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Abstract
The presence of microplastics in aquatic environments has raised concerns about their abundance and potential 
hazards to aquatic organisms. This review provides insight into the problem that may be of alarm for freshwater 
fish. Plastic pollution is not confined to marine ecosystems; freshwater also comprises plastic bits, as the most 
of plastic fragments enter oceans via rivers. Microplastics (MPs) can be consumed by fish and accumulated due 
to their size and poor biodegradability. Furthermore, it has the potential to enter the food chain and cause health 
problems. Evidence of MPs s ingestion has been reported in >150 fish species from both freshwater and marine 
systems. However, microplastic quantification and toxicity in freshwater ecosystems have been underestimated, 
ignored, and not reported as much as compared to the marine ecosystem. However, their abundance, influence, 
and toxicity in freshwater biota are not less than in marine ecosystems. The interaction of MPs with freshwater 
fish, as well as the risk of human consumption, remains a mystery. Nevertheless, our knowledge of the impacts 
of MPs on freshwater fish is still very limited. This study detailed the status of the toxicity of MPs in freshwater 
fish. This review will add to our understanding of the ecotoxicology of microplastics on freshwater fish and give 
subsequent research directions. 
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Resumo
A presença de microplásticos em ambientes aquáticos levantou preocupações sobre sua abundância e perigos 
potenciais para os organismos que vivem nesse meio. Esta revisão fornece informações sobre o problema que 
pode ser alarmante para os peixes de água doce. A poluição plástica não se limita aos ecossistemas marinhos; a 
água doce também contém pedaços de plástico, já que a maioria dos fragmentos de plástico entra nos oceanos por 
meio dos rios. Os microplásticos (MPs) podem ser consumidos pelos peixes e acumulados devido ao seu tamanho 
e baixa biodegradabilidade. Além disso, tem o potencial de entrar na cadeia alimentar e causar problemas de 
saúde. Evidências de ingestão de MPs foram relatadas em mais de 150 espécies de peixes de sistemas de água doce 
e marinhos. No entanto, a quantificação e a toxicidade de microplásticos em ecossistemas de água doce foram 
subestimadas, ignoradas e não relatadas tanto quanto em comparação com o ecossistema marinho. No entanto, 
sua abundância, influência e toxicidade na biota de água doce não são menores que nos ecossistemas marinhos. 
A interação de MPs com peixes de água doce, bem como o risco de consumo humano, permanece um mistério. 
Todavia, nosso conhecimento sobre os impactos das MPs em peixes de água doce ainda é muito limitado. Este 
estudo detalhou o status da toxicidade de MPs em peixes de água doce. Esta revisão aumentará nossa compreensão 
da ecotoxicologia de microplásticos em peixes de água doce e fornecerá direções de pesquisa subsequentes. 

Palavras-chave: ecotoxicologia, ecossistema de água doce, microplásticos, poliésteres, polietileno.
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fish gastrointestinal tract contents. Fish that have been 
revealed to be contaminated with microplastics include 
a diverse range of species and inhabit a wide range of 
water bodies. Plastic particles found in these wild-caught 
fish vary significantly in color, shape, and polymer type 
(Siddique et al., 2022; Bilal et al., 2024). The most frequently 
identified shapes of MPs in fish are fiber and fraction, 
which correspond to their dominance in global water 
bodies (Wang et al., 2020; Siddique et al., 2022). 

MPs in water can be simply consumed by fish. 
Researchers have described the incidence of MPs in 
fish (Su et al., 2016; Bilal et al., 2021; Bilal et al., 2023a). 
MPs deposit in fish and have a wide range of negative 
impacts i.e decreased feeding activity, impeded growth, 
energy interruption, oxidative stress, and even genotoxicity 
(Lu et al., 2016; Hassan et al., 2023) According to 
Singh et al. (2022), (see Figure 1) MPs particles are easily 
ingested by fish in unintended ways due to their small 
size and similarity to natural food items (Crawford and 
Quinn, 2017). MPs hinder fish metabolism by lowering 
the amount of energy needed for growth and delaying 
ovulation (Wright et al., 2013). Upon consumption, MPs 
may adversely affect fish in three general, non-exclusive 
ways: (a) through the MP’s effects (such as obstructing 
the GIT or producing distorted satiation); (b) through 
the siphoning of plasticizers, ingredients, and other 
toxic substances from within the MPs; and (c) through 
the inactivation of toxic emissions confined to the MPs 
(Strungaru et al., 2019). As ingested MPs associated with 
other pollutants affect brain and central nervous system 
cells, which may severely affect swimming and/or survival 
ability for freshwater fishes and their other behavioral 
changes. MPs have effects on freshwater fish at the cellular, 
tissue, population, community, and ecosystem levels. 
In fish, MPs cause cell death, oxidative stress, and DNA 
damage. MPs also have an impact on intestinal dysbiosis, 
aberrant neuromuscular function, and metabolic activity. 
MPs have an impact on locomotion, feeding, hatching time, 
population increase, community structure, and ecosystem 
structure (Parker et al., 2021). Swimming problems may 
be transient; nevertheless, other research shows that 
MP exposure has a greater negative influence on early 
development (Duan et al., 2020; Pannetier et al., 2020). 
Physically bound MPs and/or smaller NPs in fish eggs can 
disrupt gaseous exchange and delay hatching periods 
(Batel et al., 2018; Duan et al., 2020). A few studies have 
shown that MP exposure has dose-dependent impacts on 
freshwater fish, though these effects may only happen at a 
specific MP intensity, implying MP thresholds for impact, 
making the correlation between exposure and impact more 
complicated than a simple linear dose-effect relationship 
(Mazurais et al., 2015; Lei et al., 2018; Qu et al., 2019). 
In terms of physical consequences, the bio perseverance 
of microplastics may result in a variety of biological effects 
such as inflammatory response, mutagenicity, oxidative 
stress, cell death, and necrotizing. If these situations hold, a 
variety of consequences may occur, including tissue injury, 
fibrosis, and carcinogenesis. The transformation approach 
may occur as a result of the polymers (Khan et al., 2015).

