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ABSTRACT
Digital elevation models (DEM) used in digital soil mapping (DSM) are commonly selected based on measures and indicators (quality 
criteria) that are thought to reflect how well a given DEM represents the terrain surface. The hypothesis is that the more accurate a DEM, 
the more accurate will be the DSM predictions. The objective of this study was to assess different criteria to identify the DEM that delivers 
the most accurate DSM predictions. A set of 10 criteria were used to evaluate the quality of nine DEMs constructed with different data 
sources, processing routines and three resolutions (5, 20, and 30 m). Multinomial logistic regression models were calibrated using 157 
soil observations and terrain attributes derived from each DEM. Soil class predictions were validated using leave-one-out cross-validation. 
Results showed that, for each resolution, the quality criteria are useful to identify the DEM that more accurately represents the terrain 
surface. However, for all three resolutions, the most accurate DEM did not produce the most accurate DSM predictions. With the 20-m 
resolution DEMs, DSM predictions were five percentage points less accurate when using the more accurate DEM. The 5-m resolution was 
the most accurate DEM overall and resulted in DSM predictions with 44% accuracy; this value was equal to that obtained with two coarser 
resolution, lower accuracy DEMs. Thus, identifying the truly best DEM for DSM requires assessment of the accuracy of DSM predictions 
using some form of external validation, because not necessarily the most accurate DEM will produce the best DSM predictions.

Index terms: Multinomial logistic regression; predictor variables; collinearity; Shannon entropy.

RESUMO
Modelos digital de elevação (MDE) usados no mapeamento digital de solo (MDS) são comumente selecionados com base em medidas 
e indicadores (critérios de qualidade) que refletem como um determinado MDE representa a superfície da paisagem. A hipótese é que, 
quanto mais acurado for um DEM, mais acurada serão as predições do MDS. O objetivo deste estudo foi avaliar diferentes critérios para 
identificar o MDE que fornece as predições mais acuradas do MDS. Um conjunto de 10 critérios foi utilizado para avaliar a qualidade de 
nove MDEs construídos com diferentes fontes de dados, rotinas de processamento e três resoluções (5, 20 e 30 m). Modelos de regressão 
logística multinomial foram calibrados usando 157 observações de solo e atributos de terreno derivados de cada MDE. As predições de 
classe de solo foram validadas usando validação cruzada leave-one-out. Os resultados mostraram que, para cada resolução, os critérios 
de qualidade são úteis para identificar o MDE que representa mais precisamente a superfície da paisagem. No entanto, para todas as três 
resoluções, o MDE mais acurado não produziu as predições mais acuradas do MDS. Com os MDEs de resolução de 20 m, as predições do 
MDS foram cinco pp menos acuradas ao usar o MDE mais acurado. A resolução de 5 m foi o MDE mais acurado e resultou em predições 
com 44% de acurácia; este valor foi igual ao obtido com duas resoluções mais grossas, MDEs com menor acurácia. Assim, a identificação 
do melhor MDE para o MDS exige a avaliação da acurácia das predições do MDS usando alguma forma de validação externa, porque não 
necessariamente o MDE mais acurado produzirá as melhores predições do MDS.

Termos para indexação: Regressão logística multinomial; variáveis preditoras; colinearidade; entropia de Shannon.

INTRODUCTION
Digital soil mapping (DSM) uses statistical models to 

quantify the correlation of soil attributes with environmental 
conditions to make predictions at locations not sampled. In 
these models, soil attributes in a particular location, whether 
continuous or categorical, are taken as random dependent 
variables. Approximate information about soil-forming 

factors is included in these models as deterministic predictor 
variables, for example, digital elevation models (DEM) and 
satellite images and indexes and attributes derived from them, 
and categorical maps depicting the geology, geomorphology, 
and land use. The large number and variety of deterministic 
predictor variables usually enables DSM models to explain 
a large proportion of the soil spatial variation, e.g. more than 
3/4 (Heung et al., 2016; Hengl et al., 2017).
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Predictor variables are often chosen based on their 
availability, the required level of spatial detail of DSM 
predictions, and/or knowledge of their ability to explain soil 
spatial variation (Miller et al., 2015). For example, geological 
and climatic data, despite the strong conceptual correlation 
with soil attributes, are frequently generalized, thus rarely 
used if DSM predictions with fine spatial detail are required 
(ten Caten et al., 2012). Most DSM projects prioritize satellite 
images and DEMs, which are available at multiple levels of 
spatial detail and have excellent spatial coverage (ten Caten 
et al., 2012; Vasques; Grunwald; Myers, 2012). However, 
a major difficulty is the selection of a single - optimally the 
best - satellite image and DEM among the many available 
for a given DSM project. This is because these data carry 
unknown and varying errors that could reduce the correlation 
with soil attributes and thus affect the accuracy of DSM 
predictions. These errors arise from the complex interplay 
between the methods of data generation, analytical procedures 
and characteristics of each site (Fisher; Tate, 2006; Florinsky, 
1998; Hirt; Filmer; Featherstone, 2010).

There are several strategies to select a single satellite 
image and DEM for a DSM project. In the case of DEMs, 
a popular strategy is to assess its quality (Baltensweiler et 
al., 2017; Cavazzi et al., 2013; Chagas et al., 2010; Moura-
Bueno et al., 2016; Neumann; Roig; Souza, 2012; Penížek 
et al., 2016; Pinheiro et al., 2012). In general, the DEM´s 
quality is defined by combining various indicators and 
measures, presumably related to the capacity of a DEM and 
derived attributes to represent terrain surface features. One 
example is vertical error, a measure computed at a finite 
number of ground control points and confronted with the 
maximum DEM error allowed by legislation or specified by 
the DEM manufacturer (Baltensweiler et al., 2017; Chagas 
et al., 2010; Nelson; Reuter; Gessler, 2009). Some indicators 
are agreement among original and derived stream network 
and contour lines, and configuration of derived contribution 
basins (Chagas et al., 2010; Neumann; Roig; Souza, 2012; 
Pinheiro et al., 2012). As additional criteria evaluation of 
number and extent of spurious artifacts, and descriptive 
statistics of DEM and derived attributes (Cavazzi et al., 
2013; Chagas et al., 2010; Penížek et al., 2016; Pinheiro et 
al., 2012; Thompson; Bell; Butler, 2001).

