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ABSTRACT
Analyzing the impact of harvest-time drying data is crucial for successful storage and maintaining regulatory seed quality. This study 
aimed to assess the performance of fixed and mobile dryers using machine learning techniques. Data were collected from convective 
dryers, including the total number of dryers used, drying time (in hours), moisture percentages at the product’s entrance and exit, and 
the humidity difference between them. The study employed the Filtered Clusterer model, which utilizes the Simple K-Means technique 
and the Resample filter to group data based on similarities. The findings indicated distinct differences between fixed and mobile drying 
systems, with well-defined variations within each system. The algorithm, combined with the applied filters, proved effective in unsupervised 
classification by identifying and reducing inter-cluster similarity within the fixed system, thereby creating distinct classes within the dataset. 
In conclusion, the algorithm successfully clustered the scattered dataset and accurately classified and minimized inter-cluster similarity 
within the fixed system. Conversely, the mobile system exhibited low drying efficiency.

Index terms: Artificial intelligence; digital agriculture; post-harvest technology.

RESUMO
Analisar os efeitos de dados de secagem em época de safra é primordial para o sucesso do armazenamento, além de manter a qualidade 
fisiológica das sementes. O objetivo com este trabalho foi avaliar o desempenho de secagem em secadores fixo e móveis através de aprendizado 
de máquinas. Os dados foram coletados de secadores convectivos, com base em: i) total de secadores trabalhados; ii) tempo de duração de 
secagem (horas); iii) percentual de umidade na entrada e saída do produto (%); e iv) diferenças de umidade entres ambas (%). Foi utilizado o modelo 
Filtered Clusterer, baseado na técnica Simple K-Means e filtro Resample, para agrupar dados com base em suas similaridades. Os resultados 
apresentados demonstram que o sistema de secagem é distinto entre os equipamentos fixo e móvel, com diferenças bem definidas dentro 
dos sistemas de secagem estabelecidos. O algoritmo juntamente com os filtros demonstrou ser eficiente na classificação não supervisionada, 
identificando e minimizando similaridade inter-cluster do sistema fixo definindo em classes distintas dentro do conjunto de dados. Conclui-se, 
que o conjunto de dados dispersos são agrupados de modo que o algoritmo classifica e minimiza similaridade inter-cluster do sistema fixo 
com alta precisão. Por outro lado, o desempenho da secagem em sistema móvel apresentou baixa eficiência.

Termos para indexação: Inteligência artificial; agricultura digital; tecnologia de pós-colheita.

INTRODUCTION

Artificial intelligence, particularly through 
deep machine learning and data mining, is a powerful 
and interconnected set of tools for optimizing design 
and performance, analyzing data, and monitoring and 
controlling systems (Wang et al., 2020). These tools are 
crucial for addressing various challenges in the seed 

sector, including decision-making related to germination, 
vigor, pathogenicity detection, storage quality, and drying 
conditions.	

The increasing demand for smart agriculture has 
resulted in significant advancements in crop estimation and 
forecasting, thereby enhancing productivity (Sharma et al., 
2022). However, the post-harvest and pre-sowing stages 
require careful attention due to the extensive information 
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generated to obtain timely insights into seed quality and 
maximize crop yield.	

Obtaining information about cultivars, treatments, 
harvest, sieving, purity, sanity, percentage of other seeds, 
germination, and vigor during post-harvest stages is time-
consuming and inefficient for making quick decisions 
(Pinheiro et al., 2021). These factors are crucial in the quality 
assessment process. However, the processing, drying, and 
storage stages must not be overlooked, as they are essential 
for successfully completing the agricultural cycle.

Artificial intelligence has emerged as an 
indispensable tool for addressing the challenges posed 
by the dynamic nature of high data generation in the seed 
sector. It is imperative to address the efficiency issues of 
agricultural equipment, particularly artificial dryers, in 
order to ensure product safety and quality. Additionally, 
the choice of drying method is limited by the quantity of 
seeds, making artificial drying essential for large volumes. 
The operating costs of artificial drying are affected by 
factors such as volume, drying speed, and air temperature 
(Garcia et al., 2004).

