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1. Introduction

Plant growth, development, phytochemical composition, 
and subsequent biological properties are determined 
by preharvest factors such as genotypic characteristics, 
growing media, atmospheric conditions, and agricultural 
management practices (Aftab, 2019). Preharvest factors 

refer to many cultural practices or treatment methods 
applied to plants cultivated in indoor production systems 
or the farm before harvesting time that can influence 
quality and quantity of plant production. Regulating 
these preharvest parameters can be a practical strategy to 
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Resumo
O diabetes é um distúrbio metabólico sem tratamento definido, todavia pode ser controlado a partir de mudanças 
no estilo de vida e na alimentação. O consumo de alimentos ricos em fibras e nutrientes, incluindo vegetais, 
demonstrou reduzir os riscos de obesidade e Diabetes Mellitus tipo II (DM2). Além disso, muitas plantas herbáceas 
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antioxidantes de alguns metabólitos secundários têm efeitos potentes de inibição contra inflamações associadas 
à resistência à insulina e ao estresse oxidativo. Existem mais de 800 plantas medicinais conhecidas utilizadas no 
controle do diabetes e suas complicações. No entanto, variações nos fatores de pré-colheita, incluindo genótipo 
da planta, propriedades do meio de cultivo, fatores climáticos e práticas de manejo, podem influenciar em seu 
desenvolvimento e seu acúmulo de fotoquímicos com propriedades promotoras. Apesar disso, os efeitos desses 
fatores de pré-colheita nas propriedades antidiabéticas de metabólitos secundários de plantas não são explícitos 
nem facilmente acessáveis na literatura. Portanto, esta revisão tem como objetivo documentar estudos recentes 
que relataram plantas medicinais subexploradas com propriedades antidiabéticas. Revisamos diversos fatores pré-
colheita importantes que podem afetar potencialmente a síntese de fitoconstituintes que possuem propriedades 
antidiabéticas. Assim, esta revisão auxiliará na identificação de lacunas para pesquisas futuras em fitomedicina 
e alimentos funcionais.
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Preharvest factors include: 1) genotypic characteristics of 
the plant; 2) growing medium factors and amendments; 
3) environmental factors like light quality, intensity, 
humidity, and temperature; 4) management practices such 
as planting and harvest time, irrigation, and fertilization. 
These factors influence plant growth and development, 
the composition, and the functional properties of 
phytochemicals (Aftab, 2019; Nguyen et al., 2019). 
Improving the yield of phytochemicals and their functional 
properties such as antioxidant and antidiabetic activities 
by controlling preharvest factors under greenhouse 
conditions have widely been reported by many researchers 
in the last decade (Ullah et al., 2019). Kaur et al. (2021) 
demonstrated that preharvest factors including growth 
stage and different plant parts significantly influence 
antioxidant and antidiabetic function in Swertia chirata 
Buch. For instance, it was shown that the DPPH activity 
was considerably higher in the leaves of Swertia chirata 
harvested at the bud stage compared to leaves harvested 
at the flowering stage by 4% at a concentration of 80 μg 
mL−1 plant extraction. A similar observation was obtained 
for antidiabetic activity. The highest in-vitro α-amylase 
inhibitory activity in leaves harvested at the bud stage was 
higher by 3% compared to the flowering stage. Description 
of some of these important preharvest factors is further 
detailed in this review.

2.1. Growing media

Growing media are materials used to grow plants, and 
are categorized as soil (i.e., silty, sandy, clayey, and loamy 
soils) or soilless (i.e., pumice, calcine clay, perlite, peat moss, 
organic amendments, and wood-based substrates) (Gruda, 
2011). Variations in the growing medium characteristics 
affect plant morphology, productivity, and phytochemical 
composition (Turhan et al., 2007). For example, Tabatabaei 
(2008) study reported that photosynthesis rate, growth, 
development, and contents of bioactive compounds were 
associated with optimum levels of growing medium 
aeration and balanced nutrients. The effects of natural 
amendments and types of soils on plant morpho-physiology 
and development, bioactive compounds, and medicinal 
activities are explained further below.

2.1.1. Soil bio-physicochemical properties

Soil is a dynamic substance consisting of mineral 
particles, water, gases, and organic matter. Texture, 
structure, and porosity are known as the physical properties 
of soil. These physical properties play a key role in soil 
quality and soil condition (Maddela et al., 2017). Soil 
texture contains the relative quantities of three mineral 
particles including sand, silt, and clay, which have a 
profound impact on many other properties such as the 
transpiration and exchange of gases in distinct soil layers. 
The soil texture classification to clay, loam, and sandy loam 
is based on particle size (Malique et al., 2019). Phogat et al. 
(2015) explained that soil types and structure affect plant 
growth components, improving aeration, nutrients and 
water availability, root penetration, and microbial activity. 
Different soil types possess various properties including 
different pH, moisture levels, and organic carbon percentage 

increase the bioactive composition of high-quality crops 
as the growing population demands (Nguyen et al., 2019). 
In the last decade, previous researchers evaluated the 
impacts of preharvest factors on plant morphophysiological 
responses, phytochemicals, and pharmaceutical properties, 
particularly antioxidant and antidiabetic activities 
(Ullah et al., 2019).

Secondary metabolites are organic non-nutritional 
compounds synthesized by plants. They provide long-
term advantages to plants such as defense against biotic 
and abiotic stress agents (Rosenthal and Berenbaum, 
2012). Due to their defense roles in plants, secondary 
metabolites are exploited for various purposes in medicinal, 
nutritional, and cosmetic companies (Jensen et al., 2014). 
Secondary metabolites exert an extensive range of bioactive 
and physiological functions such as antioxidants, anti-
inflammatory, antimicrobial, anticancer activities, and 
many others (Kholkhal et al., 2013). In the last decade, 
the use of alternative medicines and herbal plants (about 
800 species) to treat diabetes has dramatically increased 
due to availability and low side effects (Zhang et al., 2017a; 
Arumugam et al., 2013).

Diabetes is a disorder of metabolism divided into 
three classes: Type I Diabetes Mellitus (T1DM), Type 
II Diabetes Mellitus (T2DM), and gestational diabetes 
mellitus. The causes and complications of T2DM can be 
effectively managed, compared to T1DM and gestational 
diabetes mellitus. Obesity is one of the main causes of 
T2DM because excess fat contributes significantly to insulin 
resistance by lipid accumulation in the liver and releases 
increased amounts of pro-inflammatory cytokines, free 
fatty acids, glycerol, and hormones that have a vital role 
in developing insulin resistance. Then, insulin resistance, 
linked to pancreatic β-cells dysfunction, causes an increase 
in blood sugar concentration (Saad et al., 2017; Hardy et al., 
2012). From the research of Bahmani et al. (2014), T2DM 
can be controlled by healthy lifestyles and diet choices. 
For instance, high-fiber and nutrient-rich foods (e.g., 
vegetables, legumes, and fruits) have been proved by 
research to help reduce risks of obesity and diabetes. 
Also, the use of medicinal plants is another effective 
approach to control T2DM because of their phytochemical 
composites including phenolics, flavonoids, anthocyanins, 
carotenoids, terpenoids, and many more (Bahmani et al., 
2014). Antioxidant activities of some of these secondary 
metabolites illustrate potent inhibitory effects against 
inflammation that leads to insulin resistance and oxidative 
stress correlated with diabetes (Jung et al., 2014). Therefore, 
the purpose of this review is to document recent studies 
on under-exploited medicinal plants with antidiabetic 
properties. We reviewed how changing preharvest factors 
affects the synthesis of plant secondary metabolites that 
possess antidiabetic properties.