Researchers have revealed that plastics critically pertain 
to the spoiling of the aquatic environment. Plastic particle 

1. Introduction

Aquatic foods are increasingly recognized for their 
key role in food security and nutrition underscoring the 
urgent need to manage and protect this natural resource 
from pollution (Hassan et al., 2021a, b; Abidin et al., 2022). 
Microplastics are usually demarcated as debris lesser than 
5 mm (Cheung and Fok, 2017; Bilal et al., 2023a) and have 
been observed to contaminate several aquatic ecosystems. 
Plastic global production has amplified dramatically over 
the last few decades, reaching 350 million tons in 2017. 
Plastics are utilized in modern life, such as wrapping, 
agriculture, electrical appliances, automotive, and so on 
(Brooks et al., 2018; Hassan et al., 2020b). Asia is the major 
producer of synthetic polymers (50%), Europe (19%), North 
America (18%), the Middle East and Africa (7%), and Latin 
America (4%) (Jambeck et al., 2015). Plastics are extensively 
used around the world due to easy processing, water 
resistance, and reliability. It is possible to say that we are 
existing in the plastic era (Lusher, 2015). The continued 
expansion of plastics production and use has occasioned 
a surge in the number of plastic litter discharged into the 
atmosphere. Continuous distortions of plastic items caused 
by weathering decay can result in an innumerable variety 
of microplastics. MPs are pervasive in nearly all kinds of 
aquatic environments, making them accessible to fish 
(Wang et al., 2020). Contamination of MPs in water is an 
alarm due to their widespread dispersal and possible threat 
to underwater life. MPs are identified in a wide array of 
aquatic systems. Plastic fibers are the most common kind of 
microplastics found in global water, and they are primarily 
caused by the breakdown of big debris (Wang et al., 2020). 
MPs seem to be common in the freshwater environments 
in Europe (Klein et al., 2015; Fischer et al., 2016), North 
America (Corcoran et al., 2015; Baldwin et al., 2016), 
and China (Su et al., 2016). Despite having a percentage 
removal of more than 98% of microplastics, a wastewater 
treatment plant on the Clyde River in Glasgow has been 
demonstrated to be able to discharge 65 million MPs into 
the water on a regular schedule (Murphy et al., 2016).

Plastic enters into the water from inland sources, namely 
rivers, industrial and urban discharges, and runoff from 
residues and surrounding areas (Barboza et al., 2018a; 
Rahman et al., 2020; Hassan et al., 2024). It can be also 
caused by direct inputs such as aquaculture, oil and gas 
production, net loss in fisheries, and garbage discharged 
during maritime activities like tourism and salt production 
(Siddique et al., 2023). External factors such as biological 
degradation, photocatalytic degradation, and chemical 
weathering are largely responsible for MPs degradation. 
Chemical weathering induces crack propagation on the 
plastic’s surface and can shatter particles into smaller 
pieces. Polypropylene, polyethylene, polystyrene, polyvinyl 
chloride, and polyethylene terephthalate are the major 
manufactured polymers. While Polyamide is the most 
widespread polymer used in the fisheries sector. Plastic 
polymers are classified into three groups based on their 
buoyancy in freshwater or saltwater, neutrally buoyant 
polymers, and negatively buoyant polymers (Karami, 2017; 
Khan et al., 2024). The majority of the evidence for MPs 
consumption by fish species came from the evaluation of 
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exposure can cause all sorts of sub-lethal effects in fish 
and other aquatic organisms, including impaired feeding, 
oxidative damage, growth retardants, and behavioral 
changes. The zebrafish (Danio rerio) is a small freshwater 
teleost with many similarities to other vertebrate species 
in terms of the genome, brain patterning, and neural and 
physiological system (Chen et al., 2017). Fish is a crucial 
source of proteins for humans, and the possible effects 
of MPs on fish require special consideration. Although 
freshwater can accumulate a large number of microplastic 
particles and fibers, fewer attempts have been done to track 
microplastics in freshwater than in seawater. Microplastic 
quantification and toxicity in the freshwater ecosystem have 
been underestimated, ignored, and not reported much as 
compared to marine ecosystems. However, the abundance, 
influence, and toxicity of MPs in freshwater biota are not less 
than in marine ecosystems. This review aims to highlight 
the existing literature on microplastic quantification and 
its influence on freshwater fauna and recommendations 
for new research to fully understand the issue.

2. Identification of Microplastics

Natural material in the sample that follows the 
MPs during water sample density dispersion usually 
hampers the confirmation of MPs particles. As a result, 
it is unavoidable to destroy natural debris to reduce the 
chance of undervaluation of trivial plastic bits. Natural 
material can be destroyed using chemical or enzymatically 
catalyzed reactions. Before or after separation, natural 
debris is chemically removed by processing the sample with 
hydrogen peroxide, combinations of hydrogen peroxide 

and sulfuric acid, and Fenton-like processes (Liebezeit 
and Dubaish, 2012; Imhof et al., 2013; Yonkos et al., 2014).