Seed drying plays a crucial role in preserving the 
physiological quality of seeds during storage, enabling 
early harvesting and minimizing losses in the production 
process (Dhurve et al., 2022). Furthermore, data on the 
water content in seeds and grains aid in decision-making 
regarding equipment efficiency. Unsupervised machine 
learning enabled the discovery of unguided responses, 
allowing the predictive model itself to make decisions. 
Data mining, as described by Onukwuli et al. (2021), is a 
technique for extracting essential patterns and knowledge 
from large datasets. Machine learning encompasses 
various algorithms that learn predictive rules from 
historical data to build models for predicting future data 
(Arumugam et al., 2022).

The seed and grain dryer play a vital role in 
preserving the physiological quality of seeds. However, 
it is crucial to comprehend the information generated 
through agricultural equipment during the drying process, 
as mishandling can be risky and lead to irreversible damage 
if conducted without the necessary knowledge and care. 

Based on the aforementioned considerations, 
the objective of this study was to assess the drying 
performance of fixed and mobile dryers using machine 
learning techniques.

MATERIAL AND METHODS
	 The study focused on two types of agricultural 

dryers based on their installation conditions: fixed dryers, 

which are installed under a shed, and mobile dryers, which 
are installed on truck trailers and transported between 
crops. These dryers operate on a large scale and utilize a 
gas heating system, along with a control panel.

	 The configuration of the dryers includes a fan 
unit powered   by an electric motor, flow control valves, 
a gas heater, a drying chamber, and sensors for measuring 
air temperature and seed mass. The mobile dryer was 
transported to the farm and mounted on a cargo transport 
truck, while the fixed dryer was installed in properties with 
enclosed sheds (Figure 1).

The studied dryer type has dimensions of 6.65 m 
in length, 2.50 m in width, and 3.25 m in height, with an 
octagonal shape. It consists of 12 cells that form a layer 
of seeds approximately 45 cm thick. The dryer has a 
total capacity of 17 tons or approximately 300 bags per 
load. It operates using an LPG gas system, where the gas 
passes through burners inside the dryer for heating. It is 
equipped with a 12.5 hp premium W22 model engine 
(1765 rpm rotation, 220–380 V voltage) and 795 mm 
propellers with 37.5° blades. The dryer also includes a 
digital control panel for managing the air temperature 
and gas pressure.

Data on the drying process of various crops such as 
soybeans, corn, barley, sesame, and beans were collected 
for the years 2017 to 2021. The collected drying data 
included information on the total number of dryers in 
operation at each client’s facility, drying time (in hours), 
seed moisture percentage at the entry and exit points of the 
dryer, and humidity differences between the two points. 
Table 1 presents the drying data collected for both types 
of dryers across different crops.

The dataset comprised a total of 2028 data points 
related to drying attributes, emphasizing the importance 
of understanding the drying duration. Information was 
collected on entry and exit times, entry and exit humidity 
in both dryer systems, and temperature. These data were 
subsequently analyzed and compared between the fixed 
and mobile drying systems to establish decision-making 
processes in individual equipment and across the entire 
system.

To facilitate the initial step, artificial intelligence 
and data mining techniques were employed. The input 
data were transformed as per the requirement of the 
software. The raw data were organized and pre-processed 
to ensure accurate input and analysis. In this stage, the data 
received in Excel format (.xls) were processed to make 
them compatible with the software. This involved placing 
all attributes in a single row, with each value placed in 
columns below its respective attribute.



Computer vision by unsupervised machine learning in seed drying process 3

Ciência e Agrotecnologia, 47:e018922, 2023

Figure 1: Schematic representation of drying systems, illustrating the installation of agricultural equipment. 
The fixed dryer is positioned beneath a shed, while the mobile dryer can be located either in the field or on a 
mobile vehicle. (Source: Adapted from Daurana Oliveira).

Table 1: Data on the analyzed drying quantity in the 
systems employed for machine learning integration.