2. Preharvest Factors

Managing preharvest parameters is an effective and 
practical strategy to provide the health needs of the global 
population through producing high-quality food crops 
with enhanced bioactive compounds (Nguyen et al., 2019). 
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which were shown to have noticeable effects on growth 
parameters and accumulation of antidiabetic compounds 
such as polyphenols and vitamin E in Calotropis gigantea 
(Kumari et al., 2018). Soil structures define a soil’s density, 
which has a subsequent effect on morpho-physiological 
response such as seedling emergence, root penetration, 
oxygen supply, and

respiration (Stack, 2016). Tomato (Solanum Lycopersicon) 
growth parameters were significantly promoted with sandy 
soil modified with vermicompost (VC), in comparison with 
clay and silt loam soils amended with VC (Zucco et al., 
2015). In addition, physicochemical properties of soils not 
only affect microbial diversity and their action but also 
influence microbial mass levels (Hassan and El-Kamali, 
2015). Muscolo et al. (2019) illustrated that soil biochemical 
properties directly affect the biosynthesis of carotenoids 
and glucosinolates, and the antioxidant potential of 
Brassica rupestris Raf. Soil microbes including bacteria and 
fungi are involved in the biochemical processes within 
soils, and they are imperative to retain soil productivity and 
fertility. According to Radušienė et al. (2019), plant growth 
and development, and phytochemical concentrations are 
significantly influenced by soil fertility. Reduction in a 
diversity of soil microbes has been stated to have adverse 
outcomes on soil health and soil quality (Giller et al., 1997), 
which can considerably influence the biosynthesis of plant-
based chemical compounds as reported in Stevia rebaudiana 
by Pal et al. (2015). Ortíz-Castro et al. (2009) explained that 
some soil microbes produce phytohormones and volatile 
compounds like auxins, cytokinins, gibberellins, and 
antibiotics that directly or indirectly influence plant growth 
and development. Besides, soil microbes also have a vital 
role in the recycling of major soil mineral elements such 
as carbon, nitrogen, phosphorus, and other elements that 
help maintain soil health and productivity (Aislabie et al., 
2013). Soil microbes significantly contribute to decaying 
organic matter and transforming organic nutrients into 
their plant-available inorganic forms, a process known as 
mineralization. For instance, soil microbes were shown 
to have an essential role in the nitrogen cycle, providing 
inorganic forms of nitrogen like ammonium and nitrate 
for plants (Aislabie et al., 2013). Montoya-Garcia et al. 
(2018) also mentioned that mineral constituents have a 
major effect on the primary metabolism and biosynthesis 
of bioactive compounds such as alkaloids, terpenoids, and 
phenolic compounds, which in turn affect plant growth and 
development. Pathak et al. (2008) clarified that nitrogen 
is vital in primary metabolism (i.e., the biosynthesis of 
nucleic acids, different amino acids, lipids, and enzymes). 
A study involving three medicinal plants (i.e., Eucomos 
autumnalis, Tulbaghia ludwigiana, and Tulbaghia violaces) 
showed that application of nitrogen, phosphorus, and 
potassium fertilizers or their deficiencies affected plant 
growth parameters, phytochemical production, and 
antioxidant activities (Aremu et al., 2014).

2.1.2. Natural amendments

Natural amendments consist of organic and inorganic 
but natural materials added to soil indirectly contribute to 
plant growth and development by enhancing soil fertility 

and/or soil structure and conditions (Abbott et al., 2018). 
Natural growing amendments including compost, compost 
derivatives, vermicast, potassium humate, and manures 
provide potential benefits for the environment including 
1) adding nutrients into the soil; 2) attracting earthworms; 
3) supporting and protecting beneficial microbes; 4) 
promoting water retention capacity and release; and 5) 
enhancing nutrient absorption capacity and availability 
(Duong et al., 2012). Liu et al. (2016) observed that the 
application of carbon-rich natural fertilizers positively 
affected the biodiversity of soil, leading to the soil that is 
more resistant to pathogenic infections and environmental 
stress. Also, Lazcano and Domínguez (2011) earlier 
confirmed that the growth, yield, and phytochemical 
concentrations of different plant species can potentially 
be influenced and accelerated by applying various kinds 
of natural amendments. The positive results of growing 
medium amendments on plant growth are most likely 
connected to the optimum supply of essential macro and 
micronutrients required for growth and development, 
as well as the enhancement of soil functional activities. 
Celestina et al. (2019) claimed that the physiochemical 
features of soil have a vital impact on crop yield and 
these factors can be altered by applying various organic 
amendments.

Additionally, Lal (2006) confirmed that the 
administration of natural amendments effectively promotes 
crop production due to the amelioration of soil properties. 
Multiple scientific studies presented the effects of different 
amendments on phytochemicals accumulation and various 
biological activities like antioxidant properties. In the 
work by Antonious et al. (2014), they noticed that the use 
of natural amendments like chicken manure did not only 
affect the growth of two species of kale (Brassica oleracea 
cv. Winterbar) and collard (Brassica oleracea cv. Top Bunch) 
but significantly boosted the total content of phenols and 
ascorbic acid. Moreover, growth factors and accumulation 
of total phenolics, carotenoid, and carvacrol compounds in 
Plectranthus spp. were promoted by natural amendments. 
However, various organic amendments including vermicast, 
K-humate, and NPK indicated different effects on plant 
growth and phytochemicals in Plectranthus spp (Zhang et al., 
2017a). Moreover, soil fertility and the production of 
essential oils in basil (Ocimum basilicum) were promoted 
in soils amended with vermicompost (Trivedi et al., 2017). 
Also, growth parameters, phenolic compounds’ content, 
and kale’s antioxidant properties (Brassica oleracea var. 
acephala) were differentially affected by different natural 
amendments such as dry vermicast, K-humate, and volcanic 
minerals (Iheshiulo et al., 2017).

