the nearest neighbor order;

•	 ROBS(k) is the observed average of the distances from each line to its k nearest neighbor;

•	 RESP(k) is the expected average of the distances between the k nearest neighbors for a random distribution;

•	 dvi(k) is the Hausdorff Distance of a line i to its k nearest neighbor;

•	 γ1k is a constant, given in terms of order k, as can be seen in Table 1;

•	 n is the number of lines whose spatial distribution pattern is being evaluated;

•	 A is the area of the region under analysis.

Table 1: Constants for calculating the nearest neighbor, depending on the order.

Order (k) γ1 γ2

1 0.5000 0.2613
2 0.7500 0.2722
3 0.9375 0.2757
4 1.0937 0.2775
5 1.2305 0.2784
6 1.3535 0.2789

Source: Wong and Lee (2005).

10)   Apply the Z Test.

Clark and Evans (1954) claim that applying a significance test to assess whether the observed average distance 
to the nearest neighbor is statistically equal to the expected average distance from the random distribution increases 
the reliability of the method. The Z statistic is given by Equation 5 (Lee and Wong 2001).

𝑑𝑑ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑𝑖𝑖𝑖𝑖, 𝑑𝑑𝑗𝑗𝑗𝑗}

𝑅𝑅(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘)
𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) =
∑ 𝑑𝑑𝑑𝑑1𝑛𝑛
𝑖𝑖=1 (𝑘𝑘)

𝑛𝑛

𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) = 𝛾𝛾1𝑘𝑘√
𝐴𝐴
𝑛𝑛

𝑍𝑍(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) − 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)
𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘)

𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘) = 𝛾𝛾2𝑘𝑘√
𝐴𝐴
𝑛𝑛2

                                                                       (5)

Where, SEr(k) is given by Equation 6.

𝑑𝑑ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑𝑖𝑖𝑖𝑖, 𝑑𝑑𝑗𝑗𝑗𝑗}

𝑅𝑅(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘)
𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) =
∑ 𝑑𝑑𝑑𝑑1𝑛𝑛
𝑖𝑖=1 (𝑘𝑘)

𝑛𝑛

𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) = 𝛾𝛾1𝑘𝑘√
𝐴𝐴
𝑛𝑛

𝑍𝑍(𝑘𝑘) = 𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(𝑘𝑘) − 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)
𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘)

𝑆𝑆𝐸𝐸𝑟𝑟(𝑘𝑘) = 𝛾𝛾2𝑘𝑘√
𝐴𝐴
𝑛𝑛2                                                                                (6)
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Where,

•	 γ2k is a constant, given in terms of order k (Table 1);

•	 SEr(k) is the standard error of the difference between the mean values of the expected distances and the 
observed distances between the nearest neighbors for order k. SEr(k) describes the probability that any 
differences occur purely by chance;

•	 A is the area of the region under analysis;

•	 n is the number of lines whose spatial distribution pattern is being evaluated.

In this test, the null hypothesis is that the data have a random spatial distribution pattern. If the value of Z 
calculated for order k (Equation 5) is greater than the value of Z tabulated, the null hypothesis is rejected.

If the null hypothesis is not rejected, it means that ROBS(k) is statistically equal to RESP(k), given that RESP(k) 
represents the expected random pattern. In other words, it means saying that R(k) is statistically equal to 1, since it 
is given by the ratio between ROBS(k) and RESP(k). If the null hypothesis is rejected and the value of R(k) is less than 1, 
we can say the value of ROBS(k) is statistically less than the expected value for the random pattern. In this case, the 
spatial distribution pattern is identified as clustered. On the other hand, if the null hypothesis is rejected and the 
value of R(k) is greater than 1, we can say that the value of ROBS(k) is statistically greater than the expected value for 
the random pattern, being the distribution pattern space considered dispersed.

A graphical representation of the R index values and their relationship with the observed spatial distribution 
pattern is shown in Figure 2.

Source: Adapted from Santos et al. (2016).

Figure 2: Relationship between the R index and the spatial distribution pattern of linear features.