Culture Fixed dryer Mobile dryer
Beans 71 473

Soybeans 115 84
Corn 161 1075

Barley 5 -
Sesame 2 -

Subsequently, the file was converted to .csv 
format, and the dataset was processed using Microsoft 
Windows Notepad. This step required replacing decimal 
“commas” with “periods” and replacing “semicolons,” 
which divided the attribute columns, with “commas.” Any 
lines containing missing or erroneous data, as identified 
during the spreadsheet analysis, were excluded during this 
preliminary processing. The data organization is illustrated 
in Figure 2. 

To in order to use the system type (fixed or 
mobile) as an attribute, the term “fixed” was replaced 
with 1, and “mobile” was replaced with 2. This 
adjustment was necessary because the analysis of the 
algorithms was performed using the Weka software, 

version 3.8.5, which only accepts numeric data for 
attributes when utilizing the K-Means method. A 
clustering process was conducted to identify patterns in 
the dataset. The employed algorithm was the “Filtered 
Clusterer” for data mining. 

The training data consisted of 66% of the dataset 
(1338 randomly selected drying instances). Additionally, 
filters such as “Resample” were applied, and various 
evaluation parameters were used in the mentioned 
algorithms. These parameters included the number of 
repetitions, the number of clusters, and the mathematical 
method used to identify data similarities, which were 
aimed to optimize the results.

The K-means algorithm, a commonly used 
partition-based clustering method, was employed in this 
study. This algorithm determines the closest centroid 
and designates it as the representative for a given 
training set. The K-Means algorithm identifies k clusters 
(C = {c1, ...ck}) from a dataset of n d-dimensional data 
points (D = {x1, ...xn}) by minimizing the squared 
distance between each data point and its nearest 
cluster center (Kumar; Reddy, 2017). Kumar and 
Reddy (2017) proposed an equation known as Squared 
Error Distortion (SED) to quantify this distance, as 
represented by Equation 1.
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                                                                                   (1)

jc  is the mean of the cluster cJ

According to Yao et al. (2013), the K-Means 
clustering algorithm divides the data into pre-defined 
classes by minimizing the error function. This 
algorithm belongs to the category of partitioning 
feature space clustering algorithms, which are widely 
utilized.

To validate outcomes derived from the clustering 
algorithm, the Add Cluster filter was employed. This filter 
introduces a new attribute known as “Cluster” to the 
dataset. This filter utilizes the same algorithm to assign 
each data row to the corresponding cluster, enabling 
the determination of data accuracy in relation to the 
confusion matrix.

The calculation steps performed by the clustering 
algorithm are as follows: First, randomly selects from the 
dataset points as initial centers of the cluster. Secondly, 
the algorithm calculates the distance between each sample 
and the cluster centers, assigning the sample to the closest 
class. Thirdly, based on the clustering results, the algorithm 
recalculates the cluster centers by taking the arithmetic 
mean of all elements. Fourthly, the algorithm repeats this 
calculation method, updating the cluster centers. Fifthly, 
using the updated centers, the algorithm regroups all 
elements in the dataset. These steps are repeated until the 
grouping remains unchanged, at which point the final result 
is considered to be obtained.

RESULTS AND DISCUSSION
The findings of this research can assist in the 

decision-making process through the application of 
artificial intelligence, specifically unsupervised machine 
learning. This involves the identification and classification 
of data pertaining to seed drying into distinct groups. The 
Filtered Clusterer algorithm is employed on the dataset 
of both the fixed and mobile drying systems to perform 
a comprehensive analysis. The filter’s structure is solely 
based on the training data and ensures that the test instances 
are processed without altering their structure (Table 2).

Table 2 and Figure 3 illustrate the distinct 
separation achieved by the filter, resulting in two clusters 
based on the type of drying system used. This demonstrates 
notable differences in drying outcomes between the fixed 
and mobile equipment, with clear distinctions within each 
drying system.

Table 1 reveals a significant difference in the inlet 
and outlet humidity in relation to drying time. The fixed 
dryer achieved faster water removal (4.41 pp/h), even for 
seeds with a high moisture percentage. In contrast, the 
mobile dryer required more time to reduce seed moisture 
and did not meet the desired drying standards of 12% or 
13% for processed crops.

