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Abstract

We aimed to develop a prognostic model for primary pontine hemorrhage (PPH) patients and validate the predictive value of the
model for a good prognosis at 90 days. A total of 254 PPH patients were included for screening of the independent predictors of
prognosis, and data were analyzed by univariate and multivariable logistic regression tests. The cases were then divided into
training cohort (n=219) and validation cohort (n=35) based on the two centers. A nomogram was developed using independent
predictors from the training cohort to predict the 90-day good outcome and was validated from the validation cohort. Glasgow
Coma Scale score, normalized pixels (used to describe bleeding volume), and mechanical ventilation were significant predictors
of a good outcome of PPH at 90 days in the training cohort (all Po0.05). The U test showed no statistical difference (P=0.892)
between the training cohort and the validation cohort, suggesting the model fitted well. The new model showed good
discrimination (area under the curve=0.833). The decision curve analysis of the nomogram of the training cohort indicated a
great net benefit. The PPH nomogram comprising the Glasgow Coma Scale score, normalized pixels, and mechanical
ventilation may facilitate predicting a 90-day good outcome.
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Introduction

Primary pontine hemorrhage (PPH) accounts for
approximately 5–10% of all intracranial hemorrhages
and is characterized by a varied prognosis (1). Untrace-
able PPH, often linked to hypertensive disease, is a
severe form of spontaneous cerebral hemorrhage with an
acute mortality rate ranging from 40 to 60% (2). The
prognosis of PPH is influenced by various clinical
characteristics and the extent of bleeding. Consequently,
several grading scales have been devised to assess PPH,
including the intracerebral hemorrhage (ICH) score, the
PPH grading scale, the New PPH grading scale, and the
intracerebral hemorrhage scale (3–5). The ICH score
indicates that sub-tentorial cerebral hemorrhage is a
critical factor contributing to the unfavorable prognosis of
ICH. Given the limited size of the pontine structure, an
equivalent extent of bleeding in the pontine region may
yield more severe symptoms and a worse prognosis than

a supratentorial cerebral hemorrhage. Consequently, the
established cutoff values and scoring guidelines within the
ICH score for supratentorial cerebral hemorrhage may not
be entirely applicable to PPH.

The aforementioned scales are employed for the
prediction of patient mortality and prognosis based on
bleeding volume, which is currently measured manually,
resulting in significant inconvenience and inaccuracy. The
identification of prognostic factors is of paramount
importance for the formulation of a rational diagnosis
and treatment strategy, allocation of medical resources,
and effective patient management. The prognostic impli-
cations of various clinical and computed tomography (CT)
parameters have been characterized in patients with PPH,
but appropriate treatment options for severe PPH, which
are determined based on these parameters, have not yet
been developed (4). Currently, there is a lack of a widely
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accepted early prognostic model for predicting outcomes
in patients with PPH. Our objective was to develop a novel
clinical nomogram model that accurately predicts the
likelihood of a good outcome within 90 days for PPH
patients.

Nomogram is a clinical tool that visually displays a
statistical model and provides a numerical probability of
the target event (6). In this study, we reviewed long-term
survival data from a large cohort to identify risk factors and
establish predictive nomogram models. We also aimed to
validate the predictive value of these nomogram models
for 90-day good outcomes in PPH patients.

Material and Methods

Study design and participants
In this study, we collected datasets from 2 centers for

screening independent predictors. A total of 278 PPH
patients were screened from Hainan General Hospital
between April 2016 and October 2020 using the inclusion
and exclusion criteria cited below, and 219 PPH patients
were enrolled in the study. A total of 61 PPH patients were
screened from Nanfang Hospital between March 2017
and September 2020, and 35 PPH patients were enrolled
in the study. The 219 PPH patients enrolled from Hainan
General Hospital were used as the training cohort, and the
35 PPH patients enrolled from Nanfang Hospital were
used as the external validation cohort. Figure 1 illustrates
the flow of patient recruitment and the model for
prognostic prediction of PPH. This study was approved
by the Medical Ethics Committee of Hainan General
Hospital (ChiCTR2100042705; http://www.chictr.org.cn).
All patients were screened consecutively based on the
inclusion criteria: 1) PPH diagnosed by CT imaging and
admitted within 24 h of symptom onset; 2) Patients
between the ages of 18 and 80 years; 3) Completion of
a cranial CT scan with the retrieval of Digital Imaging
and Communications in Medicine (DICOM) images; 4)
Patients were followed-up regularly for at least 90 days
with a functional score on day 90. Exclusion criteria were
patients with end-stage malignant disease, cerebellar
hemorrhage secondary to head trauma, hemorrhagic body,
cavernous hemangioma, or arteriovenous malformation.