Visual Identification is frequently used to remove MPs 
from the sample and to identify them (Hidalgo-Ruz et al., 
2012). Tiny particles should be separated using a dissecting 
microscope (Doyle et al., 2011), large size MPs contamination 
in freshwater systems microplastics can be (>1 mm) 
recognized by the naked eye (Morét-Ferguson et al., 2010). 
When arranging water samples, Bogorov counting chambers 
might be useful. To prevent misidentification, it was advised 
that particles be visually identified using defined criteria 
in conjunction with a careful and cautious inspection 
(Norén, 2007). Yet, it is strongly encouraged, particularly 
for smaller MPs, to evaluate potential microplastics 
using reliable practices (e.g., spectroscopic methods) to 
adequately determine synthetic polymers (Dekiff et al., 2014). 
By studying the thermal breakdown of products of possible 
microplastic particles in samples, pyrolysis-GC/MS may be 
utilized to gather information on their chemical composition 
(Fries et al., 2013). Plastic polymer pyrolysis products 
produce distinct programs, which aid in the appropriate 
identification of diverse polymer kinds by contrast with 
reference programs of known virgin polymer samples. 
Following the extraction of microplastic from deposits, this 
method was previously applied (Nuelle et al., 2014). Infrared 
(IR) or Fourier transform infrared (FTIR) spectroscopy is a 
method that, when combined with Raman spectroscopy, 
enables the accurate determination of plastic particles based 
on their unique IR spectra. Absorption may be monitored, 
yielding a unique infrared spectrum. IR spectroscopy is an 
effective tool for detecting MPs since plastic polymers have 
extremely unique IR spectra (Hidalgo-Ruz et al., 2012).

Figure 1. Detection of microplastics in fishes and human health risks associated with ingestion exposure.
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3. Evidence of Microplastics in Freshwater

Freshwaters are incredibly rich and diversified and 
supply a wide range of critical ecosystem services while 
occupying a very little amount of the earth’s surface 
(0.01%). Many anthropogenic stresses, such as excess 
nutrients, habitat degradation, biological invaders, and 
climate change, are already putting them in danger 
(Parker et al., 2021). Preliminary research of freshwater 
systems reveals that the presence and interrelationship 
of MPs are as substantial as those reported in marine 
systems. MPs have been found in freshwater in Europe, 
North America, and Asia, and the study show that MPs 
are consumed by freshwater fish (Eerkes-Medrano et al., 
2015). Initial freshwater studies have identified primary 
and secondary microplastics (Table.1). In samples from the 
North American Great Lakes, microplastics of consumer 
origin with the same size, color, form, and elemental 
analysis as microbeads were discovered from commercial 
facial cleansers (Eriksen et al., 2013). In lakes and rivers, 
primary microplastics have been discovered. The second 
most common residue in Los Angeles basin waterways 
were pre-production plastic polymers pods (Moore et al., 
2011), and the most abundant fragments in Lake Huron 
(Zbyszewski and Corcoran, 2011). Several studies have been 
reported on microplastics in freshwater in the Lake River 
Rhine, Europe (Mani et al., 2015), Grade Lakes tributaries, 
USA (Baldwin et al., 2016), Lakes Winnipeg, Canada 
(Anderson et al., 2017), Taihu Lake, China (Paul-Pont et al., 
2016), River Thames Basin, UK (Horton et al., 2017a), 
Laurentian Great Lakes, North America (Driedger et al., 
2015), Lake Poyang, China (Yuan et al., 2019) and Taihu 
Lake (Su et al., 2016) (Table 1). MP concentration levels in 
Rhine River surface water samples average 892,777 particles 
km2 with the highest concentration of 3.9 million particles 
km2 (Mani et al., 2015). Along the Rhine and Main rivers in 
Germany, the particles in river shore silt varied widely from 
228 to 3,763 and 786 to 1,368 particles kg-1 (Klein et al., 
2015). At the Three Gorges Dam in China, high surface 
water concentrations (192–13,617 particles km2) have been 
documented, which have been attributed to the privation 
of wastewater treatment services in lesser communities, as 
well as infrastructural challenges with recycling and waste 
disposal (Zhang et al., 2015). Since these studies rely on 
visual observation techniques for isolation and analysis, the 
actual MP levels may be miscalculated (Reddy et al., 2006). 
The emergence and causes of MPs in freshwater matrices 
in Africa, Asia, and Europe are addressed (Cepoi et al., 2016; 
Rist and Hartmann, 2018; Wu et al., 2018).

MPs were found to be higher in the southern parts 
of Lake Huron in North America and Lake Hovsgol in 
Mongolia, where there is heavy industry (Zbyszewski and 
Corcoran, 2011; Free et al., 2014). In terms of the correlation 
between microplastic existence and sewage management, 
the authors reported that the population using certain 
ingredients, such as microbeads in beauty products that 
are incapable to acquire MPs, adds value to the availability 
of MPs in freshwater (Eriksen et al., 2013). These workers 
also believe that the occurrence of microbeads in samples 
was caused by the use of cumulative sewage overflow in 
the Great Lakes. Microplastic concentrations may also vary 

depending on how close you are to a wastewater treatment 
facility (Hoellein et al., 2014). Microplastic contamination 
in freshwater is widespread and global. According to the 
findings, MPs have primarily been recorded in Western 
Europe and North America (Horton et al., 2017b), parts 
of China ( Zhang et al., 2018), the UK (Blair et al., 2019), 
Europe (Bordós et al., 2019). MPs identified in these studies 
comprise data from water and sediments, as well as a 
variety of compositions (Table 1).