After analyzing the results generated by the Filtered 
Clusterer, it was observed (Figure 3) that scattered data 
points still persisted. Subsequently, the dataset was 
reevaluated with the addition of the “X-Means” algorithm, 
where the software automatically determines the number 
of clusters and iterations.
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Figure 2: Flow diagram illustrating the sequence of data processing steps in the fixed and mobile drying systems.
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storage. The number of dryers during the drying stages also 
influences decision-making, leading to faster processing 
and necessitating efficiency in these drying stages. Figure 4 
and Table 3 highlight the differences in drying efficiency 
between distinct locations and pre-established systems.

Table 3 presents the division into two clusters in 
the fixed drying system, as the dataset contained more 
scattered data. The total number of dryers required for 
water content reduction has minimal influence on this 
stage, as the drying times are comparable. The advantage 
of this dryer lies in its high efficiency, with two key features 
for seed drying: rapid air-drying speed (reaching 26 m/s) 
and suitable temperature (gas combustion at 35 –37 °C).

In this subsequent analysis, the algorithm classified 
the fixed system into three clusters based on the number 
of dryers employed. The first cluster consisted of a higher 
number of dryers, resulting in a shorter drying time for 
reducing a greater water content at the end of the process 
(5.41 pp/h). The second cluster had fewer dryers and a 
lower initial moisture content, resulting in a drying rate 
of 2.03 pp/h. Finally, the third cluster, with fewer dryers 
than the first cluster but exhibiting lower efficiency (3.27 
pp/h), confirms the subpar performance of mobile dryers. 
Overall, the algorithm indicated that to decrease the drying 
time by an average of 5.06 pp/h, an increase in the number 
of dryers is necessary. However, high moisture content 
not only affects the drying process but also increases the 
labor required for all operational steps, highlighting the 
influence of humidity and temperature.

Table 2: Results of data grouping for drying systems based 
on the variables specified in a standardized evaluation 
model. T. dryers represents the algorithm’s predicted total 
number of dryers required to complete the task.

Attribute Cluster 1 Cluster 2
Systems 1 (fixed) 2 (mobile)
T. dryers 5.15 6.06

Duration (h) 01:43 01:55
Humidity entry (%) 19.60 19.68

Output humidity (%) 13.28 14.72

Humidity difference (%) 6.31 4.95

Figure 3: Illustrates the proximity between pairs of calculated data utilizing diverse distance metrics across 
variables. [0] Represents the difference between the fixed and mobile dryer or between cluster 1 and cluster 2. 
The following variables are included: [1] Total dryers (unit); [2] Drying time (h); [3] Inlet humidity (%); [4] Outlet 
humidity (%); and [5] Drying difference between the fixed and mobile systems (%).

Furthermore, the “Resample” filter was utilized to 
guide the software on the ideal number of repetitions for 
training. Ultimately, the classifier demonstrated optimal 
performance in classifying the dataset. However, the 
evaluation of the data using the K-Means model indicated 
that grouping into two classes did not account for all the 
information, resulting in scattered data points (Figure 3). 
The average total number of dryers operating in each 
system indicated similar drying times.

The K-Means model selects random points known as 
centroids from each group, calculates the arithmetic mean, 
and determines the result representing that specific group. 
This approach facilitates the separation of clusters from 
one another (Figure 3). The variables involved in the seed 
drying process provide crucial information for successful 
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Despite using similar training parameters, data 
mining produced different values for the mobile drying 
system. Consequently, increasing the number of dryers 
in the mobile system is essential to enhance its efficiency 
compared to the fixed system. The systems were analyzed 
separately to discern internal patterns and differences, as 
the previous disparities between the systems are already 
known from Tables 2 and 3.

When evaluating the machine learning models 
solely for the datasets from the fixed dryers (Table 4), 
the algorithm generated two clusters based on the “total 

Table 3: Data mining was conducted using the 
Resample filter and the “Filtered Clusterer” + “K-Means” 
algorithms to analyze data from both the fixed and 
mobile systems together. T. dryers represents the 
total number of dryers required to complete the task, 
as predicted by the algorithm.