Baseline data and prognostic information
Data collection. Data was recorded in a case report

form including age, sex, history of hypertension, history
of diabetes, history of smoking, alcoholism, need for
mechanical ventilation, CT-guided stereotactic hematoma
aspiration, extra ventricular drainage, blood glucose, body
temperature, systolic blood pressure, diastolic blood
pressure, mean arterial pressure, heart rate, respiratory
rate, white blood cell count, hemoglobin, platelets,
hematocrit, prothrombin time (PT), activated partial
thromboplastin time (APTT), blood urea nitrogen (BUN),
creatinine (Cr), and Glasgow Coma Scale (GCS) score.

Calculation of hematoma volume. Head CT DICOM
images of each patient were imported into the ITK-SNAP
software (USA). The main function of ITK-SNAP is to
segment medical images, including 2D and 3D segmenta-
tion, manual segmentation, and semi-automatic segmen-
tation. The bleeding boundaries of the opened PPH
images were manually calibrated layer by layer in the
ITK-SNAP software to generate regions of interest (ROI)
for bleeding volume calculation. The number of pixels was
automatically read by the software and was used as a
representation of bleeding volume. We named the number
of pixels as normalized pixels (used to describe bleeding
volume). We have abandoned the traditional ABC/2
manual calculation mode for the calculation of bleeding
volume and adjusted it to manually draw the boundaries of
each layer of bleeding on the baseline CT image. The
software machine read the number of pixels in all ROI to
calculate the bleeding volume.

We used 30- and 90-day mortality and 90-day good
outcome as the primary end-point of this study. Functional
outcome was measured by the modified Rankin Scale
(mRS), where a score between 0 and 3 was defined as a
good outcome, and a score between 4 and 6 was defined
as a poor outcome (7). Information on survival and
outcome was obtained from family members or patients
by professionally trained attending physicians of neurol-
ogy using a blinded telephone call-back method.

Development of the nomogram model for prognostic
analysis of PPH

The training cohort and validation cohort were com-
bined. According to good and poor 90-day functional
outcomes, we performed multivariable logistic regression
analysis on 26 candidate variables and screened the key
factors affecting prognosis. These key prognostic pre-
dictors were then selected to construct a nomogram
model to predict the 90-day good outcome from the
training cohort and validated its efficacy in the validation
cohort. The three models were established using GCS
scoring, normalized pixels, and a combination of the three
metrics named the hybrid model (including GCS score,
normalized pixels, and mechanical ventilation).

Statistical analyses
Continuous variables (mean±SD) were assessed

using Mann-Whitney U test or two independent samples
t-tests. Categorical variables were analyzed using Fisher
exact tests or the chi-squared test. Initial screening of
potential covariates was based on single factor analysis,
and covariates with Po0.05 were employed to perform
the multivariate logistic regression analysis.

Significant variables were used to produce the risk
model. Receiver operating curves (ROCs) were used to
assess the predictive model’s discrimination capability for
the 90-day good outcome and 30- and 90-day mortality.
The specificity, sensitivity, accuracy, and area under the
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curve (AUC) of each model were calculated. The AUCs
were compared using Delong’s test.

A nomogram was established according to the results
of the multivariable logistic regression to evaluate the risk
of 90-day good outcome. The discrimination, calibration
ability, and clinical usefulness were used to evaluate the
model’s performance. The discriminative abilities of
nomograms were quantified by ROC curve and concor-
dance index (C-index) measures. The calibration curve
was used to determine the calibration ability of the model.
Decision curve analysis (DCA) was executed to assess
the clinical utility of both nomograms by quantifying the net
benefits for a range of threshold probabilities. To evaluate
the clinical efficacy of the predictive model, decision
curves were analyzed compared to two default strategies:
‘‘treat all’’ and ‘‘treat none’’. The ‘‘treat all’’ approach
assumes all patients are treated regardless of their risk
estimates, while the ‘‘treat none’’ strategy assumes none
of the patients are at risk and thus not treated. A model
demonstrating clinical utility would be positioned above
the horizontal ‘‘treat none’’ line and to the right of the
downward-sloping ‘‘treat all’’ line. Po0.05 was indicative
of a statistically significant difference. All statistical tests
were performed using R software (version 4.2.2: https://
www.r-project.org/).