Another important preharvest factor affecting plants’ 
phytochemistry is growing media chemical composition. 
In the last decade, the use of alternative medicines and 
herbal plants has dramatically increased in synchrony with 
consumers’ demand for organic produce. As a result, current 
researchers are focusing on applying natural amendments 
to enhance phytomedicines and the development of 
functional plants (Nguyen et al., 2019; Abbey et al., 2018). 
Research by Abbey et al. (2018) revealed that essential 
fatty acids, and mineral nutrients as well as antioxidant 
activities in kale (Brassica oleracea var. acephala) were 
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differentially altered by different natural growing medium 
amendments like dry vermicast, potassium (K)-humate, 
and volcanic minerals. Their results illustrated that dry 
vermicast had stimulatory effects on polyunsaturated fatty 
acid (PUFA) biosynthesis and monounsaturated glycolipids 
phosphatidylglycerol by regulating the monounsaturated 
molecular species metabolism. Also, it was shown that 
vermicast had a remarkable influence on the accumulation 
of oleic acid and omega-3 fatty acid compared to potassium 
(K)-humate, and volcanic minerals, which as a result 
increases the overall nutritional value and therapeutic 
properties of kale. In the findings obtained by Vidal et al. 
(2018), where the accumulation of essential lipids in kale 
(Brassica oleracea var. acephala) including total C18:1n9, 
C16:3n3, and C18:3n3 fatty acids were enhanced under 
the application of dry vermicast. It appeared that the 
positive effect of vermicast on functional lipids was closely 
associated with the enhanced potential activity of delta 
13 desaturase enzyme that accelerated desaturation of 
C16:2n6 into C16:3n3. Additionally, the high N and other 
essential elements in vermicast contributed to the improved 
biosynthesis of C18:1n9 and C16:3n3 fatty acids in the kale. 
Collectively, the results obtained from both Abbey et al. 
(2018) and Vidal et al. (2018) presented promising and 
cost-effective approaches to enhancing functional lipids 
accumulation by applying natural growing media, in 
particular vermicast. The health benefits of these essential 
lipids on human physiology and reduced susceptibility 
and debilitating disease risks such as obesity, diabetes, 
and cancer has been widely reported (Nguyen et al., 2019).

2.2. Climatic factors

Climatic conditions including light, temperature, 
humidity, salinity, drought, and other environmental 
factors have either stimulatory or inhibitory effects on plant 
growth and development and their biosynthesis of chemical 
compounds (Schreiner et al., 2012). Ghasemi et al. (2011) 
acknowledged that climatic factors cause major differences 
in the accumulation of plant secondary metabolites and 
biological activities, as further discussed in this review. 
As Dong et al. (2011) confirmed, temperature and light 
regimes significantly influenced the accumulation of 
phytonutrients in Eucommia ulmoides. Nevertheless, 
it should be highlighted that majority of the literature 
available on how climatic factors impact the antidiabetic 
potential of food crops and medicinal plants are very 
scanty, compared to their antioxidative effects.

2.2.1. LED light treatments

Light quality, intensity, and duration have potential 
effects on seed germination, plant growth, photosynthesis, 
flowering, and the accumulation of secondary metabolites 
(Montgomery, 2016). According to Metallo et al. (2018), 
various metabolic pathways can be influenced by lighting. 
Transcription factors and photoreceptors can significantly 
control cellular division, endoreplication, and cell 
growth which are directly affected by different qualities, 
durations, and intensities of light (Okello et al., 2016). 
Huché-Thélier et al. (2016) indicated that ultra-violet (UV) 
and blue (B) lights have considerable roles in controlling 

and regulating an extensive range of metabolic processes 
in pepper (Capsicum annuum), lettuce (Lactuca sativa), 
cucumber (Cucumis sativus), Arabidopsis, and tomato 
(Solanum Lycopersicon). Thus, the manipulative use of 
blue and UV-B lights can help improve plant growth and 
development, and resistance versus pests and pathogenic 
diseases for increased nutritional and phytochemicals 
values (Abidi et al., 2013). Ullah et al. (2019) observed 
secondary metabolites and activating defense mechanisms 
similarly. Hou et al. (2010) investigated the relationship 
between low light intensity and growth indices as well as 
phytochemical compounds in Glycyrrhiza uralensis Fisch. 
According to these researchers, although low light intensity 
negatively impacted leaf thickness, photosynthesis, plant 
growth, and productivity, it noticeably promoted chlorophyll 
and phytochemical contents such as glycyrrhizic acid and 
liquiritin that can be associated with the stimulatory effects 
of low light intensity on phytochemical biosynthesis and 
reduced plant biomass production. These findings disagreed 
with the work by Neugart et al. (2016) who found that 
flavonol concentration including quercetin glycosides, a 
caffeic acid monoacylated kaempferol triglycoside, and 
disinapoyl-gentiobiose of kale leaf tissue was higher in 
plants exposed to higher light intensity (400 μmol m−2 s−1) 
compared to lower light intensity (100 μmol m−2 s−1). It was 
found that the differences flavonoid content in plants 
treated under different light intensity was associated with 
the effect of light intensity on R2R3 MYB transcription 
factors required in the phenylpropanoid pathway as 
well as the expression of genes involved in coding 
protein degradation, transport processes, amino acid 
biosynthesis, and different secondary pathways. Moreover, 
the regulatory effect of light intensity in the expression of 
genes involved in the flavonoid biosynthetic pathway that 
enhance flavonoids and hydroxycinnamic acid derivatives 
accumulation can be linked to anti-photo-oxidative and ROS 
scavenging mechanisms caused by excess light intensity, 
had been reported in previous studies. In another study, 
phytochemical biosynthesis such as phenolics, tocopherols, 
flavonoids, and glucosinolates in Ananas comosus L. 
was significantly enhanced by the application of UV 
radiation between 190-280 nm (Freitas et al., 2015). 
Arakawa et al. (2017) illustrated a potent relationship 
between different blue light wavelengths (430 to 490 nm) 
and the accumulation of anthocyanin compounds in 
Prunus avium L. From their work, the wavelength 450 nm 
(blue light) was found to be more effective at stimulating 
anthocyanin synthesis as compared to other wavelengths. 
In agreement with the findings of Eckstein et al. (2012), 
plants exposed to higher ratio of blue light had an elevated 
level of soluble carbohydrates such as sucrose, glucose, 
and fructose. Such as this enhanced plant metabolism and 
detoxification pathways as well as amino acids, and lipids 
biosynthesis in response to ROS induced by stressful blue 
LED treatments. Nishimura et al. (2007) reported that 
the plant growth parameters and chemical composition 
of Hypericum perforatum L. can be changed by applying 
various light qualities including blue, white, and red 
lights at different intensities. They found the highest rate 
of growth under white and red-light treatments with 
500 μmol m−2 s−1 intensity while the highest content of 
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phytochemicals such as hypericin and pseudohypericin are 
anthraquinone derivatives, which possess anti-cancer and 
anti-inflammatory properties, was obtained by the used 
of red-light with 250 μmol m−2 s−1 intensity. In agreement 
with this study is the results of Metallo et al. (2018), where 
the combination of blue and red as well as white LED light 
treatments significantly influenced yield, morphological 
characteristics, beneficial nutrients, and phytochemicals 
in B oleracea. Based on the results, the highest total 
concentrations of carotenoid and glucosinolates observed 
with 37 days of white LED treatment and 5% blue/95% 
red LED may be related to the differences in growth and 
development stage and cultivar. Moreover, Ali and Abbasi 
(2014) reported notable effects of light treatments including 
24, 27, 30, and 37 days with 40 μmol m−2 s−1 intensity on 
plant morphology and phytochemical production as well 
as antioxidant potential in Artemisia absinthium. Based on 
their results, the light showed a stimulatory and positive 
effect on phenolic compound accumulation and antioxidant 
activities. The highest level of total phenolic compounds 
(i.e., 42.96 mg/L) was obtained by applying continuous light 
treatment for 27 days. Liu (2013) stated that a purposeful 
manipulation of light quality and intensity to improve the 
accumulation of secondary metabolites and their bioactive 
properties enhanced the nutritional value of plants and 
pharmaceutical activities. Moreover, Bantis et al. (2016) 
demonstrated that variable LEDs meaningfully influence 
growth parameters and the total phenolic content of two 
Ocimum basilicum cultivars. An elevated level of phenolic 
compounds was observed under the combination of 1% 
UV + 20% blue + 39% green + 35% red + 5% far-red LED light 
spectra at 200 μmol m−2 s−1 intensity. It may connect 
to the stimulatory effect of blue light on the function of 
phenylalanine ammonia-lyase (an important enzyme 
in the phenylpropanoid biosynthetic pathway) which 
resulted in improving phenolic production. The effect of 
monochromatic B LED light, as physical stress elicitation, 
on the enhanced expression of a gene involved in 
phenylalanine ammonia-lyase activity and antioxidant 
potential in red leaf lettuce (Lactuca sativa) was already 
reported by Son and Oh (2015). Based on the results 
obtained by Hunaefi et al. (2018), combined ultraviolet (UV) 
and ultrasonic treatments (US) showed a positive potential 
effect on stimulation of targeted phenolic compounds like 
rosmarinic acid (RA) and enhanced antidiabetic activity 
of Orthosiphon aristatus. It was shown that the US and 
UV treatment increased the activities of the pentose 
phosphate pathway (G6PDH) and the phenylpropanoid 
pathway (PAL) enzymes; thereby providing precursors 
for the phenolic compounds’ synthesis. The authors also 
reported that the combination of UV and US effectively 
increased the potential activities of α-glucosidase and 
α-amylase enzymes. These enzymes have prominent effects 
on the control of hyperglycemia related to type II diabetes. 
Consequently, this can be connected to the presence of 
higher phytochemical concentration, which led to the 
highest antioxidant function in vitro shoot cultures of 
Orthosiphon aristatus. However, more investigation should 
be conducted regarding interactions between supplemental 
light treatments and other growing conditions including 
temperature and various organic amendments towards 