4. Microplastics in Freshwater Fishes

Fish is an essential biological component of freshwater 
ecosystems with great nutritional and economic importance 
around the world. Developing countries account for 
around 94% of all freshwater fisheries, providing food 
and a livelihood for millions of the world’s poorest 
people while also adding to the general economy through 
exporting, tourism, and recreation (FAO, 2007). In scientific 
research, fish are capable of ingesting MPs (Oliveira et al., 
2013; Mazurais et al., 2015; Bilal et al., 2021), though 
considerably higher meditations of MPs than those found 
in nature (Costa et al., 2016; Phuong et al., 2016). There 
is growing evidence that MPs are encountered by wild 
freshwater fish through their gills and/or skin. MP contact 
by fish is expected to occur mostly during active feeding 
(Abbasi et al., 2018; Hurt et al., 2020). Additionally, 
experimental investigations have shown that MP builds 
up in the gills (Mak et al., 2019; Roch et al., 2020). As a 
result, in addition to ambient contact via breathing and 
swimming, passive absorption of MPs is another reservoir of 
MPs. Considering that MP dispersion and penetrations vary, 
with generally larger loadings in sediments comparable to 
overlying surface waters, freshwater fish foraging habitats 
should also influence MP encounter rates (Boucher et al., 
2019; Bondelind et al., 2020). Notably, because the amount 
of MPs ingested is small, the assimilation of MPs by fish in 
situ has been frequently observed. Following MPs ingestion, 
there is a risk of linked chemical contaminants leaching 
and accumulating in edible tissue. MPs disclosure through 
fish may be feasible if MPs can cross the GIT or gill via 
transcellular utilization or extracellular dissemination 
(Handy et al., 2008).

According to several studies on adult and larval Zebra 
fish, MPs were originally consumed before persisting and 
causing abnormalities, intestinal damage, and metabolic 
changes (Chen et al., 2017; Sleight et al., 2017; Lei et al., 
2018). The identification of MPs in 13 species with 
including 35 individuals the study was  study conducted 
in the Xiangxi River in China, as well as the abundance and 
characteristics of MPs found in fishes digestion pathways, 
were all reported. Polyethylene and nylon were found in the 
digestive tracts of 25.7% of the fish samples evaluated for 
MPs (Table 2), according to Zhang et al. (2017). In research 
undertaken by Dantas et al. (2012) nylon fragments are 
used to assess plastic intake in two drum species, Stellifer 
brasiliensis, and Stellifer stellife, as it varies with season and 
size class. Plastic was consumed across all species. Fish in 
the middle estuary had the most consumed fragments in 
their guts during the late monsoon season.
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Polyethylene reduces the toxicity of pollutants (pyrene) 
on the Pomatoschistus microps (found in estuaries) in 
Portugal (Oliveira et al., 2013). When microplastics 

were prevalent, fish subjected to pyrene died later 
(Oliveira et al., 2013). Three significant catfish species from 
the South Western Atlantic estuaries (Cathorops agassizii, 

Table 1. Studies reporting the occurrence of microplastics in freshwater ecosystem.

Location Microplastics type
Maximum Abundance/

sources
Reference

Lake Hovsgol, Mongolia PP, PY, PE 20264 items/km2 W Free et al. (2014)

River Rhine, Europe PLE, APC, PP, PY, PFE 892777 items/km2 W Mani et al. (2015)

Grade Lakes tributaries, USA PLE, APC, PP, PY, PFE 0.05 to 32 items/m2 W Baldwin et al. (2016)

Lakes Winnipeg, Canada PLE, APC, PP, PY, PFE 52508-748027 items/km2 W Anderson et al. (2017)

Taihu Lake, China PM, Methacrylate PC 4.4-25.8 items/L W Paul-Pont et al. (2016)

River Thames Basin, UK Cellophane, PLE, PP 185-660 items/kg S Horton et al. (2017a) 

Laurentian Great Lakes, 
North America

PP, PY, Polycarbonate 0.85–0.92 g/cm3 SW Driedger et al. (2015)

Lake Poyang, China PP, PE 5–34 items/L W Yuan et al. (2019)

Taihu Lake cellophane, PP, PLE 3.4-25.8 Items/L W Su et al. (2016)

Dongting, Hong Lakes in 
China

PP, PE, PC 1250–4650 n/m3 SW Wang et al. (2018)

Remote Lakes in Tibet PP, PE 20,264 particles/km W Free et al. (2014)

Vembanad Lake, India PE, PY, PLE 96–496 particles m−2 S Sruthy and Ramasamy (2017)

Italian subalpine Lakes PE, PY, PP 25000 items/m2 SW Sighicelli et al. (2018)

Dongting Lake, China PE, PY 320-480 items/m2 And 200-
1150 items/m2 SW

Jiang et al. (2018a) 

Wuhan, China PE, PY 1660.0-8925 particles/m SW Wang et al. (2017)

River Ravi, Lahore Pakistan PE, PP 2074 ± 3651 MPs/m3 W Irfan et al. (2020)

Dutch river delta and 
Amsterdam canals

Not detected NA Leslie et al. (2017)

Kelvin River, UK Fibers 0.26685 g/L S Blair et al. (2019)

Carpathian Basin, Europe PE, PP and PY 0.4716 g/L SW Bordós et al. (2019)