Results

Patient baseline data
A total of 254 patients who met the criteria were

included in the study. A total of 26 variables, encompass-
ing demographic, clinical, radiological, and laboratory
information, were employed to assess disparities in
outcomes between patients who experienced good and
poor outcomes at 90 days. Out of the total, 56.3% (143/
254) had a poor outcome, whereas 43.7% (111/254) had a
good outcome. According to the findings of our research,
in-hospital mortality rate was 36.2% (92/254), of which
70.7% (65/92) of the deaths were attributed to neurologi-
cal injury. Among them, 62 cases resulted in cardiopul-
monary arrest due to the initial neurological damage, and
3 cases expired due to central nervous system infection
caused by ventriculitis after the insertion of an external
ventricular drainage system. Twenty-nine percent (27/92)
of deaths were due to non-neurological injuries. Specif-
ically, 5 cases were attributed to aspiration pneumonia,
5 cases expired due to hospital-acquired infections, 3
cases were caused by acute myocardial infarction, 3
cases were due to gastrointestinal bleeding, and 3 cases
were caused by pulmonary thromboembolism. Further-
more, 6 cases were associated with multiple organ

Figure 1. Flow diagram of study selection. PPH: primary pontine hemorrhage.
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dysfunction syndrome, while the cause of death remained
unknown in 2 cases.

The univariate analysis revealed a significant correla-
tion between the 90-day good outcome and GCS score,
normalized pixels, sex, platelets, and mechanical ventila-
tion (Po0.05, Table 1). Other variables, such as age,
history of hypertension, history of diabetes, history of
smoking, alcoholism, CT-guided stereotactic hematoma
aspiration, extra ventricular drainage, blood glucose, body
temperature, systolic blood pressure, diastolic blood
pressure, mean arterial pressure, heart rate, respiratory
rate, white blood cell count, hemoglobin, hematocrit, PT,
APTT, BUN, and Cr, were not found to be statistically
significant (P40.05) (Table 1).

Key prognostic predictors
GCS score, normalized pixels, sex, platelets, and

mechanical ventilation were used as covariates in the
multivariate logistic regression analysis. Significant odds

ratios were identified for GCS score [1.53 (1.36–1.73),
Po0.001], normalized pixels [0.999957 (0.999938–
0.999974), Po0.001], and mechanical ventilation [0.13
(0.04–0.39), Po0.001)]. However, there were no signifi-
cant associations observed for sex [0.74 (0.27–1.95),
P=0.547] and platelets [1.00 (0.99–1.00), P=0.383] (Table
2). The prognostic model to predict a 90-day good
outcome was based on the GCS score, normalized pixels,
and mechanical ventilation.

The AUCs of the three predictors for the 90-day good
outcome, 90-, and 30-day mortality across all cases are
illustrated in Figure 2A, B, and C. The hybrid model
achieved the best discrimination ability for the 90-day
good outcome [AUC of hybrid model 0.911 (95%CI:
0.875�0.946), hybrid model vs GCS score, P=0.001,
hybrid model vs normalized pixels, P=0.006] and 90-day
mortality [AUC of hybrid model 0.851 (95%CI:
0.804�0.898), hybrid model vs normalized pixels,
Po0.001].

Table 1. Baseline characteristics of the 254 patients divided into good or poor outcome based on the
modified Rankin Scale (mRS) scores.

Characteristic 4–6=Poor outcome (n=143) 1–3=Good outcome (n=111) P-value

GCS score 5 (3, 6) 13 (9, 15) o0.001

Normalized pixels 30,613 (17,242; 46,922) 7,355 (3,582; 16,349) o0.001

Gender 0.034

Male 121 (85%) 82 (74%)

Female 22 (15%) 29 (26%)