the enhancement of plant secondary metabolites and 
their antioxidant and antidiabetic properties.

2.2.2. Temperature

Temperature is known as one of the main abiotic 
stresses that control morpho-physiological components, 
productivity, and accumulation of phytochemicals 
in plant species. The optimum range of temperature 
(20o-30°C) stimulates and increases several important 
chemical antioxidants and enzymatic antioxidants (i.e., 
superoxide dismutase, and catalase) (Zobayed et al., 
2005). Ncube et al. (2012) explained that several plant 
physiological, biochemical, and molecular alterations 
are closely linked to temperature stress and as a result, 
these changes can influence phytochemical production. 
For instance, high temperatures (>33 °C) were shown to 
have an inhibitory effect on growth response, development, 
productivity, phytochemical content, and physiological 
activities (i.e., germination and photosynthesis) in 
Phaseolus vulgaris and Vitis vinifera (Hasanuzzaman et al., 
2013). The molecular assessment results showed a strong 
correlation between heat stress and increment in ion 
transporters and signaling molecules. Nitric oxide and 
calcium ion, proteins such as cytosolic heat shock proteins 
(HSPs) and heat stress-associated 32-KD protein (HSA32), 
osmo-protectants, and antioxidants as well as other 
factors involving in signaling cascades and transcriptional 
regulation mitigated the adverse effects of high temperature 
in plant morphophysiological which caused enhanced 
phytochemical responses (Hasanuzzaman et al., 2013; 
Krasensky and Jonak, 2012).