The lagoon of Bizerte, Tunisia PP and PE 2.106 g/L S Toumi et al. (2019)

Wei River, China Fibers 0.918 g/L SW Ding et al. (2019)

Flemish rivers, Belgium Not identified 0.0153 g/L W Slootmaekers et al. (2019)

Bloukrans River, Australia Not identified 0.216 g/L S Nel et al. (2018)

Dutch wastewater treatment 
plant effluent, Netherlands

Effluents 0.00297 g/ E Van Wezel et al. (2016)

WWTP effluent Scotland Flakes, fibers, film, beads, 
foam

250e15700/m3 E Murphy et al. (2016)

Los Angeles, USA Irregularly shaped fragments 0.002/m3 E Carr et al. (2016)

Oldenburg, Germany Particles, fibers 10e9000/m3 E Mintenig et al. (2017)

Helsinki, Finland films, spheres 5e2000/m3 E Talvitie et al. (2017)

Rivers Germany foam, fibers, pellets, films 2.9e214/m3 SW Heb et al. (2018)

Tamar Estuary, UK Floating plastic debris 0.028/m3 SW Sadri and Thompson (2014)

Urban Lakes, Hanjiang and 
Wuhan Rivers, China

Colored granules, films, 
pellets, fiber

1660 e8925/m3 SW Wang et al. (2017)

North Sea coast, Netherlands Colored granules, films, 
pellets, fiber

27000/m3 SW
Karlsson et al. (2017)

Notes: PP (Polypropylene), PY (Polystyrene), PE (Polyethylene), PLE (Polyester), APC (Acetyl Polyvinyl Chloride), PC (Polyvinyl Chloride), PM 
(Polymethylene), WWTP (Waste Water Treatment Plants) and NA (Not applicable).
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Cathorops spixii, and Sciades herzbergii) were evaluated 
in a tropical estuary. Plastics have been consumed by 

individuals from all three species. Plastic was consumed 
by all size-classes (Possatto et al., 2011; Ramos et al., 2012). 

Table 2. Studies on microplastics in freshwater fishes.

Taxa Location Type of polymers Concentration of MPs Reference

European flounder 
(Platichtyhys flesu) 

and European smelt 
(Osmerus eperlerus)

River Thames, Uk PY, PA, PE 75%, 20% McGoran et al. (2017)

Bluegill (Lepomis 
macrochirus) and 
longear (Lepomis 

megalotis)

Brazos river Basin, USA PY, PA, PE 45% Peters and Bratton 
(2016)

Gudgeon (Gobio gobio) Eleven French River PY, PA, PE 12% Sanchez et al. (2014)

Thirteen different fish 
species

Xiangxi Bay of three 
gorges reservoir, China

PA, PE 25% Zhang et al. (2017)

Forty-six different 
fish spp.

Amazon river estuary PA, PE 1.2 to 5.0 items/
individual

Schmidt et al. (2018)

Eleven fish species Rio de la Plata estuary, 
Argentina

PA, PE 19.2 items/individual Pazos et al. (2017)

Thirteen Fish Spp. Xiangxi River, China PE 25.7% fish spp. Zhang et al. (2017)

Drum species (Stellifer 
brasiliensis and Stellifer 

stellife)

Tropical estuaries, 
Brazil

Poly filament nylon 6.9 and 9.2% of 
individuals spp.

Dantas et al. (2012)

Common goby, 
(Pomatoschistus 

microps)

Estuaries, Portugal PE and Pyrene Not identified Oliveira et al. (2013)

Catfish species South Western 
Atlantic estuaries, a 

tropical estuary of the 
Brazilian Northeast

Nylon fragments and 
hard plastic

17% and 33% of 
individuals spp.

Possatto et al. (2011)

Gerreidae Fish Tropical estuary in 
Northeast Brazil

Blue nylon fragments 4.9 and 33.4% of 
individuals

Ramos et al. (2012)

(Oryzias latipes) Brackish, USA PE Not Identified Rochman et al. (2013)

gudgeons (Gobio 
gobio)

French rivers, France Fiber and pellets 12% of individuals Sanchez et al. (2014)

African catfish (Clarias 
gariepinus).

Malaysia PN (Phe)- loaded 
low-density PE (LDPE) 

fragments

Karami et al. (2016)

Goldfish (Carassius 
auratus)

Canada, USA Microbeads 
microfibers

-3 particles/50 
retained

Grigorakis et al. (2017)

Zebra fish (Danio rerio) China PS 20–2,000 μg L1 Lu et al. (2016)

Carassius carassius PE, NA Mattsson et al. (2017)

Carassius auratus PP NA Grigorakis et al. (2017)

Acipenser 
transmontanus

PE NA Rochman et al. (2017)

Clarias gariepinus Malaysia PN (Phe)- loaded low-
density PE

(50 or 500 mg/L) Karami et al. (2016)

Fathead minnow 
(Pimephalespromelas)

Germany PY and PC PS: 41.0 nm, PC: 158.7 
nm

Greven et al. (2016)

Rastrilleger kanagurta 
and Epinephalus

India PE and PP ND Kumar et al. (2018)

Notes: PY (Polystyrene), PA (Polyamide), PE (Polyethylene), LDPE (Low-density polyethylene), PS (Polystyrene), PP (Polypropylene), PN 
(Phenonthrene) (Polyvinyl Chloride), NA (Not applicable)  and ND (Not identified).
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Microplastic item intake by three Gerreidae fish species 
(Eucinostomus melanopterus, Eugerres brasilianus, and 
Diapterus rhombeus) in a tropical estuary in Northeast Brazil 
was evaluated for three distinct size classes. The number 
of ingested fragments varied across size classes. In the 
United States, laboratory research was done to examine the 
danger of compounds sorbed on MPs in Japanese medaka. 
Toxins sorbed on microplastics bioaccumulate in fish, 
causing liver toxicity. Microplastic accumulation in fish can 
result in liver glycogen reduction (Rochman et al., 2013).