Despite their widespread use, there is little 
empirical evidence that a DEM selected using any of the 
quality criteria produces more accurate DSM predictions 
than the rejected DEMs. This is because the predictions 
of DSM models calibrated using alternative, competing 
DEMs are seldom validated. The objective of this study 
was to assess if the DEM quality criteria identify the single 
DEM that delivers the most accurate DSM predictions as 

assessed via external validation. In this sense, a case study 
was carried out in an area of moderately rugged terrain, 
with variation of land use/cover, in southeastern Brazil.

MATERIAL AND METHODS

Study area and soil data

The study area is located in the municipality of 
Pinheiral (São José do Pinheiro Farm), Médio Paraíba 
do Sul region of Rio de Janeiro State, Southeastern Brazil 
(Figure 1). The area has 1462 ha and occupies the lower 
section of the Ribeirão Cachimbal watershed, a tributary 
of the Paraíba do Sul River. The climate is of Cwa type, 
with a warm and rainy summer and a dry winter with mild 
temperatures (Alvares et al., 2014). Annual rainfall is 
around 995 mm with average annual temperature of 20.9 °C 
(Portilho et al., 2011). It is inserted in the Atlantic Forest 
Biome, and original vegetation was submontane seasonal 
semi-deciduous forest. Elevations vary from 350 to 558 m 
a.s.l., with strongly undulated relief (slopes up to 75%). 
The geology shows dominance of metamorphic rocks 
(porphyroclastic microcline gneiss, biotite-muscovite 
gneiss and biotite gneiss), plus basic dykes (gabbro and 
basalt) and Tertiary (fluvial) and Quaternary (colluvial-
alluvial) sediments (Sanson; Ramos; Mello, 2006).

Soil dataset is comprised of 157 point-support 
observations, yielding a moderately high sampling density 
(one observation per 10 ha, Figure 1). This includes 
legacy data from previous studies, a soil survey (27 
observations), and data recorded in field trips of a graduate 
course of UFRRJ in the years of 2004, 2012, and 2013 (35 
observations). Other 95 observations were obtained just 
for this study. Their location was defined intentionally, 
in a tacit manner, to cover most of the geological and 
geomorphological variation (pedological demand), and to 
have about the same number of observations for each soil 
taxon (statistical demand). Out of these, 20 complete soil 
profiles were described, analyzed and classified according 
to Brazilian soil survey standards. The remaining 75 
observations were made with an auger and the soil taxon 
inferred from the interpretation of soil attributes and 
landscape conditions using tacit knowledge. The data is 
available at the Free Brazilian Repository for Open Soil 
Data (www.ufsm.br/febr) with identification code ctb0002.

Thirteen soil classes were identified in the study area 
(Figure 2). Due to the relatively small sample size (157), the 
resulting number of observations in some soil classes was 
too low (< 9) to calibrate the DSM models. Thus, soil classes 
were grouped based on the similarity of their definitions, 
resulting in six categories that were used for modeling.
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Figure 1: Location of study area in Southeastern Brazil, municipality of Pinheiral (inset map, blue star), and spatial 
distribution of point elevation (green – calibration; red – validation) and soil data (black). The drainage network 
and DEM background are suggestive of the current landscape setting.

Figure 2: Distribution of soil classes and soil groups of the 157 soil profiles observed in the study area according 
to the Brazilian Soil Classification System (SiBCS). Classes Latossolo Amarelo (LA) and Latossolo Vermelho-Amarelo 
(LVA), and Argissolo Amarelo (PA), Argissolo Vermelho (PV) and Argissolo Vermelho-Amarelo (PVA), were grouped at the 
highest category level of the SiBCS. Chernossolo Argilúvico (MT), Nitossolo Háplico (NX) and Neossolo Regolítico (RR) 
were grouped based on commonality of some chemical, physical and/or morphological attributes, and the same 
parent material. Cambissolo Flúvico (CY) and Neossolo Flúvico (RY) all originated from fluvial sediments. Planossolo 
Háplico (SX) and Gleissolo Háplico (GX) were grouped based on their limited drainage, and clay illuviation and 
gleization processes, respectively. The Cambissolo Háplico (CX) class comprises soils with variable attributes, and 
greatest number of observations in the area.
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Elevation data

To assess whether the quality criteria allows to 
selecting the DEM which results in most accurate DSM 
predictions, an elevation database was built using data 
collected in the field and other freely available on the 
Internet. These data were used to construct DEMs with 
three spatial resolutions (5, 20, and 30 m) using different 
processing routines to simulate scenarios of DEM quality 
(Table 1). The simulated scenarios, denoted by ‘a’, ‘b’, 
and ‘c’, correspond to conditions of high, medium and 
low expected capacity of a DEM to accurately depict 
the current terrain surface conditions. For each spatial 
resolution, this was achieved by using different quantities/
levels of information to produce a DEM, e.g. DEM5a > 
DEM5b > DEM5c (Table 1). The data were handled using 
the Universal Transverse Mercator (UTM) projection, zone 
23S, with horizontal datum WGS-84, while maintaining 
the original vertical datum.

The elevation data sources and processing are 
described below.
POINTS. Ground control points (86) measured in the 
field using a L1/L2 GNSS static receiver, whose location 
coincided with soil sampling locations obtained in this 
study. The elevation data were post-processed to achieve 
centimeter accuracy in orthometric elevation values 
using as vertical datum the tide gauge in Imbituba, Santa 
Catarina, Brazil. A set of 18-ground control points were 
reserved for later use as DEM validation data. They were 

selected as to represent the range of elevation values in 
the study area with a good spatial distribution given by 
the available data. The remaining 67-ground control points 
were used for DEM preparation.
IBGE. Cartographic database in vector format prepared 
by the Instituto Brasileiro de Geografia e Estatística 
(IBGE) using plano-altimetric maps at a cartographic scale 
of 1:50000 (sheets Volta Redonda SF-23-Z-A-V-2 and 
Piraí-SF-23-Z-A-VI-1). It includes contour lines with an 
equidistant vertical interval of 20 m, and stream network. 
The contour lines and stream network, the latter assigned 
the correct flow direction, plus 67 ground control points, 
were used to generate DEMs at the three spatial resolutions 
evaluated. For this procedure, it was used the ANUDEM 
algorithm (Hutchinson, 1989) implemented in ArcGIS.
RJ-25. DEM of the RJ-25 Project with spatial resolution 
of 20 m (sheets 27432ne and 27441no). The DEM was 
obtained by analytical photogrammetric processing 
of air-borne photographs with a cartographic scale of 
1:25000 and spatial resolution of 0.70 m. The DEM 
was interpolated to a spatial resolution of 5 m using the 
ANUDEM algorithm without the stream network data. 
From this DEM, the contour lines with an equidistant 
vertical interval of 10 m were extracted, and subsequently 
smoothed out. These contour lines, plus the 1:50000 IBGE 
stream network data and 67 ground control points (see 
above), were used to generate DEMs at the three evaluated 
spatial resolutions.