Implementing various ranges of temperatures i.e., 
20/12 °C, 25/17 °C, 30/22 °C, 35/27 °C, and 40/32 °C 
daytime and nighttime respectively, significantly affected 
seed germination, seedling emergence, growth, and 
developmental responses in Cotton (Gossypium hirsutum L.) 
(Reddy et al., 2017). Reddy et al. (2017) found a linear and 
positive relationship between increasing temperatures 
and improvement of physiological and morphological 
parameters, with the optimum treatment being a 35/27 °C 
(day/night) temperature regime. Similarly, temperature 
variations affected the composition of phytochemical 
compounds in Brassica oleracea as observed by 
Neugart et al. (2016). Their findings demonstrated that the 
hydroxycinnamic acid derivative content like disinapoyl-
gentiobiose was enhanced at higher temperature treatment 
(1.65 mg/ g-1 of dry weight at 15 °C), while sinapic acid 
acylated flavonol tetraglycosides like kaempferol-3-O-
sinapoyl-sophoroside-7-O-diglucoside was promoted 
at lower temperature (2.34 mg/g-1 of dry weight at 5°C). 
The findings obtained from the molecular-level evaluation 
showed that temperature factors differentially affected the 
overall expression of genes involved in phenylpropanoid 
secondary metabolism. the biosynthesis of aromatic amino 
acids is a prerequisite of phenolic compounds production 
and phytohormone synthesis. Also, the results indicated 
that few more genes were expressed at low temperatures 
in contrast to high temperatures that may induce genes 
that are linked to the enrichment of jasmonate hormone 
metabolism to acclimate lower temperature and reduce 
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cold stress. Furthermore, the highest antioxidant function 
was observed in kale species exposed to lower temperatures 
(i.e., 3.8°C compared to 9.7°C) due to the presence of 
higher levels of flavonoid glycosides derivatives including 
quercetin-3-O-hydroxyferuloyl-sophoroside-7-O-D-
glucoside (2.54 mmol GAE g-1 of dry matter) and quercetin-
3-O-disnapoyl-triglucoside-7-O-D-glucoside (4.19 mmol 
GAE g-1 of dry matter), which enhance ROS–scavenging 
activity. Also, biosynthesis of phenylalanine ammonia-lyase 
and chalcone synthase enzymes involved in the biosynthesis 
of flavonoid pathway were noticeably increased under lower 
temperature, resulting in enhanced phenolic compounds 
production, as reported by Zietz et al. (2010). Odabas et al. 
(2010) examined the interaction effects of temperature 
variations on the metabolic profile of Hypericum perforatum 
L. They observed a strong correlation between temperature 
and light intensity on the biosynthesis of phenolic and 
polyphenolic accumulations including amentoflavone, 
apigenin-7-glucoside, cholorogenic acid, hyperoside, 
kaempferol, quercetin and quercitrin. The significance 
of temperature (from 24°C to 32°C) and light intensity 
(803.4 μmol m−2 s−1 to 1618.6 μmol m−2 s−1) increments on 
enhancement of phenolic compounds may be explained by 
alterations in photosynthetic activity, resulting in increased 
carbon availability unusually used for phytochemical 
synthesis in response during stress. Also, these physiological 
changes induced by these physical stress elicitations 
can be linked to increases in secondary metabolites to 
strengthen defensive systems. Zhang et al. (2009d) also 
observed the highest level of the terpenoid geosmin in 
Lyngbya kuetzingii at low temperature (10 °C) and low 
light intensity (10 μmol m−2 s−1) for 14 days. However, the 
content of geosmin production remarkably declined when 
the plant was subjected to high temperatures (25 and 
35 °C) and high light intensities (20 and 75 μmol m−2 s−1). 
The effects of these external environmental stimuli on 
molecular mechanisms involved in geosmin production 
have been attributed to the biosynthesis pathway of 
geosmin. However, Khan et al. (2011) explained that these 
changes in environmental factors led to the production of 
phenolics, flavonoids, and alkaloids compounds, which have 
a key role in the defense mechanisms of plants exposed 
to temperature stress. According to Sarıkamış and Çakır 
(2012), the application of low-temperature treatments (0 °C 
at two-time durations (1 h) and (2 h) showed an inhibitory 
effect on the production of glucosinolate constituents 
and biological activities in broccoli (Brassica oleracea 
var. Italica L.). Glucosinolates are accumulated in plant 
cell vacuoles that lie adjacent to myrosin cells full of 
myrosinase enzyme, which is responsible for the hydrolysis 
of glucosinolates. The reduction in glucosinolate production 
may relate to the adverse effect of lower temperature on 
cellular integrity and subsequent interaction between 
myrosinase and glucosinolates, resulting in hydrolyzing 
and breaking down of glucosinolates. However, 
Pennycooke et al. (2005) revealed that low-temperature 
treatments (-5 °C) considerably increased the accumulation 
of anthocyanin compounds in Petunia (Petunia × hybrida) 
that may connect to the activation of antioxidant defense 
systems due to the presence of oxidative damage and lipid 
peroxidation induced by cold treatments. Nevertheless, the 

productivity, quality of bioactive compounds, essential oils, 
and antioxidative capacity in three medicinal plants (i.e., 
Nepeta cataria L., Melissa officinalis L., and Salvia officinalis L.) 
were significantly influenced under the amplitudes of 15-
20-25 °C temperatures. Although the maximum essential 
oils yield in Melissa officinalis was obtained at 25 °C, the 
highest amount and quality of essential oil and yield in 
Nepeta cataria and Salvia officinalis were observed at 15 and 
25 °C, respectively (Manukyan and Schnitzler, 2006).

Since the effects of various temperature treatments on 
medicinal properties, specifically, antidiabetic activity is 
understudied, more research projects should be carried 
out to clarify temperature effects on phytochemicals and 
their bioactive properties. Additionally, there is still a need 
to consider the interaction between temperature regimes 
and other environmental factors towards enhancing plant 
secondary metabolites and their pharmacological activities.

2.2.3. Humidity

Humidity is known as one of the important climatic 
agents that improve germination rate, growth, development, 
and photosynthesis by increasing stomatal conductance 
in plant species (Suzuki et al., 2015). As Deng et al. (2016) 
confirmed, there is a strong correlation between humidity 
and plant productivity, biomass, and growth factors in 
many plant species. In one study, the morphological and 
physiological characteristics of Rosmarinus officinalis 
were highly influenced by the manipulation of humidity 
under greenhouse conditions (Sánchez-Blanco et al., 
2004). According to the results obtained by Fu et al. 
(2018), the total flavonoids, polyphenols content, and 
antioxidant properties were promoted in Pericarpium Citri 
Reticulata (Citrus reticulata ‘Chachi’) under low humidity 
(50%) compared to high humidity (80%). The authors 
reported positive relationship between lower humidity 
and enhanced plant phytochemicals through control and 
improved internal chemical reactions. Water unavailability 
at lower humidity led to regulating enzymatic and chemical 
reactions plus decreasing non-enzymatic browning 
reactivity. It was explained by Zhang et al. (2015c) that 
non-enzymatic browning link to phenolic decomposition or 
changes of their chemical structure, which in turn increase 
decarboxylation and polymerization of phenolics, resulting 
in a reduction in antioxidant potential. In agreement are 
the results Kim et al. (2015b) obtained, where ascorbic 
acid accumulation enhanced from 10 to 84 ppm, and its 
antioxidant potential was significantly promoted in corn 
(Zea mays) at low humidity. Likewise, Kim et al. (2015a) 
confirmed that the accumulation of α-tocopherol and 
antioxidant potential was reduced in corn by increasing 
relative humidity. In a similar work carried out by Shin et al. 
(2007), although phenolic concentrations were significantly 
enhanced in strawberry (Fragaria × ananassa Duch.) at 
75 and 85%, ascorbic acid concentration was decreased 
due to increased oxidation at lower humidity. While total 
flavonoids were increased at 95% humidity, anthocyanin 
concentrations and antioxidant activities were relatively 
unchanged at different relative humidity.

The effects of various relative humidity on growth 
factors, phytochemicals, and medicinal properties, 
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particularly antidiabetic activity, has not been extensively 
studied. Future research should be conducted to elucidate 
humidity effects on different aspects of plant morpho-
physiological components, phytochemical content, and 
pharmaceutical properties.

2.3. Agricultural management practices

Agricultural management practices (AMPs) are 
beneficial and cost-effective activities associated with the 
application of production, economic, and management 
fundamentals (Bai et al., 2018). For example, AMPs 
present practical guidance regarding the management of 
fertilizers or manures to effectively restrain or decrease the 
movement of pollutants into the surface and groundwater 
as well as air (Sith et al., 2019; Merrill et al., 2011). Proper 
management practices considerably impact soil texture, 
fertility, nutrient concentration, moisture, and health status, 
which directly influence growth response, development, 
and plant biomass production (Rathore et al., 2011). 
Thus, contributing to sustainable plant production for 
food security via the supply of food crops enriched with 
high-value bioactive compounds (Mózner et al., 2012; 
García-Mier et al., 2013).