A disadvantage of NNMLF is its computational cost. By extracting all vertices and calculating the Hausdorff 
Distance of these points for all lines, the method demands a considerable computational effort. Although it does 
not prevent the use of the method, the processing time must be considered for datasets that have lines with a 
high density of points, as is common in GNSS surveys using the kinematic positioning method. This limitation can 
be circumvented by applying some linear element generalization method before executing the NNMLF, such as the 
Douglas-Peucker algorithm (Douglas and Peucker 1973).

We performed two experiments to illustrate the application of the proposed method and evaluate its 
performance. Furthermore, to facilitate the application of the NNMLF, a computational application based on its 
methodology was implemented.

To facilitate the use of NNMLF in a Geographic Information System (GIS) and aiming at the dissemination 
of the proposed method, a plugin for QGIS version 3.0.0 or higher (QGIS 2023) was developed. This plugin called 
Nearest Neighbor Method for Linear Features (NNMLF) is available in the official QGIS Python plugin repository and 
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can be installed directly on this GIS. In addition, users interested in using this method have its version developed 
with parallel programming in the R language (R Core Team 2023). This code can be obtained from: https://figshare.
com/s/c80a5de8afeb34bcd249.

3. Experiments and results

To analyze the behavior and validate the proposed method, two experiments were performed using real and 
simulated data.

3.1 Experiment 1: Simulated data and NNMLF orders

In the first experiment, two simulated datasets with known spatial distribution patterns were created to 
assess whether NNMLF is able to estimate these patterns correctly, up to the third order.

Of all possible spatial distribution patterns (clustered, random, and dispersed), for any order, random is 
probably the most difficult to simulate. This is because clustered and dispersed patterns can be emulated as extreme 
cases, where the distance between features is too small or too large, respectively. On the other hand, trying to 
portray a condition in which the spatial distribution pattern is random can be especially complicated when dealing 
with linear features, as these, unlike points, have length, sinuosity and direction that influence distances and make 
it difficult to predict a set of distances between lines that can provide the random pattern. In addition, as previously 
mentioned, there is no knowledge of a previous method to compare and validate the performance of NNMLF.

However, a strategy can be used for this analysis based on the description of compression by De Vos (1973). 
This author calls compression the process in which the distances between features decrease while the relative 
position between them remains unchanged. With compression, the distance to the nearest neighbor decreases, 
while the expected distance for a random spatial distribution pattern remains the same, given that the number of 
features and the area are the same (De Vos 1973).

Therefore, to assess whether the NNMLF correctly returns the expected spatial distribution pattern, the first 
set of simulated lines was used, divided into three subsets of ten lines each, each with a compression level in the 
same area, as can be seen in the Figure 3.

Figure 3: First set of simulated lines.
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To simulate a group of dispersed lines, the linear features were arranged in such a way as to occupy the 
entire available area, maximizing the distance between the features, as can be seen in Figure 3c. In order to portray 
clustered linear features, compression was performed on the lines so that they occupied a region with a dimension 
of 2.25% of the area, as shown in Figure 3a. Finally, to simulate the random pattern, a compression was performed 
on the lines so that they occupy a region equivalent to the average of the regions of the clustered and dispersed 
patterns, for the same area. In this way, the middle ground between clustered and dispersed patterns is expected to 
provide the random spatial distribution pattern. Figure 3b presents this case.

On this set of lines, the method we propose, the NNMLF, was applied. This stage of the experiment aimed to 
evaluate only the first order NNMLF. The results are shown in Table 2.

Table 2: First order NNMLF result for simulated data.

Representation Figure 3a Figure 3b Figure 3c
ROBS (m) 526.720 2514.775 3495.837
RESP (m) 2281.149 2281.149 2281.149

R 0.231 1.102 1.532
Z -4.654 0.620 3.222

Z-Score Table 1.960
A (km2) 208

Confidence Level 95%
Expected Pattern Clustered Random Dispersed

NNMLF Result Clustered Random Dispersed

As can be seen in Table 2, the R values are in line with what was expected for the strategy used. This shows agreement 
between the strategy of using compression and the value returned by NNMLF. We highlight the R index for the 
random pattern, which was close to 1.