Attribute Cluster 1 Cluster 2 Cluster 3
System 1 (fixed) 1 (fixed) 2 (mobile)

T. dryers 6.43 3.16 6.11
Duration (h) 01:31 01:47 1:56

Humidity entry (%) 20.32 16.56 19.75
Output humidity (%) 13.23 13.57 14.65

Humidity difference (%) 7.09 2.99 5.10

dryers” attribute. Cluster 1 had twice as many dryers as 
Cluster 2 and exhibited a reduction of 4.27 pp/h in drying 
rate. In contrast, Cluster 2, with half the number of dryers, 
experienced a difference of 4.53 pp/h. These findings 
suggest that doubling the number of dryers does not 
proportionally increase process efficiency. This analysis is 
crucial for understanding the efficiency of the production 
process and the behavior of dryers, as well as for decision-
making regarding modular sets or parallel dryers.

The impact of individual stages in the fixed drying 
system was also examined. The results indicate that the 
segregation reveals a direct relationship between seed 
moisture content and the time required to achieve the ideal 
condition for safe storage (Table 4).

Table 5 presents data from mobile dryers, 
demonstrating that they are less efficient in achieving 
the desired drying condition within a short timeframe 
compared to the fixed system. Cluster 1 and Cluster 
2 exhibit drying rates of 3.55 pp/h and 3.02 pp/h, 
respectively. In this analysis, the most influential 
attribute is the total number of dryers, indicating that 
the mobile drying system identifies similarities based 
on the relationship between the number of dryers. 
Consequently, the drying efficiency of the mobile 
system improves with an increased number of dryers, 
although it requires a longer drying time compared to the 
fixed system. However, the achieved moisture content 

Figure 4: Behavior of data with inter-cluster division in relation to grouping in the fixed (K1 and K2) and mobile 
(K3) systems. [0] Represents the difference between the fixed and mobile dryers or between cluster 1 and cluster 
2. The following variables are included: [1] Total dryers (unit); [2] Drying time (h); [3] Inlet humidity (%); [4] Outlet 
humidity (%); and [5] Drying difference between the fixed and mobile systems (%). “d” denotes the dimensional 
distance between the points, while “K” signifies the grouping.
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does not correspond to the desired temperature (12%), 
necessitating a longer operating time to achieve the target.

Table 4: Data mining conducted with the fixed system 
(System 1) using the “Resample” filter. T. dryers 
represents the algorithm’s predicted total number of 
dryers required to complete the task.

Attribute Cluster 1 Cluster 2

System 1 (fixed) 1 (fixed)

T. dryers 6.20 3.00

Duration (h) 01:03 02:13

Humidity entry (%) 17.80 22.55

Output humidity (%) 13.40 12.88

Humidity difference (%) 4.40 9.66

Significant differences in initial and final moisture 
content between clusters indicate that harvesting seeds with 
higher moisture levels prolongs the drying time. Thus, the 
dryer’s efficiency is more pronounced for crops with moisture 
levels around 18%. Moreover, the fixed dryer allows for 
better operational adjustments, ensuring improved drying 
performance. However, it is essential to analyze other aspects 
such as energy consumption, gas usage, seed physiological 
quality, post-drying effects, and other factors to determine a 
comprehensive cost-benefit ratio. 

Upon processing the drying data from various 
systems, it was crucial to assess the effectiveness of 
machine learning in unsupervised decision-making. The 
evaluation of data results was based on the confusion 
matrix and evaluation metrics (Figure 5 and Table 6) to 
ascertain the accuracy of the applied model. Groupings 
were created using the Add Cluster method, and the 

Table 5: Data mining performed with system 2 
(mobile) using the “Resample” filter. T. dryers is the 
total number of dryers needed to perform the job, as 
predicted by the algorithm.