In this review, several important agricultural 
management practices including irrigation and fertilizer on 
plant growth aspects, the biosynthesis and concentration 
of phytochemicals, and medicinal activities are considered 
in more detail.

2.3.1. Irrigation

Irrigation is one of the important agricultural 
management practices that have a major effect on soil 
properties, and consequently, affect soil moisture and 
nutrient transport for plant growth and developmental 
characteristics (Ascough II et al., 2008). In plants, water 
availability meaningfully affects all physiological processes 
which contribute to plant morpho-physiological response, 
primary, and secondary metabolism (Kleinwächter and 
Selmar, 2015). Xue et al. (2018) examined the effects of 
different irrigation regimes on plant growth indicators 
and chemical composition of Cassia obtusifolia L. seed, 
which is known to possess antihypercholesterolemic and 
antihyperglycemic properties. The authors observed that 
a reduction in protein content (from 39.48 to 34.84mg/g) 
and plant growth factors except seed yield, but an increase 
in anthraquinone content (from 2.873 to 6.321 mg/g) at 
lower water availability (70% field capacity). They concluded 
that increased anthraquinones content may connect 
to the seed yield that was unaffected by water stress. 
Furthermore, a study done by Huot et al. (2014) showed 
that there is growth–defense trade-offs under stressful 
environmental factors that led to producing predominantly 
secondary metabolites in response to water deficit that 
could explain enhanced anthraquinone content at a mild 
irrigation treatment in Cassia obtusifolia L. species. Based on 
previous work highlighted, water deficit is stated as another 
important abiotic factor that substantially influences 
primary and secondary metabolites concentrations by 
changes in P5CS gene expression linked to carbohydrate 
metabolism and genes involved in polyphenol production, 

thereby affecting subsequent pharmaceutical properties 
(Elhani et al., 2019). However, Marino et al. (2019) reported 
that although the concentration of phytochemicals in 
Mentha spicata was not influenced by different irrigation 
regimes, the yield of essential oils was significantly 
altered under the application of different regimes of 
irrigation. Based on their results, the lowest photosynthetic 
activity, growth traits, and the accumulation of secondary 
metabolites were observed under strong water stress due 
to a considerable reduction in total biomass, leaf area, 
and fresh weight. Herrera et al. (2019), investigated the 
effects of irrigation treatments including severe drought 
(SD), restricted irrigation (RI), and full irrigation (FI) on the 
biosynthesis of several phytochemicals in the common bean 
(Phaseolus vulgaris L.). According to their results, optimal 
irrigation application (mild hydric stress RI) effectively 
induced biosynthesis of secondary metabolites including 
phenolics, flavonoids, glycosides, and terpenoids, as further 
confirmed by Kusvuran and Dasgan (2017). The authors 
found that under irrigation deficit, the stomatal closure in 
the leaves is regulated by abscisic acid signaling mediator, 
resulting in a drastic reduction in carbon fixation. Irrigation 
deficit also reduces the amount of energy needed to 
decrease CO2 and non-structural carbohydrates; thus, it has 
significant increase ROS accumulation in the photosynthetic 
electron transport chain. To detoxify ROS molecules, the 
synthesis of non-enzymatic antioxidants (i.e., carotenoids, 
flavonoids, ascorbic acid, and α- tocopherol) and enzymatic 
antioxidants (i.e., catalase and peroxidase) are encoded 
by the genes involved in synthesis of phenylalanine 
ammonia lyase (Pal2), chalcone synthase (Chi), chalcone 
isomerase (Chs), flavonoid 3′-hydroxylase (F3′h), flavonoid 
3′4′-hydroxylase (F3′5′h), and flavonol synthase (Fls) to 
inhibit cell damage and oxidative damage (Herrera et al., 
2019; Gharibi et al., 2019). In agreement with these results 
is the work of Zhang et al. (2017b), where water stress in 
Stellaria dichotoma L., showed adverse effects on growth 
characteristics and yield, whereas moderate water stress 
effectively increased phytochemicals such as flavonoids 
and saponins. In addition, Vosoughi et al. (2018) observed 
that the level of essential oils, phenolic, and flavonoid 
compounds, as well as the antioxidant potential in 
Salvia officinalis L., were influenced by different irrigation 
frequencies. Their results demonstrated that under 
decreased irrigation regimes the antioxidant properties 
and production of total phenolics, flavonoid compounds, 
and essential oils were promoted by applying a chitosan 
elicitor that can relate to stimulate metabolic pathways 
of bioactive compounds. Moreover, Rodrigues et al. (2019) 
demonstrated that irrigation with different salinities 
(ranging from 0, as control, to 600 mM) had different effects 
on growth factors, plant production, and phytochemical 
content as well as in vitro biological antioxidant and 
anti-inflammatory properties in Polygonum maritimum L. 
The results demonstrated that irrigation with fresh water 
and mild salinity significantly had the highest effects on 
growth, productivity, total phenolic compounds (300 mM 
salinity: 107 mg GAE/g DW) total flavonoids (200 mM 
salinity: 26.1 mg GAE/g DW), and in vitro anti-inflammatory 
action (fresh water:79.7% nitric oxide reduction at 
100 μg/mL) and in vitro antioxidant capacity (fresh water: 
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96.2% radical-scavenging activity of DPPH at 1 mg/mL) by 
affecting the activity of oxidases/dehydrogenases, redox 
status and relevant genes expression linked to synthesis 
of biochemical compounds under different irrigation 
treatments.

As irrigation has a significant effect on the biosynthesis 
of phytochemicals and pharmaceutical activities, more 
studies should be carried out to gain the optimal degree of 
irrigation correlated with the increasing yield of bioactive 
compounds and their subsequent biological potential.