For a 95% Confidence Level, the tabulated Z value is 1.96. Therefore, the null hypothesis of the Z Test, that the 
linear features present a random spatial distribution pattern, was rejected for the first order NNMLF for the subsets 
represented in Figures 3a and 3c, considering that in both cases the Z value was greater than 1.96 (|Z(1)| > 1.96). 
As the value of R of the first subset (Figure 3a) is less than one (R(1) < 1), it presents a clustered distribution pattern. 
The third subset has an R value greater than one (R(1) > 1), which means that its distribution pattern is dispersed. 
As for the second subset, the null hypothesis is not rejected for the first order NNMLF, since |Z(1)| < 1.96, showing 
that Figure 3b represents a random spatial distribution pattern.

In general, the results showed that the first order NNMLF method was effective in estimating the expected 
spatial distribution patterns for the simulated lines, succeeding in the three proposed cases.

To evaluate the performance of this method in higher orders (second and third orders), a second set of 
simulated lines was used, as represented in Figure 4. The distribution of these lines was inspired by the work of Lee 
and Wong (2001) and Santos et al. (2016).
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The first subset (Figure 4a) is composed of eight linear features, arranged in such a way that the distance to 
the first order nearest neighbor is small and the distance to the second and third order nearest neighbors are large. 
Thus, for this subset of simulated data, the first order NNMLF is expected to be clustered, and the second and third 
order NNMLF are expected to be dispersed.

The second subset (Figure 4b) is formed by 12 lines. These features were simulated in such a way that the 
distances to the first and second order nearest neighbors are small. On the other hand, in this subset the distance 
to the third-order nearest neighbor is large. Therefore, it is expected that the first and second order NNMLF will be 
clustered, and the third order NNMLF will be dispersed.

NNMLF method was applied to this set of lines and the results are shown in Table 3.

Figure 4: Second set of simulated lines.

Table 3: Second and third order NNMLF result for simulated data.

Representation Figure 4a Figure 4b
Order First Second Third First Second Third

ROBS (m) 1392.300 9030.152 9914.311 1301.640 1720.466 8277.309
RESP (m) 2550.402 3825.603 4782.004 2082.395 3123.592 3904.490

R 0.546 2.360 2.073 0.625 0.551 2.120
Z -2.458 10.602 10.322 -2.485 -4.288 13.192

Z-Score Table 1.960 1.960
A (km2) 208 208

Confidence Level 95% 95%
Expected Pattern Clustered Dispersed Dispersed Clustered Clustered Dispersed

NNMLF Result Clustered Dispersed Dispersed Clustered Clustered Dispersed

The results showed that the proposed method returned small distances between features for the first order 
NNMLF of the first data subset (Figure 4a) and for the first and second order NNMLF of the second subset (Figure 4b), 
as expected. Likewise, applying the method returned large values for the distances between lines for the second and 
third order NNMLF of the first subset (Figure 4a) and for the third order NNMLF of the second data subset (Figure 4b).

Also considering a 95% Confidence Level, for the first subset (Figure 4a), the null hypothesis (random spatial 
distribution pattern) was rejected for the three NNMLF orders. This is because the calculated values of Z were 
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greater, in module, than 1.96: |Z(1)| > 1.96, |Z(2)| > 1.96 and |Z(3)| > 1.96. Since R(1) < 1, the first order NNMLF 
is considered clustered. On the other hand, as R(2) > 1 and R(3) > 1, the second and third order NNMLF were 
considered dispersed. For the second subset (Figure 4b), the null hypothesis was also rejected for the three NNMLF 
orders (|Z(1)| > 1.96, |Z(2)| > 1.96 and |Z(3)| > 1.96). As R(1) < 1 and R(2) < 1, the first and second order NNMLF 
were considered clustered. The third order NNMLF resulted in a dispersed pattern (R(3) > 1).

As in the case of the first data set, the results demonstrated that the NNMLF method was effective in predicting 
the expected spatial distribution patterns for the simulated lines, succeeding in the six proposed cases.