Age 53±12 52±13 0.689

Hypertension 107 (75%) 83 (75%) 0.993

Diabetes mellitus 11 (7.7%) 8 (7.2%) 0.884

Smoking 25 (17%) 26 (23%) 0.241

Alcohol abuse 35 (24%) 23 (21%) 0.479

Temperature 37.20 (36.75; 38.00) 37.00 (36.65; 37.50) 0.255

Heart rate 90 (80; 112) 84 (78; 116) 0.210

SBP 177 (155; 191) 174 (156; 190) 0.836

DBP 100 (90; 110) 101 (95; 118) 0.144

MAP 130 (116; 144) 131 (123; 150) 0.220

Respiratory rate 20.0 (18.0; 23.0) 20.0 (18.0; 22.0) 0.961

Glucose level 7.4 (6.3; 8.9) 7.3 (6.2; 8.8) 0.700

White cell count 11.3 (9.0; 13.9) 10.5 (7.8; 14.1) 0.417

Hemoglobin 143 (136; 154) 141 (130; 150) 0.183

Platelet 211 (177; 245) 199 (163; 237) 0.073

Hematocrit 43.1 (41.0; 44.5) 42.0 (39.7; 44.7) 0.197

PT 13.00 (11.90; 14.10) 12.80 (11.40; 13.70) 0.319

APTT 31.0 (26.6; 34.0) 31.0 (26.6; 33.7) 0.431

Creatinine 89 (68; 108) 89 (64; 108) 0.615

Urea 5.8 (4.5; 7.2) 5.5 (4.1; 7.2) 0.378

Mechanical ventilation 57 (40%) 25 (23%) 0.003

Stereo orientation 5 (3.5%) 6 (5.4%) 0.541

Extra ventricular drainage 17 (12%) 6 (5.4%) 0.074

Data are reported as median (IQR), n (%), or mean±SD and were compared using Wilcoxon rank sum
test, Pearson’s chi-squared test, Welch two independent samples t-test, or Fisher’s exact test. GCS:
Glasgow Coma Scale; SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial
pressure; PT: prothrombin time; APTT: activated partial thromboplastin time.

Braz J Med Biol Res | doi: 10.1590/1414-431X2024e13359

A clinical prediction model for primary pontine hemorrhage 4/10

https://doi.org/10.1590/1414-431X2024e13359


The AUCs of the three predictors for the 90-day
good outcome, 90-, and 30-day mortality in the training
cohort are illustrated in Figure 2D, E, and F. The hybrid
model achieved the best discrimination ability for
the 90-day good outcome [AUC of hybrid model 0.863
(95%CI: 0.813�0.913), hybrid model vs GCS score,
Po0.001, hybrid model vs normalized pixels, P=0.02]
and 90-day mortality [AUC of hybrid model 0.855
(95%CI: 0.805�0.905), hybrid model vs normalized

pixels, P=0.006, hybrid model vs GCS score, P=0.5],
as well as in 30-day mortality [AUC of hybrid model
0.846 (95%CI: 0.794�0.898), hybrid model vs GCS
score, Po0.001, hybrid model vs normalized pixels,
P=1].

The AUCs of the three predictors for 90-day good
outcome, 90-, and 30-day mortality in the validation cohort
are illustrated in Figure 2G, H, and I. The hybrid model
achieved the best discrimination ability for the 90-day

Table 2. Multivariable analysis of characteristics of 254 patients divided into good or poor outcome based on the modified Rankin Scale
(mRS) scores.

Characteristic 4–6=Poor outcome, n=143 1–3=Good outcome, n=111 OR 95%CI P-value

GCS score 5 (3; 6) 13 (9; 15) 1.53 1.37; 1.75 o0.001

Normalized pixels 30,613 (17,242; 46,922) 7,355 (3,582; 16,349) 0.999957 0.999938; 0.999974 o0.001

Gender 0.74 0.27; 1.95 0.547

Male 121 (85%) 82 (74%)

Female 22 (15%) 29 (26%)

Age 53±12 52±13 1.0 0.96; 1.03 0.765

Hypertension 1.03 0.37; 2.86 0.958

No 36 (25%) 28 (25%)

Yes 107 (75%) 83 (75%)

Diabetes mellitus 0.44 0.08; 2.13 0.322

No 132 (92.3%) 103 (92.8%)

Yes 11 (7.7%) 8 (7.2%)

Smoking 1.44 0.49; 4.17 0.500

No 118 (83%) 85 (77%)

Yes 25 (17%) 26 (23%)

Alcohol abuse 0.88 0.31; 2.46 0.810

No 108 (76%) 88 (79%)

Yes 35 (24%) 23 (21%)