Table 1: Digital elevation models prepared with different spatial resolutions using various data sources and 
processing routines to simulate scenarios of digital elevation model data quality for digital soil mapping.

Resolution(m) Scenario¹ Code Processing routine²

5 a DEM5a ANUDEM (CV 10 + HD + PTS)

b DEM5b ANUDEM (CV 20 + HD + PTS)

c DEM5c ANUDEM (RJ25)
20 a DEM20a ANUDEM (CV 10 + HD + PTS)

b DEM20b ANUDEM (CV 20 + HD + PTS)
c DEM20c RJ25

30 a DEM30a ANUDEM (CV 10 + HD + PTS)
b DEM30b ANUDEM (CV 20 + HD + PTS)
c DEM30c TOPODATA

1 Simulated scenarios of DEM quality for DSM, henceforth denoted by ‘a’, ‘b’, and ‘c’, correspond to conditions of high, medium 
and low expected capacity of a DEM to accurately depict the current terrain surface conditions, respectively.
2 CV20 = 20-m equidistant contour lines from the IBGE database. CV10 = 10-m equidistant contour lines derived from the RJ-25 
Project DEM after interpolation to 5 m spatial resolution. HD = Stream network data from the IBGE database. PTS = elevation 
data from 67 ground control points. RJ25 = DEM data from the RJ-25 Project. TOPODATA = elevation data from the TOPODATA 
Project. ANUDEM = program developed by Hutchinson (1989) for creation of hydrologically correct DEMs.
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TOPODATA. The DEM from the TOPODATA Project is 
a product of the post-processing of the original Shuttle 
Radar Topography Mission (SRTM) DEM by the 
Instituto Nacional de Pesquisas Espaciais (INPE). The 
post-processing was done to fill data gaps and to refine 
the SRTM DEM spatial resolution from 90 m to 30 m by 
using ordinary kriging (Valeriano; Rossetti, 2012). Sheet 
22S45_ZN was used in this study.

A set of 10 quality criteria (Table 2) were used 
to assess the quality of three DEMs in each spatial 
resolutions (Figure 3) (Baltensweileret al., 2017; Cavazzi 
et al., 2013; Chagas et al., 2010; Moura-Bueno et al., 
2016; Neumann; Roig; Souza, 2012; Penížek et al., 
2016; Pinheiro et al., 2012; Thompson; Bell; Butler, 
2001). Descriptive statistics are minimum, maximum, 
mean, and standard deviation of the elevation. Mean 
error (ME), root mean square error (RMSE) and median 
absolute error (MDAE) of elevation were computed at 
18 external ground control points using,

1

n
ii

d
ME

n
 

2
1

n
ii

d
RMSE

n
 

  MDAE  imedian d median d 

where d is the difference between the DEMs evaluated 
and the ground control points and n is the number of 
elevation points tested. The ideal condition would 
be ME equal to 0 and RMSE and MDAE as lower as 
possible. MDAE is particularly interesting because it 
is robust to outliers. Also, the normal distribution of 
the errors was evaluated as suggested by Höhle and 
Höhle (2009).

(1)

(2)

(3)

Table 2: Quality criteria used to select digital elevation models for digital soil mapping.

Quality criteria Description and interpretation Reference

Descriptive
statistics

of elevation

Summary statistics of the elevation values across 
the study area. Shows the overall difference 

between the DEMs and the possible implications 
for the representation of the terrain. It is expected 
that DEMs that represent the surface with highest 
accuracy will have a greater amplitude of values. 

Some studies suggest that the greater the amplitude 
of elevation values, the lower DEM error statistics.

Chagas et al. (2010);
Moura-Bueno et al. (2016); 

Neumann et al. (2012);
Penížek et al. (2016);
Pinheiro et al. (2012)

Error statistics

It is a comparison between the elevation values 
sampled from a DEM against ground control points 

(reference). Evaluates the vertical accuracy of the 
DEMs. It is expected that DEMs with lower values 

of root mean square error (RMSE) and mean error 
(ME) close to the zero more accurately represent the 

actual terrain surface.

Chagas et al. (2010);
Baltensweiler et al. (2017);
Moura-Bueno et al. (2016);

Thompson, Bell
and Butler (2001)

Spurious
depressions

A spurious depression is a region of cells that drain 
inwards to a pit. The presence of a great number of 
large spurious depressions can significantly affect 

derivation of drainage network and characterization 
of terrain surface, consequently, the soil-landscape 

relationship in DSM modelling.

Chagas et al. (2010);
Moura-Bueno et al. (2016);

Pinheiro et al. (2012)

Slope classes

The distribution of slopes, according to predefined 
classes, is useful to identify the main differences 

between DEMs and possible implications for terrain 
representation. The evaluation of DEMs based on 

slope becomes more comprehensible when they are 
grouped into class intervals commonly used in soil 
characterization (Santos et al., 2015). It is expected 

that more accurate DEMs have a larger range of 
values and a larger frequency of steep slopes.

Pinheiro et al. (2012)
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Spurious depressions were quantified in terms of 
number of depressions, number of cells, and relationship with 
total area. Slope classes were defined according to Santos et 
al. (2015), i.e. 0-3, 3-8, 8-20, 20-45, 45-75, and > 75%.