Attribute Cluster 1 Cluster 2

System 2 (mobile) 2 (mobile)

T. dryers 9.01 4.03

Duration (h) 01:25 02:16

Humidity entry (%) 19.74 19.64

Output humidity (%) 15.30 14.32

Humidity difference (%) 4.44 5.32

K-Means algorithm in conjunction with Filtered Clusterer 
performed further clustering. The software used for cluster 
classification evaluated the effectiveness of the applied 
model by constructing a confusion matrix and calculating 
accuracy metrics. Figure 5 displays the matrices generated 
through the “Classes to Clusters Validation” option, 
including the percentage of incorrectly grouped instances.

Subsequently, the confusion matrix was utilized to 
apply equations that determine the evaluation metrics for 
assessing the model’s learning and efficiency, including 
recall, precision, and accuracy (Table 6). This enables a 
more precise evaluation of the model’s performance in 
grouping data for specific stages of the drying process.

The evaluation metrics revealed high values for the 
clusters, where all parameters surpassed 80% accuracy. 
This outcome confirms that the unsupervised learning 
was well-implemented and contributed to the segregation 
of different types of drying systems, irrespective of the 
influence of environmental conditions, particularly the 
water content present during harvest. Recognizing that 
both drying processes can handle seeds with a high 
moisture percentage, it becomes necessary to raise the 
temperature and power of the dryer. Therefore, this type 
of dryer is recommended for drying grains when there is 
a need to increase the temperature and flame intensity. 

Drying is necessary to handle and store grains and 
seeds in order to maintain their quality over extended 
periods and preserve reproductive material from season 
to season (Moreno et al., 2022). Analyzing and evaluating 
the efficiency of agricultural equipment for seed drying 
is crucial for long-term safe storage. It is important to 
note that the drying equipment should be set at optimal 
temperatures for the specific cultivars. Viability is the most 
critical factor to maintain during the drying and subsequent 
storage of seeds (Maqueda et al., 2018).

The data analysis reveals that the evaluated dryer 
efficiently reduces water content within a few working 
hours. Additionally, using multiple dryers in the process 
helps expedite the drying of products in high demand. 
Therefore, monitoring water content during harvest is 
essential. The fixed system dryers demonstrate high 
efficiency in reducing humidity for the collected cultivars. 
This finding emphasizes the time required to reduce 
humidity between the presented systems (fixed and 
mobile). However, Peske et al. (2019) emphasizes that a 
decrease in moisture content of 1.2 pp/h can damage seeds. 
Thus, decisions regarding moisture levels should be made 
in the field during harvest, considering that harvesting 
seeds with moisture above 16% increases time, requires 
more equipment, and compromises the initial seed quality.
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Figure 5: Confusion matrix showing the clustering prediction results between clusters in the drying system.

Table 6: Evaluation metrics for different approaches to 
grouping the drying systems.

Drying system Evaluation metrics (%)

Recall Precision Accuracy Clusters

Fixed
0.987 0.974 0.924 1

1.000 1.000 1.000 2

Mobile
0.987 0.974 0.924 1

1.000 1.000 1.000 2

Fixed + mobile
1.000 1.000 1.000 1

1.000 1.000 1.000 2

Fixed + mobile 
+ 3 group 

1.000 1.000 0.930 1

0.937 0.922 0.930 2

0.887 0.908 0.930 3

The mobile system exhibits lower efficiency in 
the seed drying process, indicating that the field dryer is 
susceptible to environmental variations, directly affecting 
the drying process and resulting in a longer time to reduce 
water content in seeds. Conversely, the fixed drying system 
consistently demonstrates superior results, irrespective of 

the analysis procedures employed. The K-Means algorithm 
proves to be the most effective in segregating the data, 
enabling the observation of more dispersed data within 
the same seed drying system.

The market for drying equipment focuses on 
achieving the shortest drying time for seeds and grains. 
However, it is important to consider the cost-effectiveness 
for producers. Striking a balance between cost reduction 
and effectiveness is crucial in designing a simple yet 
highly productive system that minimizes the exposure of 
the product to high temperatures. Various drying methods, 
including natural air, infrared, heated air, vacuum, freezing, 
fluidized bed, and microwave drying, have been employed 
for seed preservation, particularly for vegetable species. 
Among these methods, heated air drying is preferred due to 
its simplicity and cost-effectiveness (Dhurve et al., 2022).