2.3.2. Fertilizers

Implementing appropriate chemical fertilizers and/
or organic manures at the right time can supply plants 
with the required nutrients necessary for optimal 
growth and production of phytochemicals (Khalid et al., 
2017). Ibrahim et al. (2013) clarified that organic 
fertilizers significantly influence the improvement of soil 
physicochemical properties and health, which sequentially 
affect growth responses and nutritional value. In the 
related study carried out by Yin et al. (2018), nitrogen (N), 
phosphorus (P), and potassium (K) fertilizers application 
effectively promoted plant growth indices and yield in 
Vigna radiata L. However, applying different ratios of N, P 
and K indicated different effects on the plant production and 
growth parameters of Vigna radiata L. From this study, it can 
be postulated that NPK fertilizer ameliorated growth traits 
by (1) inducing the biosynthesis of primary metabolites 
(e.g., proline, sugar, and chlorophyll), (2) increasing 
pathogen resistance by inducing the phytonutrient 
biosynthetic pathways (Mondal et al., 2017). Ibrahim et al. 
(2013) stated that applying organic fertilizer like chicken 
manure significantly increased the yield of phytochemicals 
such as total phenolic compounds (1.32 mg/g gallic acid 
dry weight), flavonoids (0.81 mg/g rutin dry weight), 
glutathione (632.16 nmol/g dry weight), and saponin 
(38.16 mg/g) concentrations and antioxidant potential in 
Labisia pumila Benth, in comparison with inorganic fertilizer 
like NPK. They also found a higher level of soluble sugar in 
plants treated with the organic fertilizer that may explain 
enhanced secondary metabolites production. In previous 
studies conducted by Jaafar et al. (2012), there was a 
positive correlation between carbohydrate content and 
biosynthesis of flavonoid and phenolic compounds of Labisia 
pumila Benth. Additionally, higher micronutrient levels 
were found in plants treated with organic fertilizers that 
properly supplied required elements for cellular chemical 
reactions, resulting in increased phytochemical production 
and relevant biological activities (Ibrahim et al., 2013). 
Several studies demonstrated that gallic acid and rutin have 
potent antidiabetic properties due to their higher potency 
in scavenging ROS and superior hydroxylation degree 
(Saravanan and Parimelazhagan, 2014). Therefore, applying 
organic fertilizers to improve targeted phytochemicals 
used in treating diabetes is a practical strategy in indoor 
sustainable agricultural systems. In the related study done 
by Khalid et al. (2017), the use of organic fertilizer and 
biofertilizer such as fungus had favorable effects on growth 
characteristics, yield, nutritional values, and phytochemical 
compositions including phenolics, flavonoids, and phenolic 

acid in Brassica campestris ssp. chinensis L. Their findings 
showed that mixture of organic fertilizer and biochar (OB) 
was the most effective growing media in boosting total 
flavonoids and phenolic acid. This mixture may relate to 
the stimulatory effects of OB on early (CHS, CHI, and F3H) 
and late (FLS and ANS) gene expressions. Encoding enzymes 
involved in the conversion of 4-coumaroyl-CoA precursor 
to other intermediate compounds used in the biosynthesis 
pathway of flavonoids. Also, the results indicated the higher 
antiradical and anti-inflammatory properties of profiled 
phytochemicals in the inoculated plants by OB which were 
associated with the inhibition of enzymes involved in the 
inflammatory process (Khalid et al., 2017). Al-Kharusi et al. 
(2009) revealed that organic fertilizers were more effective 
in enhancing secondary metabolites production in date 
fruit (Phoenix dactylifera) and antioxidant activities in 
cabbage (Brassica oleracea) compared with their mineral 
fertilizer counterparts.

Since limited research has been reported on how 
chemical fertilizers and/or organic manures influence 
plant bioactive compounds and their medicinal activities, 
more studies should be conducted on this subject matter. 
Such data will provide detailed information on the 
relationship between various fertilizers, the yield of plant 
phytochemicals, and their final bioactive properties (i.e., 
antioxidant and antidiabetic properties).

3. Plant Phytochemicals and Their Role in Diabetes

According to Arumugam et al. (2013), a variety of 
herbal plants that are successfully able to prevent/control 
diabetes and its complications have been reported in the 
literature. Based on the literature, there are approximately 
800 plants with antidiabetic properties, some of which 
have been assessed by several experimental techniques 
(Arumugam et al., 2016; Arunachalam and Parimelazhagan, 
2012). Table 1 demonstrates examples of 44 medicinal 
plants with potent antidiabetic properties. Several 
important traits connected to these plants including the 
family of plant species, the type of extracts gained from 
different parts of the plant (i. e., root, leaves, and shoot), 
their secondary metabolites, biological activities, as well 
as brief anti-diabetic or anti-hyperglycemic activities of 
these plants’ extracts are detailed in the table.

4. Secondary Metabolites

Secondary metabolites are non-nutritive organic 
compounds biosynthesized by plants, bacteria, and fungi. 
Though they are not directly associated with primary 
metabolic activities such as growth, development, or 
reproduction of an organism, they are vital for the plants 
to survive and persist in their environment (Bartwal et al., 
2013). Based on the origin of their biosynthesis, plant 
phytochemicals are classified into three main categories: 
namely phenolics, terpenoids, and sulfur- and nitrogen-
containing alkaloids compounds (Crozier et al., 2008). They 
can provide long-term advantages to the plants such as 
protection against environmental stress (Rosenthal and 
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Berenbaum, 2012). In addition, secondary metabolites give 
plants their characteristic features such as color and smell 
that attract potential pollinators. The amounts of secondary 
metabolites in plants were increased when exposed to 
herbivores or pathogens (Rosenthal and Berenbaum, 2012).

Apart from the importance of these compounds for 
adaptation to environmental stressors, they also exhibit 
practical applications in the medicinal, nutritional, and 
cosmetic companies (Jensen et al., 2014). Secondary 
metabolites have been proven to exert an extensive range 
of bioactive actions including antidiabetic, antioxidant, 
antimicrobial, anti-inflammatory, antiviral, anticancer, 
and antifungal activities (Kholkhal et al., 2013; Atanasova-
Penichon et al., 2016). Antioxidant activities of plant-
based chemical compounds illustrate potent inhibitory 
effects against inflammation responsible for insulin 
resistance and oxidative stress correlated with diabetes 
and cardiovascular diseases (Bajaj and Khan, 2012; 
Jung et al., 2014). As antioxidants, secondary metabolites 
have various therapeutic strategies including inhibiting 
free radical formation, eliminating free radicals, and 
enhancing the capabilities of endogenous antioxidant 
enzymes (Hamilton et al., 2007).

4.1. Phenolic compounds

Phenolic compounds are one of the major groups of 
bioactive compounds. Several physical characteristics 
of plants are connected to these compounds. They are 
directly involved in plants’ taste, smell, and color. Not only 
are these compounds play a vital role in the growth, 
development, and defense mechanism in plants, ample 
research has shown their remarkable impacts on human 
health (Sun et al., 2008). Phenolic compounds possess 
various anti-aging, anti-inflammatory, and antioxidant 
functions, which can decrease the risk of acute diseases 
like diabetes, various types of cancer, and cardiovascular 
disease (Lin et al., 2016). The high antioxidant capacities of 
phenolic compounds have an important role in managing 
and controlling diabetes progression and its relevant 
complications via modulating starch and lipid digestion, 
reducing hyperglycemia and insulin resistance, improving 
β-cells’ ability to produce insulin, and preventing oxidative 
stress (Asgar, 2013; Lin et al., 2016).