A commonly used quality criteria is the agreement 
between stream network and contour lines derived from 
the DEMs and some reference dataset, where the closer the 
agreement the higher the DEM quality (Chagas et al., 2010; 
Neumann; Roig; Souza, 2012; Pinheiro el al., 2012). This 
quality criterion was not used in this study because it would 
require making the strong assumption that a given dataset 
chosen as reference was an accurate representation of the 
terrain surface. Besides, the literature shows that its usage 
has consistently produced biased results. This is because the 
reference stream network and contour lines are generally used 
as data sources to produce DEMs - due to data availability 
limitations. Naturally, the stream network and contour lines 
derived from these DEMs have always presented a higher 
agreement with the reference dataset.

Predictor variables

A set of 13 terrain attributes was derived from each 
DEM, maintaining the DEM resolution, using SAGA GIS 
default settings. They are: catchment area (m²), aspect 
(degree), flow direction (dimensionless), vertical distance 
to stream network (m), stream network base level (m), 
relative slope position (dimensionless), profile curvature 
(m-1), plan curvature (m-1), slope (degree) elevation (m), 
topographic factor of the Universal Soil Loss Equation 
(dimensionless), convergence index (%), and topographic 
wetness index (dimensionless). The aspect, being a 

circular variable, was transformed to North exposition 
(dimensionless).

The five bands of a RapidEye satellite image (17 
August 2011), provided by Ministério do Meio Ambiente 
(MMA), were also used as predictor variables. The image 
was corrected for atmospheric effects using the atmospheric 
radiative transfer model 6S (Antunes; Debiasi; Siqueira, 
2014). The bands were used to generate the Normalised 
Difference Vegetation Index (NDVI) and the Soil Adjusted 
Vegetation Index (SAVI) predictor variables.

Evaluation of gains in DSM predictions

The capacity of each DEM in accurately making 
soil predictions was evaluated by calibrating multinomial 
logistic regression (MLR) models. The MLR is an extension 
of the binary logistic regression that handles more than 
two categories in the dependent variable. In this study, the 
dependent random variable C is composed of groups of 
soil classes and contains k= 6 categories (Figure 2). The 
correlation between predictor variables and probability of 
occurrence of each of the k classes of the dependent variable 
was quantified. The logistic function is represented by:

Figure 3: Flowchart of compatibility between the evaluation of DEMs that represent different scenarios and 
resolutions, and evaluation of predictions in the DSM using each DEM.

           /  ' ,   1,  ,  1,j j k j jlogit s log s s x s j k         (4)

Where logitj(s) is the natural logarithm of the ratio between 
the probability πj(s) that a given soil observation belongs to 
category j, subject to the values of the p predictor variables 
contained in the vector x(s), and the probability πk(s) that 
that soil observation belongs to category k taken as reference 
(Agresti, 2002). 
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In this study, the reference category was the CX 
soil class group. The intercept of the logit model estimated 
for category j is given by αj, while β’j is a vector with the 
coefficients estimated for each of the p predictor variables.

Two groups of m = 10 MLR-models were calibrated 
using two different strategies. The first contained all predictor 
variables (complete version). The second had a subset of the 
predictor variables selected as to reduce collinearity (reduced 
version). The criteria used to select predictor variables was 
the absolute bivariate correlation, |r|, with the goal of keeping 
only predictor variables with |r| < 0.90.

For both complete and reduced versions, a MLR-
model taken as baseline was calibrated using only the 
bands of the RapidEye sensor and derived indexes, p = 
7; while the reduced version used bands 1 and 5 and the 
NDVI, p = 3. The other nine models, in the complete 
and reduced versions, were calibrated by adding terrain 
attributes derived from each of the nine DEMs to the 
baseline model, totaling p = 20 and p = 13 predictor 
variables, respectively. For all models, terrain attributes 
selected for the reduced strategy were: elevation, slope, 
north exposition, convergence index, catchment area, 
topographic wetness index, stream network base level, 
profile and plan curvature, and flow direction.

All MLR-models were evaluated using as quality 
measure the overall accuracy. This quantity measures the 
proportion of correct classifications made by a MLR-
model. The calibration accuracy was calculated by cross-
tabulating observed and fitted values - confusion matrix 
- of each calibrated MLR-model, while the validation 
accuracy was calculated by cross-tabulating observed 
and predicted values - error matrix - of a leave-one-out 
cross-validation. For the latter, one observation was 
temporarily removed from the dataset to be used as a 
validation observation. Each MLR-model was calibrated 
with remaining observations and used to predict the 
category of the validation observation. This procedure 
was repeated until all observations, n = 157, had been 
used once as validation observation. The calibration and 
validation overall accuracy was given by:

the MLR-models calibrated with all predictor variables. 
From the baseline MLR-model, it was determined the 
relative gain of using the terrain attributes as predictor 
variables. By comparing calibration against validation 
accuracy, it was evaluated the sensitivity of MLR-models 
to the calibration dataset, including soil observations and 
predictor variables with strong collinearity. The same 
procedure was adopted for analyzing the MLR-models 
calibrated with the reduced set of predictor variables. 
Comparison of the overall accuracy of MLR-models, 
calibrated using the complete and reduced set of predictor 
variables, was used to assess importance of reducing 
collinearity between predictor variables.

Finally, the set of MLR-models with superior leave-
one-out cross-validation results were used to predict the 
probability of occurrence of each of the k classes of the 
random categorical variable C in a regular grid of points 
with 5-m separation distance covering the entire study area. 
The uncertainty of the spatial prediction of C at a given 
spatial location s was quantified using the Shannon entropy:
where  (ci, s) is the estimated probability that the random 
variable C, at location s, takes the value ci among the k 
possible values (Agresti, 2002). The usage of logarithm 
with base k scales the value of H(s) between 0 and 1, 

Where E is the confusion or error matrix of dimensions k 
x k, respectively.

The influence of DEM quality on the overall 
accuracy of digital soil maps was evaluated in a series of 
steps. The first, calibration and validation accuracies among 

(5)

       
1

, ,
k

i k i
i

H s c s log c s 


  (6)

where 0 means no conditional uncertainty - one of the k 
categories has probability of occurrence equal to 1, and 
1 the maximum conditional uncertainty - all k categories 
have equal probability of occurrence.