Temperature 37.20 (36.75; 38.00) 37.00 (36.65; 37.50) 0.73 0.51; 1.03 0.075

Heart rate 90 (80; 112) 84 (78; 116) 1.01 0.99; 1.03 0.467

SBP 177 (155; 191) 174 (156; 190) 0.98 0.96; 1.00 0.136

DBP 100 (90; 110) 101 (95; 118) 1.00 0.96; 1.03 0.817

MAP 130 (116; 144) 131 (123; 150) 1.02 0.98; 1.07 0.277

Respiratory rate 20.0 (18.0; 23.0) 20.0 (18.0; 22.0) 0.95 0.88; 1.02 0.158

Glucose level 7.4 (6.3; 8.9) 7.3 (6.2; 8.8) 1.05 0.93; 1.19 0.469

White cell count 11.3 (9.0; 13.9) 10.5 (7.8; 14.1) 1.00 0.88; 1.13 0.939

Hemoglobin 143 (136; 154) 141 (130; 150) 1.00 0.98; 1.02 0.889

Platelet 211 (177; 245) 199 (163; 237) 1.00 0.99; 1.00 0.383

Hematocrit 43.1 (41.0; 44.5) 42.0 (39.7; 44.7) 0.91 0.79; 1.05 0.194

PT 13.00 (11.90; 14.10) 12.80 (11.40; 13.70) 0.96 0.81; 1.14 0.658

APTT 31.0 (26.6; 34.0) 31.0 (26.6; 33.7) 1.01 0.92; 1.11 0.752

Creatinine 89 (68; 108) 89 (64; 108) 1.00 1.00; 1.00 0.784

Urea 5.8 (4.5; 7.2) 5.5 (4.1; 7.2) 0.96 0.86; 1.07 0.424

Mechanical ventilation 0.13 0.04; 0.39 o0.001

No 86 (60%) 86 (77%)

Yes 57 (40%) 25 (23%)

Stereo orientation 0.83 0.11; 7.43 0.860

No 138 (96.5%) 105 (94.6%)

Yes 5 (3.5%) 6 (5.4%)

Extra ventricular drainage 1.34 0.23; 6.99 0.730

No 126 (88%) 105 (94.6%)

Yes 17 (12%) 6 (5.4%)

Data are reported as median (IQR), n (%), or mean±SD. OR: odds ratio; CI: confidence interval.
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mortality [AUC of hybrid model 0.917 (95%CI:
0.824�1.000), hybrid model vs GCS score, Po0.001,
hybrid model vs normalized pixels, P=0.6] and 30-day
mortality [AUC of hybrid model 0.885 (95%CI:
0.758�1.000), hybrid model vs GCS score, P=0.03,
hybrid model vs normalized pixels, P=0.5]. The hybrid
model had no discrimination ability for the 90-day good
outcome [AUC of hybrid model 0.880 (95%CI:
0.762� 0.997), hybrid model vs GCS score, P=0.5, hybrid
model vs normalized pixels, P=0.1].

Prognostic performance of the nomogram model
The GCS score, normalized pixels, and mechanical

ventilation factors were included in the model, fitted, and
represented as a nomogram (Figure 3). While using this
nomogram, each patient predictor was located on the
corresponding axis. A line was then drawn on the top
score axis to generate a score based on each variable.

Finally, the scores from all variables were added to
calculate the total score. This was located on the ‘‘total
score’’ axis, and a straight line was drawn down to
generate the nomogram for the 90-day good outcome of
the patient in the training cohort.

The calibration chart indicated that the observed and
predicted values were consistent in the training cohort,
and the U test showed no statistical difference (P=0.892)
between the training cohort and the validation cohort,
suggesting that the model fitted well (Figure 4). The new
model also showed good discrimination ability [C index
(AUC)=0.833] (Figure 4). The threshold probability is
plotted on the x-axis, and the net benefit of the nomogram
is plotted on the y-axis.

The DCA showed a greater net benefit for the
nomogram than for ‘‘All’’ or ‘‘None’’ scheme across a
reasonable range of threshold probability. The DCA of
the training cohort nomogram indicated a great net

Figure 2. Receiver operating curves (ROC) and area under the curve (AUC) of the Glasgow Coma Scale (GCS) score, normalized
pixels, and hybrid model for predicting the 90-day good outcome, and 90- and 30-day mortality in total cases (A, B, C), in the training
cohort (D, E, F), and in the validation cohort (G, H, I).
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benefit when the threshold probability was from 0.5
to 97.5% (Figure 5A). Similarly, the DCA of the
validation cohort nomogram indicated a great net benefit
when the threshold probability was from 2.5 to 66.5%
(Figure 5B).