Sanchez et al. (2014) investigated the presence of MPs 
in the GIT of gudgeons (Gobio gobio) in French rivers. 
He reported the presence of MPs in the digestive tracts 
of 13% of gudgeons (Sanchez et al., 2014). The frequency 
of MP consumption in fish samples was correlated with 
their food intake strategies. Polystyrene was found in 
freshwater zebrafish (D. rerio) in China. Polystyrene leads to 
inflammation and lipid acquisition and metabolic changes in 
zebrafish (Lu et al., 2016). Oliveira et al. (2013) determined 
whether polyethylene microspheres affect the hazard of 
pyrene to common goby juveniles (Pomatoschistus microps). 
Microplastics raised biliary pyrene metabolite levels and 
prolonged pyrene-induced fish mortality.

Chen et al. (2017) analyze the toxicity of MPs and nano 
plastics on zebrafish (D. rerio) larvae. MPs had no profound 
impacts; whereas nano-plastics hindered larval motility 
by 22% in the last nightfall period, substantially reduced 
larvae body length by 6%, and impeded acetylcholinesterase 
activity by 40%. Moreover, oxidative impairment and body 
length decrease were recognized as the major causes of 
hypoactivity. Karami et al. (2016) investigated the impact 
of virgin or Phe-loaded low-density polyethylene bits on 
several biomarker responses in juvenile African catfish 
(Clarias gariepinus). In the C. gariepinus brain, one or both 
Phe treatments enhanced the degree of tissue change 
(DTC) while lowering the transcription levels of forkhead 
box L2 (foxl2) and tryptophan hydroxylase 2 (tph2). This 
study highlighted the ability of virgin LDPE fragments to 
cause toxicity and change the detrimental effects of Phe 
in C. gariepinus.

A study examined the effects of polystyrene-MPs 
(40 mm), and cadmium (Cd) on early juvenile discus fish 
Symphysodon aequifasciatus. MPs and Cd had no negative 
consequences on growth or survival, according to the 
findings (Wen et al., 2018). However, when exposed to Cd, 
the aggregation of Cd in the body of the fish is reduced with 
higher MP dosages, as evidenced by a lower metallothionein 
content (Wen et al., 2018). Haghi and Banaee (2017) 
studied the impact of paraquat and microplastics on blood 
biochemical markers in common carp (Cyprinus carpio). 
Blood biochemical analysis found that 0.4 mg L-1 paraquat 
and a combination of paraquat and microplastic ingestion 
increased aspartate aminotransferase (AST), alkaline 
phosphatase (ALP), and glucose levels. Albumin levels 
have risen dramatically when fish were treated with a 
combination of paraquat and 2 mg L-1 microplastics.

Polystyrene and polycarbonate nano-plastic were 
described in plasma, and the effects of polystyrene and 
polycarbonate nano-plastic on the fathead minnow’s 
immune system were investigated. When neutrophils were 
subjected to PSNP or PCNP, there was a significant elevation 

in primary granule degranulation and the production of 
neutrophil extracellular traps (NETs) compared to non-
control, but the oxidative explosion was less affected 
(Greven et al., 2016). The researchers (Zhang et al., 2019) 
investigated the effect of polystyrene microplastics 
(PS-MPs) on the dispersion and bioaccumulation of 
roxithromycin (ROX) in the freshwater fish red tilapia 
(Oreochromis niloticus), as well as their interacting 
biochemical consequences in red tilapia. PS-MPs were 
observed to increase ROX bioaccumulation in fish tissues 
when contrasted to ROX exposure alone. MPs may influence 
the fate and toxicity of other organic contaminants in fish.

Microplastics (MPs) were found in the gastrointestinal 
contents of coastal freshwater fish in the Rio de la Plata 
Estuary. The existence of MPs was confirmed in 100% of 
the fish. The concentration of MPs in stomach contents 
was substantially greater near sewage discharge. There 
was no correlation discovered between the number of 
MPs and the length, weight, or eating habits of the fish. 
The variations in the mean number of MPs in fish reported 
in this study suggest that environmental MP accessibility 
may play a substantial role in determining the inequalities 
seen among sample locations surveyed (Pazos et al., 2017). 
Jabeen et al. (2018) fed three different types of virgin MPs 
types, including fibers and pieces to Goldfish (Carassius 
auratus. When contrasted to the control, fish exposed to 
plastic lost substantial weight. Fibers were discovered in 
the gills and the GIT, and feces were unlikely to collect in 
the GIT. The livers of fish open to fibers showed obvious 
and severe changes. The distal gut revealed more significant 
and severe alterations than the proximal intestine, most 
likely owing to fiber consumption. Fish subjected to 
fragments had the incidence of reverting and circulatory 
abnormalities, notably in the upper and lower jaws, and in 
the lower jaw and liver, correspondingly. Polyamide, rayon, 
and polyethylene were the primary polymers detected 
through ATR-FTIR (Pegado et al., 2018).