RESULTS AND DISCUSSION

DEM characteristics and quality for DSM

Overall, the evaluation of DEM characteristics and 
quality for DSM matched those from recent literature. For the 
spatial resolutions tested, the DEMs generated using IBGE 
database (DEM5b, DEM20b and DEM30b) showed values 
of minimum elevation smaller than other DEMs (Table 3). 
Meanwhile, larger minimum values were observed in the 
DEMs generated without ground control points (DEM5c, 
DEM20c and DEM30c). The maximum elevation value 
showed little variation between resolutions and, in general, 
DEMs using IBGE database (scenario ‘b’) showed the 
smallest maximum values. The lowest mean elevation 
values were observed in scenario ‘b’, around 402 m, while 
in scenarios ‘a’ and ‘c’ it was about 409 m. The same is true 

1

k
ijiA

n
  E
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for the standard deviation that was 37.3 m in scenario ‘b’ 
and 38.9 m in scenario ‘a’. The greatest variation in standard 
deviation between resolutions for scenario ‘c’ is due to the 
different data source for this scenario. For ‘b’ and ‘c’ there is 
practically no difference between resolutions. Overall, DEM 
resolution influence on the descriptive statistics was little. In 
general, the ground control points separate for validation have 
descriptive statistics close to those for the DEMs.

As all the errors showed a normal, thus there is no 
bias in using criteria like RMSE and ME to evaluate errors 
(Höhle; Höhle, 2009). These are the two most commonly 
used measures of DEM accuracy (Fan; Atkinson, 2015). 
For all three spatial resolutions, the DEMs generated from 

scenario ‘a’ had smaller RMSE and ME closer to zero. 
MDAE followed the same pattern except for resolution of 
30 m. DEM20c also had a small ME, but it was associated 
with large RMSE and MDAE bigger the scenario ‘a’. Of the 
two DEMs available on the web, TOPODATA (DEM30c) 
presented RMSE, MDAE and ME larger than the RJ25 
(DEM20c). All DEMs overestimated the elevation values in 
3.6to 6.6 m. As for the descriptive statistics, the resolution 
had little influence on the error measures.

Within each resolution, there was higher incidence 
of spurious depressions in scenario ‘c’, i.e. without use 
of stream network data and/or hydrologically consistent 
interpolation algorithm (Table 4).Without the use of 

Code
Descriptive statistics Validation

Minimum Maximum Mean SD ME RMSE MDAE
DEM5a 347.0 564.9 408.5 38.9 4.1 7.1 4.3
DEM5b 339.6 548.1 402.1 37.2 4.4 10.1 7.0
DEM5c 360.6 563.3 409.1 37.8 4.6 7.4 5.6

DEM20a 351.6 564.8 408.3 38.9 3.6 6.6 3.7
DEM20b 336.0 548.1 402.1 37.3 3.9 9.2 7.6
DEM20c 361.0 566.0 409.2 38.1 3.6 9.4 5.4
DEM30a 353.6 565.6 408.0 38.9 3.6 7.0 4.8
DEM30b 338.2 548.5 401.9 37.3 4.7 9.8 4.2
DEM30c 360.0 560.0 410.1 36.4 6.6 10.8 8.9

GCP 358.2 476.5 401.6 38.9 ------ ------ ------

Code Number of depressions Number of cells Relationship with total area (%)
DEM5a 101 202 0.03
DEM5b 57 114 0.02
DEM5c 978 1954 0.33

DEM20a 32 64 0.18
DEM20b 36 72 0.20
DEM20c 103 548 1.50
DEM30a 15 32 0.20
DEM30b 22 46 0.28
DEM30c 57 269 1.66

Table 3: Descriptive statistics (minimum, maximum and mean values, and standard deviation), mean error (ME), 
root mean square error (RMSE) and median absolute error (MDAE) of each digital elevation model evaluated 
(unit: meters). The three lowest values of ME, RMSE and MDAE are in boldface.

Note: SD = standard deviation; GCP= Ground control points (validation, 18 points).

Table 4: Number of spurious depression and cells involved and the relationship of depressions with the total 
area for each digital elevation model evaluated. The lowest values in each resolution are in boldface.
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smoothing interpolator, DEMs derived from remote 
sensors carry with them, noise inherent to data collection 
method (Hengl; Gruber; Shestha, 2004).Consequently, 
this scenario resulted in larger numbers of cells involved 
and larger surface area of depressions in relation to 
total area. DEMs from scenario ‘a’, which used 10-m 
equidistant contour lines, showed a trend towards better 
(smaller) values. However, within each resolution, results 
for DEMs of scenarios ‘a’ and ‘b’ were only slightly 
different. The influence of the resolution was different 
from that observed in the descriptive statistic. Increasing 
the resolution produced a considerable decrease in the 
number of depressions and an increase of their size. This 
is due to the smoothing effect of having larger pixels.

The derived slope surfaces were considerably 
influenced by the spatial resolution in all three data 
scenarios (Figure 4). DEM5a, DEM5b, and DEM20cwere 
the only DEMs that yielded slopes >75%. Likewise, 
the resolution and scenarios influenced the relative 
distribution of slope classes. As the resolution increased, 
there was a decrease in the proportion of the steep slope 
class (45-75%), resulting in increasing the slopes between 
20 and 45%. The same happened with scenarios, except 
for the resolution of 20 m, where scenario ‘c’ tends to 
produce a lower proportion of the steep-slope class. The 
plain class (0-3%) showed larger proportion in DEMs 
derived from scenario ‘b’ and smaller for scenario ‘a’ 
DEMs. The strongly sloping class (20-45%), except 
for DEM30c, showed the largest proportion, and it was 
largest in DEM5b.

When all cartographic data (hydrography and 
contour lines) and accurate available ground points 
are used in conjunction with hydrologically consistent 
algorithms, the ability of the resulting DEM in accurately 
represent morphology of the modeled terrainsurface 
(Tables 3, 4 and Figure 4) is better. This corroborates some 
literature results (Chagas et al., 2010; Moura-Bueno et al., 
2016; Neumann; Roig; Souza, 2012; Pinheiro et al., 2012). 
Moreover, the finer the DEM spatial resolution the higher 
the accuracy of elevation values.