Discussion

This study aimed to develop a nomogram for 90-day
good outcome prognostic factors in patients with PPH
using relatively large samples. A total of 254 patients with

Figure 3. Nomogram predictive model for the 90-day good outcome. The GCS score, normalized pixels, and mechanical ventilation
factors were included in the nomogram. GCS score: A higher GCS score was generally associated with a better prognosis, indicating a
higher level of consciousness. Normalized pixels: Lower values of normalized pixels suggested a smaller volume of hemorrhage, which
was typically linked to a better outcome. Mechanical ventilation: The patients without mechanical ventilation had a better prognosis. The
total score, derived from adding the individual points from the GCS score, normalized pixels, and mechanical ventilation, was used to
estimate the probability of a 90-day good outcome.

Figure 4. Calibration chart between the training cohort and the validation cohort. The calibration chart showed that the observed and
predicted values were consistent in the training cohort, with no statistical difference (P=0.892) between the training cohort and validation
cohort, indicating a good fit. The new model showed strong discrimination ability [C index (AUC)=0.833].
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PPH were included in the study, with 219 patients from the
training cohort and 35 patients from the validation cohort.
PPH is the deadliest type of ICH. Our study found an in-
hospital mortality rate of 36.2% (92/254), of which 70.7%
(65/92) of deaths were caused by initial neurological
damage resulting from cardiopulmonary arrest. In another
study, the in-hospital case fatality rate was 47.5% (8).
Our study indicated that GCS score, normalized pixels,
and mechanical ventilation were optimal combinations
for predicting 30-, 90-day mortality, and 90-day good
outcome.

GCS score, normalized pixels, and mechanical venti-
lation were significant predictors of 90-day good outcome
in PPH. Fu et al. (9) found that GCS score and hematoma
locations were independently associated with severity on
admission and in-hospital mortality after primary intra-
cerebral hemorrhage. Wessels et al. (10) found a high
correlation between a poor outcome (GCS score o4) and
hematoma volume greater than 4 mL (P=0.006), ventral
hemorrhage (Po0.001), and necessity for mechanical
ventilation (Po0.001). Zhang et al. (11) found that GCS
score on admission and coma were the only significant
predictors of mortality with multivariate regression analy-
sis. Consistent with other studies, as one of the most
important predictors for intracerebral hemorrhage prog-
nosis models, GCS score also showed a good predictive
performance in PPH, especially in predicting 90-day good
outcome in our study, with AUC values of 0.861, 0.863,
and 0.852 in all cases, the training cohort, and the
validation cohort, respectively.

Hemorrhage volume is also one of the important
factors in predicting the prognosis of intracerebral
hemorrhage. The formula ABC/2 is widely used to
calculate cerebral hemorrhage volume (12). However,
the manual measurement methods can be susceptible to
human error. Mishra et al. (13) found that the measure-
ment of intracerebral hemorrhage volume using ITK-
SNAP had better reliability compared to the manual
ABC/2 method when assessed using inter-observer
reliability statistics. We used the number of pixels

(normalized pixels) automatically read by the ITK-SNAP
software as a representation of bleeding volume. In our
research, normalized pixels [min=505, max=282005,
median (IQR)=17505 (5794, 37421)] represented bleed-
ing volume. It replaced bleeding volume more accurately
and demonstrated good predictive performance (the AUC
values in predicting 90-day good outcome were 0.843,
0.862, and 0.708 in all cases, the training cohort, and
the validation cohort, respectively). Kuwabara et al. (14)
reported that cases with maximum hematoma diameters
of 20 mm or less and seen in three CT slices or less of
10 mm thickness have hematoma confined to the pons
with favorable prognoses. Our cases also suggested that
a major bleeding tends to have a worse prognosis, while a
small bleeding has a better prognosis, some of which
manifest as hemorrhagic lacunar stroke, with sizes
ranging from 0.5 to 1.8 mL with a mean of 1.19 mL in
our cases. Arboix et al. (15) found that hemorrhagic
lacunar stroke accounted for 7.4% of intracerebral
hemorrhages. The patients with hemorrhagic lacunar
stroke showed a higher percentage of symptom-free
patients at the time of discharge and absence of in-
hospital mortality. The proportion of hemorrhagic lacunar
stroke in our study was 9.8%, the overall prognosis was
good, and there were no deaths. This may be related to
the smaller size of the lesion in hemorrhagic lacunar
stroke (15).