The presence of MPs in two species of fish, Epinephalus 
merra and Rastrilleger kanagurta was studied in India. 
Particles were found in the intestines of 12 of the 
40 fish tested. FTIR analysis revealed the microplastics as 
polyethylene and polypropylene (Kumar et al., 2018). Silva-
Cavalcanti et al. (2017) tested for microplastic consumption 
of Hoplosternum littorale, a prevalent freshwater fish 
ingested in semi-arid South America. We discovered that 
fish swallowed more plastics in urbanized areas of the river 
and that MP consumption was inversely linked with the 
richness of other food items in individual fish guts. The goal 
of the study was to see how these pollutants affected the 
swimming capability of juvenile Dicentrarchus labrax. 
Microplastics, mercury, and all of the mixtures lowered 
fish swimming velocity and resistance time considerably. 
Furthermore, behavioral abnormalities such as sluggish and 
irregular swimming behavior were found (Barboza et al., 
2018b). A study in China looked at plastic pollution in six 
kinds of freshwater fish. Micro- or microplastics were 
identified in all of the species. The fiber in form, translucent 
in color, and cellophane in substance dominated the plastics 
(Jabeen et al., 2017). The study’s goal was to count the 
number and kinds of microplastics consumed by fish in 
different freshwater of the Gulf of Mexico. Microplastics 
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were detected in the digestive systems of 8% of the 
freshwater fish and 10% of the marine fish examined in 
this research. The percentage of microplastics ingested 
by fish in non-urbanized streams was lower (5%) than in 
one of the urbanized streams (Neches River, 29 percent) 
(Phillips and Bonner, 2015).

Research undertaken by Peters and Bratton (2016) 
investigated MPs and synthetic fiber intake by longear 
(Lepomis megalotis), bluegill (Lepomis macrochirus), and 
sunfish (Centrarchidae sp.) in the Brazos River Basin, USA. 
A total of 436 sunfish were caught, and microplastics were 
found in 196 (45 percent) of their guts. Because microplastic 
consumption is so common, further research is needed 
to determine the residence time of microplastics inside 
the stomach and intestines, the probability of food web 
transmission, and the harmful effects on animal health.

Bivalve mollusks are now the major source of food 
exposure to microplastics (shellfish). Shellfish are a 
significant food source, accounting for roughly 22 million 
tons of fish output via capture and aquaculture in 
2012 (almost 15 million USD) (Barange, 2018). Bivalves 
eat by pushing huge amounts of water through their 
shells’ pallial chamber, keeping particles in suspension on 
their gills for later digestion (Ward and Shumway, 2004). 
MPs have also been found in wild and cultured shellfish 
intended for human ingestion. Microplastic infestation 
of shellfish is not restricted to China. Microplastic fibers 
have polluted mussels in Canada and Belgium (Witte et al., 
2014). Microplastics were discovered from farmed mussels 
and store-bought Pacific oysters in Belgium after a 3-day 
depuration period. According to the average retrieved 
amount, the European shellfish user may invest up to 
11,000 microplastics each year (Van Cauwenberghe and 
Janssen, 2014).

Potential MPs have been found in meals other than 
seafood. Microfibers and fragments have been found 
in sugar and honey (Liebezeit and Liebezeit, 2013). 
Microplastics have recently been discovered in fifteen 
different kinds of store-bought sea salt. There have been 
reports of up to 681 MPs/kg of oceanic salt down to 45 m. 
The utmost frequent form of plastic identified was PET, 
followed by PE. The pollution was most likely caused by 
the coastal waters used to create sea salt (Yang et al., 
2015), Though MPs may be available as a result of air 
accumulation at certain locations. Microplastics are 
presently contaminating food meant for human ingestion, 
with unknown consequences.

5. Microplastics as a Vector for Pathogen Transfer 
and Biotoxins

Microplastics pollution is a new ecological concern 
that poses a risk to fish and human health. Fish is being 
contaminated with MP worldwide and it finds its way to 
human body through food (Bilal et al., 2023a). A major threat 
to human health is created by MPs in seafood. The human 
diet must include seafood. There is a significant threat that 
intestinal MPs infection will spread to other body systems. 
Two of the most typical ways that MPs enter the human 
body are endocytosis and persorption. Toxicological effects 

may have a negative impact on fish performance, which is 
important to take seriously as humans frequently consume 
fish as part of their diets (Hassan et al., 2021a; Bilal et al., 
2023b). Toxins have the potential to cause serious health 
problems in humans. A few trials on fish have revealed 
that MPs and their related toxins bio-accumulate and 
cause issues such as intestinal injury and alterations in 
metabolic profiles (Li et al., 2018). MP might serve as a 
transporter of environmental toxins from water to fish. 
Even though different modeling studies reach contrasting 
conclusions (Antunes et al., 2013; Koelmans et al., 2013). 
According to an investigation, fish bare to pollutants sorbed 
to MP bioaccumulate these chemicals and have harmful 
effects (Zettler et al., 2013). MP can serve as a carrier for 
waterborne infections in humans. The point that the 
microbes on MP are different from those in nearby water 
(Harrison, 2012; Zettler et al., 2013), implies that MP can 
act as a new habitat. To date, the dynamic interactions 
between microorganisms and microbial assemblages as 
major players in aquatic ecosystems/food webs and MP, 
mainly in freshwater, have remained unclear and warrant 
additional investigation.