Drying serves as an effective preservation technique 
by inhibiting the growth of microorganisms, reducing 
moisture-related degradation reactions (Rashmi; Negi, 
2020), and ensuring the maintenance of seed physiological 
quality. The analysis of data allows us to comprehend 
the dynamics of unsupervised learning in post-harvest 
stages, where algorithmic approaches can interact with 
both computational and human agents (Holzinger, 2016), 
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making it a promising tool to assist seed post-harvest 
processes.

The algorithm, in conjunction with filters, 
demonstrates efficiency in unsupervised classification by 
identifying and minimizing inter-cluster similarities within 
the fixed system’s different classes in the dataset. Cluster 
analysis, as emphasized by Gersho and Gray (1992), plays 
a significant role in various applications, such as vector 
quantization and data compression. The performance of 
the K-means algorithm can be enhanced by reducing the 
number of distance calculations involved in finding the 
cluster center closest to a point (Kumar; Reddy, 2017); 
thus, grouping the data closer to the centroid, considering 
that drying data exhibit random points in dimensional 
space.

The machine learning methods employed in this 
study exhibited promise in classifying the quality of 
seed-drying methods. The technique of drying with hot air 
flow is cost-effective and offers several benefits, such as 
hygiene, uniform distribution, agility, and the production of 
high-quality dry products (Onwude; Hashim; Chen, 2016). 
However, it is important to note that seeds with extremely 
low water content are more vulnerable to mechanical 
damage (breakage and cracks) during harvesting and 
processing operations (Medeiros et al., 2020a).

Other studies, such as Gadotti et al. (2022a, 2022b), 
Medeiros et al. (2020b), Pinheiro et al. (2022, 2021), have 
also highlighted the use of artificial intelligence in the 
seed sector. Producers require decision-making tools for 
allocating higher-quality seeds, as mandated by Brazilian 
seed legislation. Therefore, comprehending factors that 
facilitate proper allocation, speed, and cost-effectiveness 
poses a challenge in the seed sector. In this regard, the use 
of machine learning as an aid in decision-making becomes 
fundamental for the industry.

According to André et al. (2022) and Gadotti 
et al. (2022b), the utilization of artificial intelligence 
techniques for data modeling offers a promising alternative 
to address gaps where conventional statistics fail to 
produce satisfactory forecasting outcomes for seed quality 
assessment. Furthermore, analyzing different drying 
methods can aid in selecting appropriate equipment that 
yields satisfactory results and ensures secure storage of the 
final product, thereby extending its quality and lifespan.

The findings indicate that the fixed system is 
more suitable for expediting the drying process, as it can 
eliminate a larger amount of water in a shorter duration 
compared to the mobile system. However, the mobility of 
the dryer facilitates equipment installation on the premises, 
as it can be conveniently loaded onto a trailer.

The employment of machine learning techniques, 
through an unsupervised process, has enabled informed 
decision-making by identifying avenues to reduce 
drying time in both types of dryers. Nevertheless, certain 
adjustments need to be addressed and resolved in seed 
drying, particularly with regard to the exposure time 
of seeds to high temperatures. Technical issues can be 
rectified during equipment manufacturing, especially 
when dealing with mobile dryers. These dryers are 
not recommended for seed drying, as seeds are living 
organisms that require careful handling during the drying 
process, as an increase in process temperature may 
adversely impact their viability.

Improving the performance of the drying 
equipment, such as the fan curve, pressure and flow rate, 
and gas consumption, can enhance its efficiency as an 
effective seed drying apparatus. However, the benefits 
observed in both drying systems are only applicable to 
grain drying in practical applications. The outcomes are 
solely based on the provided data and the specific dryer 
model used, and the conditions may not be applicable to 
other manufacturers.

CONCLUSIONS
The unsupervised processing model exhibited a 

remarkable level of data accuracy, enabling the algorithm 
to acquire knowledge about the rules governing drying 
processes in different dryers within fixed and mobile 
systems. Moreover, this approach effectively demonstrates 
the algorithm’s ability to classify the dataset and identify 
that drying time increases with water content and the 
installation environment of the equipment.
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