Mechanical ventilation was a risk factor for mortality
and 90-day good outcome in patients of PPH. Thirty-two
percent of patients used mechanical ventilation in our
research, which was consistent with reports in the
literature (16,17). Previous studies found that signs of
brainstem dysfunction predicted higher mortality for
intracerebral hemorrhage and cerebral infarction (17).
Zou et al. (18) found that mechanical ventilation is a risk
factor in patients with intracerebral hemorrhage, and
56.91% patients used mechanical ventilation in their
study. The utilization rate of mechanical ventilation in their
study was higher than ours. This difference can be
attributed to the fact that their research subjects consisted

Figure 5. Decision curve analysis of our nomogram in the training cohort (A) and validation cohort (B).
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solely of patients in the intensive care unit, excluding
those with mild symptoms.

ROC curves showed how well a risk prediction model
discriminates between patients with and without a condi-
tion (19). Xie et al. (20) found that the hybrid model
achieved satisfactory discrimination. In our study, the AUC
of the hybrid model of combined normalized pixels and
GCS score was 0.919, the AUC of GCS score was 0.863,
and the AUC of normalized pixels was 0.862 for the 90-
day good outcome in all cases. It indicated that the hybrid
model had a better predictive ability than the GCS score or
normalized pixels alone in predicting 90-day good out-
come. However, concerning predicting 30- and 90-day
mortality, the hybrid model did not outperform the model
with normalized pixels alone. Of course, this requires a
larger sample size for further validation. The nomogram
including the GCS score, normalized pixels, and mechan-
ical ventilation was constructed for predicting the 90-day
good outcome. The nomogram revealed that a higher
GCS score was associated with a better patient prog-
nosis, indicating it as a protective factor, which was
consistent with previous research (3). The smaller the
assigned score, the more likely is the patient to show a 90-
day good outcome. A smaller value of normalized pixels
indicates a better prognosis. Compared to the New PPH
score (3), our method had a more refined division of
bleeding volume. Mechanical ventilation is a binary
variable, and not requiring mechanical ventilation is
associated with a better prognosis for the patient. The
GCS score had the strongest impact on prognosis in this
study, which aligned with the findings of the ROC curve.
The predicted probability value of the 90-day good
outcome is determined by the percentage ratio corre-
sponding to the total score of these three factors. External
validation further supported the reliability of the model.
The DCA of the nomogram in the training cohort and
validation cohort showed a net benefit for predicting a 90-
day good outcome, surpassing both the treat-all and treat-
none strategies. These findings highlight the strong
clinical applicability of our predictive model.

Our study had several limitations. Firstly, although the
model was externally validated and the nomogram model
achieved good accuracy, there is still a need for further
prospective multicenter validation to confirm and enhance

the reliability of the nomogram and improve its clinical
utility. Secondly, the number of pixels did not provide an
intuitive indication of bleeding volume. In future stages, we
aim to develop software or programs that can automati-
cally convert pixels into bleeding volume measured in
milliliters (mL).

Future research may explore two main directions.
Firstly, we can focus on the application of multimodal
imaging technology, such as functional magnetic reso-
nance imaging (fMRI), computed tomography (CT), and
magnetic resonance imaging (MRI). By integrating these
technologies, we can accurately identify the bleeding site
and assess the extent of brain tissue damage. Secondly,
we will investigate molecules and biomarkers in blood and
brain tissues to gain a deeper understanding of the
pathological mechanisms of cerebral hemorrhage. Inflam-
matory factors, coagulation factors, and metabolites are
among the biomarkers that could be studied. These
biomarkers hold significant potential for predicting the risk
and prognosis of cerebral hemorrhage.

Conclusion
In this study, we developed and validated a nomogram

comprising the GCS score, normalized pixels, and
mechanical ventilation for predicting the 90-day good
outcome in PPH patients. Our model showed strong
discriminatory power, calibration, and clinical utility, allow-
ing doctors to predict the survival of patients with PPH
conveniently and quickly.
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