One of the commonly stated possible environmental 
activities for artificial nanoparticles and MPs is their 
capability to act as carriers for other contaminants. 
Synthetic nanoparticles and primary MPs will interact 
with other chemical compounds such as preservatives. As a 
result, the particles are intentionally and unintentionally 
mixed with other chemical compounds. An ordinarily 
passive and non-toxic bit may become a transporter 
of harmful substances as a result of this mechanism 
(Teuten et al., 2007). Engineered nanomaterials have been 
shown to absorb and transport organic pollutants in the 
aquatic environment (Hofmann and Von der Kammer, 
2009; Hartmann and Baun, 2010; Vickers, 2017).

The biological consequences include the potential for 
microorganisms to be transferred geographically. Since 
plastics are usually extra durable, microbes can rapidly 
colonize the exterior of MPs and be carried with the MPs 
(Li et al., 2018). While this association is well understood 
and its consequences, such as disease development in a 
sterile environment, are explored, there is little literature 
published to show the broad biofilm (Mc-Cormick et al., 
2014). Microplastics obtained from the river in Chicago 
were subjected to high-throughput sequencing analysis. 
They discovered that some of the committed taxa were 
plastic-decaying entities, implying that MPs can transfer 
microbial accumulations in freshwater. Their research 
also highlighted the possibility of pathogenic wastewater-
allied bacteria being disposed into waterways via MPs 
with the organisms attached. A survey on MPs-linked 
microbes in the Yangtze Estuary reported the existence of 
pathogenic organisms on microplastics as well (Jiang et al., 
2018a,b). Briefly, gene sequencing studies suggested 
that MPs can act as a carrier for the transmission of 
impending pathogens such as Arcobacter and Vibrio 
spp. (Hadi et al., 2008; Zettler et al., 2013; Harrison et al., 
2014; McCormick et al., 2014; Amaral-Zettler et al., 2015). 
Schmidt et al. (2014) found precise outcomes for Vibrio 
taxa identifying the presence of pathogenic organisms 
influencing animals such as fish samples. The existence of 



Brazilian Journal of Biology, 2024, vol. 84, e272524 9/16

Bioaccumulation and health effects of microplastic in freshwater fishes 

Vibrio spp. on marine plastics was only recently validated 
by (MALDI-ToF MS) (Kirstein et al., 2016). In research 
carried out by (Kirstein et al., 2016), V. fluviales, and V. 
parahaemolyticus were found on MPs. These species, in 
addition to alginolyticus, were discovered on plastics 
accumulated in the brackish Baltic Sea.

6. Possible Solutions and Control Strategies

Microplastic contamination is a worldwide ecological 
issue. The harm instigated by MPs contamination is not 
confined to a fixed place, and its impression and harm are 
worldwide. As a result, the administration and mitigation 
of MPs contamination necessitate global assistance and a 
coordinated response from all governments. On the one 
hand, active involvement in international conferences 
is suggested to improve international interaction 
and coordination, treatment approaches, and policy 
recommendations for the prevention of MPs contamination 
(Gong and Xie, 2020; Hassan et al., 2020a). Source 
reduction is a crucial step in reducing MPs contamination. 
Microplastics should be controlled at the source by strong 
rules, and the manufacture and trade of products that might 
pollute the environment with MPs should be forbidden. 
Microplastics, such as microbeads, have been banned for 
industrial usage in various countries due to their negative 
consequences. The United States, for example, outlawed 
the use of microbeads in 2015 with the adoption of the 
Microbead-Free Water Act (Auta et al., 2017).

The advancement of the biological elimination of 
microplastics has piqued the interest of many people. 
Some bacteria in the environment are capable of breaking 
down microplastics (Ball, 2017). Biodegradable plastics 
can be tainted by ambient microbes after they have been 
ditched. It is currently an efficient method of avoiding and 
regulating microplastic pollution, as well as an excellent 
solution for non-biodegradable plastics. At the same time, 
due to processing costs, breakdown efficacy, and other 
limitations, biodegradable polymers cannot completely 
replace conventional plastics shortly (Gong and Xie, 2020). 
Filter feeders like bivalves can deliver nutrients from the 
water column to the benthic zone of rivers and lakes via 
wastes and pseudo feces. The filter feeder bivalve Anodontites 
trapesialis was evaluated as a latent sentinel organism for 
freshwater effluence in the South American Pantanal region. 
Anodontites trapesialis can be regarded as a promising 
sentinel organism for detecting microplastic contamination 
in freshwater (Moreschi et al., 2020). In many developing 
and least developing countries, there are no precise rules 
governing MPs contamination. It does, still, have legislation 
in place in its capital that governs the usage of plastic such 
as polyethylene bags. These plastics-ban regulations will aid 
as a first phase in the development of additional regulations 
to combat plastic contamination.

7. Conclusion

MPs have been detected in numerous sites in the world, 
triggering extensive public concerns. Freshwater systems 

have equivalent or perhaps worse MPs contamination 
than marine environments. However, Microplastics 
quantification and toxicity in freshwater ecosystems have 
been underestimated, ignored, and not reported much as 
compared to the marine ecosystems, their abundance, 
influence, and toxicity in freshwater biota are not less than 
a marine ecosystem. The current status of microplastic 
contamination in freshwater was summarized in this 
review article. The potential environmental impacts, such 
as ingestion and toxicity to freshwater fish, were discussed. 
As a consequence, future investigations of the incidence 
and ecotoxicology of microplastics on freshwater fish are 
needed to fully understand the issue. Progress on this 
concern entails a strong systematic foundation as well as 
relevant legislation at global and national levels (EEA, 2012).
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