Overall, this first experiment demonstrated that the Nearest Neighbor Method for Linear Features is effective 
in estimating all possible spatial distribution patterns (clustered, random and dispersed) and in all three orders (first, 
second and third order NNMLF). Therefore, we can say that the proposed method performs well and is effective for 
estimating the spatial distribution pattern for linear features.

3.2 Experiment 2: Real data in a case study

The second proposed experiment is a case study that aimed to demonstrate the step-by-step use of the 
Nearest Neighbor Method for Linear Features in a real situation.

The study area of this example (Figure 5) comprises part of the municipality of Viçosa, State of Minas Gerais, 
Brazil, and has approximately 110 km².

Source: Adapted from Cunha et al. (2019).

Figure 5: Area for the case study.
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For this experiment, 14 roads were used, collected through GNSS receivers, which were obtained from the 
work of Santos et al. (2015).

Following the sequence of procedures described in the previous section, the average distances of each line in 
relation to all the others were obtained. The result, given in meters, can be seen in Table 4.

Table 4: Average distances between lines, in meters.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 2339.22 4100.55 2568.92 2927.21 4230.00 4636.52 5227.44 8508.49 9260.03 8803.84 11555.08 11081.70 7460.88

2 1894.69 0 1502.96 896.72 4484.50 5700.09 3407.35 5366.95 6893.42 9442.90 7207.66 10073.62 10215.71 7267.44

3 3573.92 1130.69 0 652.48 6015.26 7116.67 3827.18 6257.20 6517.15 10064.48 6829.64 9562.64 10254.40 7875.32

4 3679.84 2288.36 1975.42 0 5217.21 6008.42 2183.53 4728.71 4730.33 8164.91 5038.60 7819.23 8302.70 6030.35

5 2679.44 4875.23 6705.11 3620.22 0 738.01 4488.11 2333.83 7719.49 6115.31 8064.51 10139.80 9065.93 5056.19

6 4056.35 5767.25 7449.63 4309.39 1170.92 0 4454.03 1359.50 7103.65 4715.32 7547.21 9244.59 7998.36 3990.73

7 5143.78 4302.24 4072.45 1479.24 5299.18 5407.74 0 3070.24 2479.08 5800.72 2775.02 5594.81 5728.14 3690.86

8 5117.57 5373.45 6516.92 3788.26 3127.63 2301.68 2412.46 0 4652.55 3681.19 5121.85 6860.32 5780.24 1829.95

9 7939.12 7073.03 6268.62 2041.73 7640.18 7075.41 1444.11 3780.72 0 4929.78 623.29 2773.51 3332.10 3090.60

10 8898.22 9132.99 9938.33 6898.97 6165.97 4192.93 5424.64 2974.26 5407.04 0 6197.68 5926.54 4143.03 2235.05

11 9334.73 8352.75 7215.35 3030.01 9145.94 8519.72 2485.23 5180.12 1319.11 5870.79 0 1433.43 3268.31 3894.71

12 10828.12 9951.05 8910.95 4705.50 10296.51 9277.63 4141.33 5923.62 2385.80 5804.76 816.36 0 2075.11 3638.04

13 10769.58 10246.82 9823.27 5648.88 9405.36 7961.44 5053.35 4881.59 3055.76 3799.33 3111.00 1645.20 0 1395.22

14 9036.70 8810.45 8972.21 5320.03 7228.94 5694.66 4546.70 2805.35 3404.44 2065.02 4135.88 3673.20 2044.09 0

The next step was to obtain the Hausdorff Distance, which is defined as the highest value of the average 
distances between pairs of lines. As mentioned in the method description, the distances between two lines are not 
equal. For example, the average distance from all vertices of the line with ID 1 to any segment of the line with ID 2 is 
2339.22 m. The average distance of all vertices of the line with ID 2 for any segment of the line with ID 1 was 1894.69 
m. Therefore, for this case, the Hausdorff Distance between lines ID 1 and 2 would be 2339.22 m.