Based on the concept of DEM quality above, for 
each spatial resolution, DEMs of scenario ‘a’ can be 
considered as having superior quality, corroborating the 
initial hypothesis. Hence, DEMs of scenario ‘c’ would 
be of inferior quality. When evaluated across all three 
resolutions, DEM5a can be considered as the highest 
quality DEM (Table 5). As stated, this is an effect of the 
spatial resolution of a DEM on its capacity to represent 
the terrain surface. By definition, a DEM is more likely 
to represent the terrain surface when produced using 

Figure 4: Proportion of slope classes in the study area 
(according to Santos et al., 2015).

Table 5: Summary results of the DEM quality assessment.

Criteria 5 m 20 m 30 m Overall
Descriptive 
statistics of 
elevation

DEM5a DEM20a DEM30a DEM5a

Error
statistics DEM5a DEM20a DEM30a DEM20a

Spurious 
depressions DEM5a,b DEM20a DEM30a DEM5a,b

Slope classes DEM5a,b DEM20c DEM30a DEM5a,b
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more sophisticated algorithms and more data with larger 
accuracy (Maynard; Johnson, 2014). Thus, DEM20a 
would be the second highest quality DEM, because it 
presented better error statistics than all other DEMs, and 
DEM30b and DEM30c would be the poorest DEMs.

DSM accuracy

The MLR-models calibrated using the superior 
DEM5a showed a trend towards larger overall calibration 
accuracy in both complete and reduced versions (Table 6). 
However, the difference to MLR-models calibrated with 
the poorest DEMs was small, and sometimes less than 
or equal to one percentage point (pp), such as DEM5a 
as compared to DEM30c in the complete version. There 
was a tendency for the greater the number of predictor 
variables the larger the similarity of accuracy values 
during calibration across MLR-models. However, higher 
performance of superior DEMs did not hold during 
validation of MLR-models in both complete and reduced 
versions: MLR-models calibrated using inferior DEMs 
tended to have higher validation accuracy. However, the 
difference in accuracy by using pooreror superior DEMs 
was small, usually less than 1 pp.

Overall, there was no direct relation between 
DEM quality - given the DEM quality concept above - 
and validation accuracy of calibrated MLR-models: the 
most accurate MLR-model, better result for DSM, was 
calibrated with the worse DEM for resolution of 5 m, 
DEM5c. In some cases, increasing DEM spatial resolution 

increased validation accuracy of the MLR-models, as 
for the DEMs of scenarios ‘a’ (complete version) and 
‘b’ (complete and reduced versions) a contrary result of 
the DEM quality that increases with the finer resolution. 
Furthermore, the 5-m spatial resolution DEMs resulted 
in the MLR-models with smallest and largest validation 
accuracy, while the 30-m spatial resolution DEMs resulted 
in MLR-models of similar validation accuracy and very 
close to the most accurate MLR-model calibrated with 
DEM5c. This is in agreement with Cavazzi et al. (2013), 
Penížek et al. (2016), Samuel-Rosa et al. (2015), and 
Thompson, Bell and Butler (2001). According to these 
studies, the accuracy of DEMs is not directly related with 
the accuracy of digital soil maps. That is, depending on the 
terrain, level of detail of soil survey, strategy and density of 
sampling; the more generalized information can produce 
more accurate digital soil maps.

Reducing the number of predictor variables 
maintained or increased validation accuracy of MLR-
models. Exception for baseline MLR-model that had a 
large reduction in number of predictor variables, from 
p = 7 to p = 3. For example, the complete MLR-model 
calibrated with the DEM5b was less accurate than 
baseline MLR-model; but in the reduced version, the 
former was ~2 pp more accurate than the latter, although 
the improvement was only ~1 pp. For the poorer DEMs, 
the accuracy of MLR-models increased by ~3-4 pp with 
selection of predictor variables; while among the superior 
DEMs the accuracy increased only for DEM5a (~6 pp). 

MLR-model
Complete (p = 20) Reduced (p = 13)

Calibration Validation Calibration Validation
Baseline (T) 44.6 37.6 41.4 34.4
T + DEM5a 72.0 38.2 73.2 44.0
T + DEM5b 64.3 35.0 64.3 36.9
T + DEM5c 72.0 42.0 71.3 47.1

T + DEM20a 73.9 38.9 61.8 38.2
T + DEM20b 71.3 38.9 69.4 38.9
T + DEM20c 67.3 39.1 64.7 43.0
T + DEM30a 70.1 42.7 66.2 42.0
T + DEM30b 70.7 40.8 66.2 44.0
T + DEM30c 72.9 38.7 68.4 43.2

Table 6: Overall accuracy of calibration and validation of multinomial logistic regression (MLR) models 
calibrated using two sets of predictor variables derived from satellite images (baseline) and digital elevation 
models (all others).

Baseline model was adjusted using p = 7 and p = 3 predictor variables in their complete and reduced versions, respectively. 
Model(s) with best performance in each spatial resolution is (are) in boldface.



Ciência e Agrotecnologia, 42(6):608-622, Nov/Dec. 2018

618 COSTA, E. M. et al.

Because of this difference in prediction gains, the reduced 
MLR-models calibrated with DEM30b and DEM5a ended 
up with same validation accuracy, and the complete MLR-
model calibrated with DEM30b had larger validation 
accuracy than that obtained with DEM5a. In both cases, 
the difference to the baseline MLR-model and the most 
accurate MLR-model was +10 pp and -3 pp, respectively.

Spatial predictions showed the gains obtained when 
DEMs are used to calibrate the MLR-models, regardless 
of their quality (Figure 5). DEMs generated using stream 
network associated with hydrologically consistent 
algorithm tended to underestimate the presence of the 
group of soil classes influenced by fluvial sediments, near 
the Ribeirão Cachimbal. All ‘c’ scenario DEMs predicted 

Figure 5: Spatial predictions of k = 6 groups of soil classes using multinomial logistic regression models calibrated 
using satellite images (baseline, p = 3) and digital elevation models (p = 13) with different levels quality – given the 
definition of quality used in this study.
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large areas of these soils. For other groups, there seemed 
to be less concordance between predictions using different 
DEMs. In general, the nine MLR-models captured the 
same general pattern of spatial distribution of soil classes 
groups, with a dominance of CX, PA/PV/PVA and SX/GX.