4.1.1. Anthocyanins

Anthocyanins are phenolic compounds sub-grouped 
under flavonoids. Anthocyanins are known as water-
soluble pigments that depend on environmental pH, they 
appear red, purple, or blue (Ghosh and Konishi, 2007). 
Anthocyanins have an antioxidant function in plants against 
reactive oxygen species caused by biotic and abiotic stresses 
(Qiu et al., 2016). Furthermore, they are known to serve as 
attractants for pollination and seed dispersal (Saito and 
Harborne, 1992). In human health, they have been proven 
to have a significant role in vision health by eliminating  
retinal inflammation (Miyake et al., 2012). In addition, 
anti-mutagenic, anti-carcinogenic, and anti-microbial 
properties have been attributed to anthocyanin-rich 
foods/plants. The antidiabetic activities of anthocyanins 
are primarily correlated to their antioxidant capacities 

(Sancho and Pastore, 2012). The antioxidant properties 
of anthocyanin are closely connected to the number of 
hydroxyl groups present in their ring B (Guo and Xia, 2018; 
Sancho and Pastore, 2012). Anthocyanins control diabetes in 
two different ways; namely, prevention of oxidative stress 
and stimulation of β-cells to secret insulin (Li et al., 2013). 
Thus, anthocyanin-rich foods/plants have a high potential 
to protect against diabetes and cardiovascular diseases.

4.2. Carotenoids

Carotenoids are plant pigments categorized under 
tetraterpenoids. They have a vital role in fruit and vegetable 
colors (Sluijs et al., 2015). Various physiological properties 
including antidiabetic, antioxidant, anti-inflammation, and 
anti-obesity activities have been ascribed to carotenoids 
(Roohbakhsh et al., 2017; Sanjeevi et al., 2019). Carotenoids’ 
high antioxidant capacity considerably affects the 
management and reduction of T1DM, T2DM, and associated 
complications like obesity and heart and blood vessel 
disease (Sanjeevi et al., 2019). Roohbakhsh et al. (2017) 
stated that oxidative stress and inflammation are two main 
components associated with the development of T2DM 
due to impaired insulin secretion and enhanced insulin 
resistance. Carotenoids can restrain oxidative stress and 
inflammation as well as regulate immune system activity 
by reducing chemokine and cytokine secretion which 
are the main factors in insulin resistance. Additionally, 
carotenoids adjust lipid metabolism in adipose tissues, 
thus, acting as an anti-obesity factor (Voutilainen et al., 
2006; Maeda et al., 2008).

4.3. Glucosinolates

Glucosinolates are another plant phytochemicals 
mainly discovered in the Brassicaceae family (Ma et al., 
2018). They are present as salts of sulfate synthesized 
from various amino acids. There are more than 120 diverse 
glucosinolates based on the type of amino acid from 
which they are synthesized (Soledade et al., 2010). 
Recent studies showed glucosinolates as antimicrobial, 
anti-inflammation, and antioxidant compounds (Bischoff, 
2016). Like other secondary metabolites mentioned in this 
review, glucosinolates can reduce the risks of T2DM by 
their capacity to limit oxidative stress and inflammation 
(Jeon et al., 2018).

Overall, there are many health benefits of plant 
secondary metabolites on human health. Having properties 
like antioxidative, α-amylase, and α-glucosidase properties 
makes these molecules a great potential in reducing chronic 
diseases related to obesity and diabetes.

5. Diabetes

Diabetes is a metabolic disorder related to impaired 
insulin secretion or insulin insensitivity of the body cells to 
insulin (Chiang et al., 2014). Diabetes is divided into three 
classes including Type I Diabetes Mellitus (T1DM), Type II 
Diabetes Mellitus (T2DM), and gestational diabetes mellitus 
(Choudhury et al., 2018). The pancreas of a person with 
T1DM does not produce adequate insulin, with infected 
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persons completely dependent on the use of external 
insulin (Arumugam et al., 2013). In contrast, a person with 
T2DM has insulin resistance leading to a decline in insulin 
sensitivity. Another category of diabetes called gestational 
diabetes mellitus can be found in pregnant women with 
no previous diagnosis of diabetes (Choudhury et al., 2018). 
Diabetes is known as one of the major widespread diseases 
and is the fourth leading cause of death (Bahmani et al., 
2014). According to the World Health Organization report, 
that approximately 425 million people were diagnosed 
with diabetes globally in 2017, which may enhance to 
629 million by 2045. The Canadian Community Health 
Survey (CCHS) reported that around 2.27 million Canadians 
were diagnosed with diabetes in 2017.

In comparison with T1DM, the causes and complications 
of T2DM can be effectively managed or controlled through 
healthy lifestyles and dietary choices. Some important 
factors associated with the steady rise in diabetes include 
obesity, physical inactivity, and aging (Choudhury et al., 
2018). Research has shown a strong connection between 
T2DM and obesity. Obesity is one of the main causes of 
T2DM because excess fat makes a significant contribution 
to insulin resistance, causing an increase in blood glucose 
concentration (Saad et al., 2017). Having a healthy diet 
such as adjusting carbohydrates intake is one of the most 
effective ways of losing weight and balancing blood sugars. 
Consuming nutritious high-fiber foods and vegetables can 
provide the essential vitamins and minerals needed to 
help decrease risks of obesity and T2DM (Arumugam et al., 
2013; Saad et al., 2017). Additionally, the use of medicinal 
plants is another effective approach to avoid or manage 
T2DM (Hahn et al., 2020).

5.1. Evaluation of anti-diabetic potential

Regulation of α-amylase and α-glucosidase enzymes 
actions is an effective and practical way to control 
hyperglycemia (Sekhon-Loodu and Rupasinghe, 2019). 
Although synthetic drugs including acarbose and miglitol 
are used to restrain α-amylase and α-glucosidase potential, 
research has associated their use with negative side effects 
such as dizziness, headache, flatulence, and diarrhea. Thus, 
medicinal plants which possess potential antidiabetic 
benefits are safer alternatives (Patel et al., 2011). Previous 
researchers have confirmed that the composition of the 
secondary metabolites of medicinal plants has potent 
inhibitory actions against α-amylase and α-glucosidase 
(Patel et al., 2012).

6. Conclusion

Considering the high global demand for natural foods 
and functional plants for the prevention or management 
of diabetes, there is a need for sustainable production 
systems. However, variations in preharvest factors can 
significantly influence plant growth, development, and 
biosynthesis of phytochemicals with positive health 
benefits. Nevertheless, the effects of preharvest factors on 
the antidiabetic properties of food crops and medicinal 
plants are not explicit nor easily accessible in the literature. 
Findings of this review showed that the biosynthesis of 

secondary metabolites responsible for the antidiabetic 
potential of food crops and medicinal plants are largely 
influenced by preharvest factors. For future perspectives, 
optimum preharvest parameters should be investigated 
to provide in-depth data for developing new functional 
foods with top-notch antidiabetic properties.
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