Next, you must obtain the smallest value of the Hausdorff Distance for each line, in relation to all the others, that 
represents the nearest neighbor. Doing this up to the third order, we have the values presented in Table 5, in meters.
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Table 5: Nearest Neighbor Method for Linear Features up to third order.

ID First order (m) Second order (m) Third order (m)
1 2339.216 2927.211 3679.836
2 1502.956 2288.359 2339.216
3 1502.956 1975.417 4072.448
4 1975.417 2183.534 2288.359
5 1170.923 2927.211 3127.631
6 1170.923 2301.682 4229.999
7 2183.534 2479.078 2775.016
8 2301.682 2805.346 3070.235
9 1319.111 2479.078 2773.512

10 2235.050 3681.185 4143.029
11 1319.111 1433.431 2775.016
12 1433.431 2075.112 2773.512
13 2044.093 2075.112 3268.314
14 2044.093 2235.050 2805.346

With this set of smaller distances, we calculated the average observed distance values of each line to its k 
nearest neighbor (ROBS), and the average expected distance for the random spatial distribution pattern (RESP) for the 
order k and the R index, with the help of Equations 3, 4 e 2, respectively. Table 6 presents these values for the first 
three NNMLF orders.

Table 6: ROBS and RESP values and R Index.

  First order Second order Third order
ROBS (m) 1753.036 2419.058 3151.534
RESP (m) 1401.530 2102.295 2627.868

R 1.251 1.151 1.199

The last step of the proposed method consisted of applying the Z Test to verify whether the calculated R index 
was statistically equal to the R value of the random distribution. The Z values for the three orders are presented 
below, in Table 7.

Table 7: Z values.

  First order Second order Third order
Z 1.796 1.553 2.535

Considering a Confidence Level of 95%, the tabled Z value is 1.96. Therefore, the null hypothesis of the Z Test, 
that the linear features present a random spatial distribution pattern, is rejected for the third order NNMLF (Z(3) > 
1.96) and not rejected for the first and second orders NNMLF (Z(1) < 1.96 and Z(2) < 1.96). Considering that R(3) > 
1, we have the following results:
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•	 First order Nearest Neighbor Method for Linear Features: Random;

•	 Second order Nearest Neighbor Method for Linear Features: Random; and

•	 Third order Nearest Neighbor Method for Linear Features: Dispersed.

This sequence of procedures demonstrates that the method proposed in this research is simple to apply, an 
important feature for the end user and essential for computational implementation.

4. Conclusion

The development of a method to infer about the spatial distribution pattern of lines is of great importance 
for the evaluation of positional accuracy using linear features. In addition to making it possible to move forward 
in a little-explored issue, the spatial distribution of a sample can determine the validity of an evaluation process. 
As a practical effect, the establishment of a method for inferring the spatial distribution pattern of lines allows the 
development of a methodology for assessing positional accuracy that takes into account the spatial distribution of 
sampling elements. It is also worth mentioning that most features of a mapping are composed of lines.

The results of this study showed that the Nearest Neighbor Method for Linear Features (NNMLF) was 
successful in estimating the expected spatial distribution patterns in all proposed experiments, with a simulated 
dataset, for the first three orders of the NNMLF. Application of the proposed method on real data proved it is 
simple to use. On the other hand, a disadvantage of the method can be the processing time, when applied to linear 
features with a large number of vertices.

An important outcome is the computational tool created for the application of the NNMLF. The plugin 
developed will be very useful for users who wish to use this method in QGIS, enabling the popularization and 
greater dissemination of this research. It is worth noting that the NNMLF plugin was registered with the Brazilian 
National Institute of Industrial Property (Instituto Nacional da Propriedade Industrial - INPI), with registration 
number BR512023000701-3.

As a recommendation for future studies, based on the literature analysis, we suggest the development of a 
methodology for standardizing the sample size that considers the risks of the user and the producer, which is still a 
pending issue. Such research will allow the continuation of advances in questions little explored in the evaluation of 
positional accuracy using linear features. As a general conclusion, given the results presented, we can say that the 
NNMLF is a robust method and can be used in the evaluation of the spatial distribution pattern of linear features.
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