Evaluation of the uncertainty of spatial predictions 
reinforced the importance of using DEM data to improve 
the MLR-models performance (Figure 6). Overall, 
predictions of the groups of soil classes in the plain 
relief surfaces, closer to the stream network and with 

Figure 6: Shannon entropy (uncertainty) of predictions of multinomial logistic regression models calibrated using 
satellite images (baseline, p = 3) and digital elevation models (p = 13) with different levels quality (as defined in 
this study).
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lower elevation, tended to show lower entropy. For other 
soil classes groups, the higher entropy reflect a greater 
difficulty in their spatial prediction. In general, there was 
little difference in the spatial pattern of uncertainty of 
different MLR-models.

Relation between DEM quality and soil mapping 
accuracy

The MLR-models most suitable for use in the study 
area were those calibrated using the less detailed scenario 
DEM5c and DEM30c. The DEM quality criteria did not 
lead to selection of the most suitable DEM for DSM; that 
is, the DEM capable of producing the most accurate digital 
soil map. In fact, a poorer DEM produced a more accurate 
map than a superior DEM. 

Many criteria used to infer DEM quality for DSM 
were originally adopted from projects whose objective was 
the evaluation of DEMs for modeling the water flow on soil 
surface (Wise, 2000). Thus, several criteria have a dominant 
hydrological nature such as analyses of the presence of 
spurious depressions and delineation of the stream network. 
Other criteria appear to have limited physical basis, possibly 
having more of a heuristic nature, such as the descriptive 
statistics of elevation and slope. In addition, interpretation 
of some criteria at some points are subjective.

If the quality criteria were not directly linked to 
soil genesis and spatial distribution, it would be reasonable 
to suppose that a DEM that accurately represents present 
terrain surface is not necessarily the one that will produce 
most accurate digital soil map. One reason is that current soil 
features are the outcome more of preterit terrain surfacethan 
of present. The operational inability to represent preterit 
terrain surface could be due to the fact that different groups 
of soils - and soil attributes - often have larger correlation 
with predictor variables in one or more spatial resolutions 
(analysis scales) (Behrens et al., 2010). This empirical 
observation encouraged usage of multiscale soil prediction 
models, where DEMs with different spatial resolutions 
or terrain attributes derived using sampling windows of 
different sizes are used jointly (Behrens et al., 2014; Miller 
et al., 2015; Samuel-Rosa et al., 2015).

The success of multiscale soil spatial modelling 
has been attributed to differential action of soil formation 
processes (Behrens et al., 2010; Behrens et al., 2014). 
Although not tested in this study, the results suggest 
that density and spatial configuration of the calibration 
observations play a considerable role. For example, the 
accurate delineation of current stream network in some 
DEMs was detrimental to soil predictions. Such DEMs 
were constructed using the stream network data, commonly 

recommended for building hydrologically consistent DEMs 
for soil mapping e.g. for scenario ‘a’. Here, hydrologically 
consistent DEMs have narrower river plains due to 
deepening of local drainage channels. The observations of 
the soil classes group with fluvial features are all located 
very close to the watercourses. The hydrologically consistent 
DEMs predicted that the area occupied by this group is 
smaller than it should be. Thus, depending on the density 
and location of their observation, it would have been more 
effective to have coarser information about areas influenced 
by a given watercourse - subjected to temporary or periodic 
flooding - than to know their exact geographic location. For 
Cavazzi et al. (2013) very detailed terrain attributes can 
generate too much “noise”, inevitably harming the accuracy 
of the prediction. For similar sampling densities, the same 
idea seems to apply to satellite images, where it is more 
important to know general effect of a forest on soil spatial 
variation than that of individual forest trees (Samuel-Rosa 
et al., 2015). More than pedogenetic meaning, the results 
point to needing a balance of volume/density of soil data 
and spatial detail of predictor variables. Hydrologically 
consistent DEMs with finer spatial resolution may require 
larger sampling density for predictive gains to be significant; 
as shown by Baltensweiler et al. (2017), evaluating different 
DEM resolutions for predicting soil pH in an area with a 
very high sampling density (31 points per 1 ha).

To select a DEM it is necessary to consider 
working scale, objectives and resources (financial, human 
and infrastructure) available for the project. In many 
circumstances there will be at least two DEMs that meet 
the project objectives and are compatible with working 
scale and available resources; thus a second selection 
criterion should be used. This last and decisive criterion 
should be the accuracy of soil spatial predictions, such 
as it has been done here. The DEM that results in greater 
prediction accuracy, preferably measured using an external 
probabilistically selected sample, is the most appropriate 
for that project or, alternatively, the predictions from 
different models can simply be aggregated.

Considering the topographic variation, moderately 
rugged, more detailed DEMs produced discontinuous areas, 
reflecting the details of instant relief features and increasing 
the uncertainty about the predictions, while the coarser DEM 
information ignored these details reflecting better the soil 
cover development. In general, the CX occur in the highest 
part of the study area and/or flat summit. The SX-GX in the 
low elevations in flat areas the. PA-PV-PVA in the shoulder, 
backslope and footslope. LA-LVA and MT-NX-RL have a 
strong relationship with the parent material, not considered 
here, so why these classes were not very well predicted.
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CONCLUSIONS
This study showed that: The joint interpretation 

of DEM quality criteria are useful to identify DEMs with 
greater or lesser capacity to represent the terrain surface. 
DEMs with greater capacity to represent the terrain surface 
not necessarily are the DEMs that produce the most 
accurate spatial soil class predictions. For small sample 
sizes, selection of predictor variables can contribute more 
to improve the accuracy of digital soil maps than using a 
more accurate and finer spatial resolution DEM.

ACKNOWLEDGEMENTS
This study was financed in part by the Coordenação 

de Aperfeiçoamento de Pessoal de Nível Superior - Brasil 
(CAPES) - Finance Code 001. We are thankful for the 
technical and financial support from PPGA-CS - UFRRJ, 
CNPq, IFRJ - Pinheiral and FAPERJ, and from IBGE, INPE 
and MMA by providing all database used in the study. For 
colleagues that assisted in the collection and processing of 
data with geodetic GPS, GIS and elaborating DEMs.

REFERENCES

AGRESTI, A. Categorical data analysis. New York John Wiley 
Sons. Gainesville, 2002. 710p.

ALVARES, C. A. et al. Koppen’s climate classification map for 
Brazil. Meteorologische Zeitschrift, 22(6):711-728, 2014. 

ANTUNES, M. A. H.; DEBIASI, P.; SIQUEIRA, J. C. DOS S. Avaliação 
espectral e geométrica das imagens Rapideye e seu potencial 
para o mapeamento e monitoramento agrícola e ambiental. 
Revista Brasileira de Cartografia, 66(1):105-113, 2014. 

BALTENSWEILER, A. et al. Terrestrial laser scanning improves 
digital elevation models and topsoil pH modelling in 
regions with complex topography and dense vegetation. 
Environmental Modelling and Software, 95(1):13-21, 2017. 

BEHRENS, T. et al. Multi-scale digital terrain analysis and feature 
selection for digital soil mapping. Geoderma, 155(3-4):175-
185, 2010. 

BEHRENS, T. et al. Hyper-scale digital soil mapping and soil 
formation analysis. Geoderma, 213:578-588, 2014. 

CAVAZZI, S. et al. Are fine resolution digital elevation models 
always the best choice in digital soil mapping? Geoderma, 
195(196):111-121, 2013. 

CHAGAS, C. S. et al. Avaliação de modelos digitais de elevação 
para aplicação em um mapeamento digital de solos. 

Revista Brasileira de Engenharia Agrícola e Ambiental, 
14(21):218-226, 2010. 

FAN., L.; ATKINSON, P. M. Accuracy of digital elevation models 
derived from terrestrial laser scanning Data. Geoscience 
and Remote Sensing Letters, IEEE, 12(9):1923-1927, 2015.

FISHER, P. F.; TATE, N. J. Causes and consequences of error in 
digital elevation models. Progress in Physical Geography, 
30(4):467-489, 2006. 

FLORINSKY, I. V. Accuracy of local topographic variables derived 
from digital elevation models. International Journal of 
Geographical Information Science, 12(1):47-61, 1998. 

HENGL, T. et al. SoilGrids250m: Global gridded soil information 
based on machine learning. PLOS ONE, 12(2):1-40, 2017. 

HENGL, T.; GRUBER, S.; SHESTHA, D. P. Reduction of errors in 
digital terrain parameters used in soil-landscape modelling. 
International Journal of Applied Earth Observation and 
Geoinformation, 5:97-112 , 2004.

HEUNG, B. et al. An overview and comparison of machine-
learning techniques for classification purposes in digital 
soil mapping. Geoderma, 265:62-77, 2016. 

HIRT, C.; FILMER, M. S.; FEATHERSTONE, W. E. Comparison and 
validation of the recent freely available ASTER-GDEM ver1, 
SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation 
models over Australia. Australian Journal of Earth 
Sciences, 57(3):337-347, 2010.

HÖHLE, J.; HÖHLE, M. Accuracy assessment of digital elevation 
models by means of robust statistical methods. ISPRS 
Journal of Photogrammetry and Remote Sensing, 64(4): 
398-406, 2009.

HUTCHINSON, M. F. A new procedure for gridding elevation 
and streamline data with automatic removal of spurious 
pits. Journal of Hydrology, 106:211-232, 1989. 

MAYNARD, J. J.; JOHNSON, M. G. Scale-dependency of LiDAR 
derived terrain attributes in quantitative soil-landscape 
modeling: Effects of grid resolution vs neighborhood 
extent. Geoderma, 230(231):29-40, 2014. 

MILLER, B. A. et al. Impact of multi-scale predictor selection for 
modeling soil properties. Geoderma, 239(240):97-106, 2015. 

MOURA-BUENO, J. M. et al. Assessment of digital elevation 
model for digital soil mapping in a watershed with gently 
undulating topography. Revista Brasileira de Ciência do 
Solo, 40:1-15, 2016. 

NELSON, A.; REUTER, H. I.; GESSLER, P. DEM production 
methods and sources. Developments in Soil Science, 
33:65-85, 2009. 



Ciência e Agrotecnologia, 42(6):608-622, Nov/Dec. 2018

622 COSTA, E. M. et al.

NEUMANN, M. R. B.; ROIG, H. L.; SOUZA, A. L. F. DE. Digital 
elevation models obtained by contour lines and SRTM/
Topodata, for digital soil mapping. Journal of Soil Science 
and Environmental Management, 3(5):104-109, 2012. 

PENÍŽEK, V. et al. Influence of elevation data resolution on 
spatial prediction of colluvial soils in a Luvisol region. PLOS 
ONE, 11:1-18, 2016. 

PINHEIRO, H. S. K. et al. Modelos de elevação para obtenção de 
atributos topográficos utilizados em mapeamento digital 
de solos. Pesquisa Agropecuária Brasileira, 47(1)1384-
1394, 2012. 

PORTILHO, A. P. et al. Balanço hídrico para Pinheiral, Rio de 
Janeiro. Revista Agroambiental, 4:21-28, 2011. 

SAMUEL-ROSA, A. et al. Do more detailed environmental 
covariates deliver more accurate soil maps? Geoderma, 
243(244):214-227, 2015. 

SANSON, M. DE S. R.; RAMOS, R. R. C.; MELLO, C. L. Bacia 
sedimentares brasileiras: Bacia de Volta Redonda. 
Fundação Paleontológica Phoenix, 88:1-6, 2006. 

SANTOS, R. D. et al. Manual de descrição e coleta de solo no 
campo. 7°ed. Revisada e ampliada. SBCS. Viçosa. 2015. 100p.

TEN CATEN, A. et al. Mapeamento digital de classes de solos: 
Características da abordagem brasileira. Ciência Rural, 
42:1989-1997, 2012. 

THOMPSON, J. A.; BELL, J. C.; BUTLER, C. A. Digital elevation 
model resolution: Effects on terrain attribute calculation 
and quantitative soil-landscape modeling. Geoderma, 
100(1-2):67-89, 2001. 

VALERIANO, M. DE M.; ROSSETTI, D. DE F. Topodata: 
Brazilian full coverage refinement of SRTM data. Applied 
Geography, 32(2):300-309, 2012. 

VASQUES, G. M.; GRUNWALD, S.; MYERS, D. B. Associations 
between soil carbon and ecological landscape variables 
at escalating spatial scales in Florida, USA. Landscape 
Ecology, 27(3):355-367, 2012. 

WISE, S. Assessing the quality for hydrological applications 
of digital elevation models derived from contours. 
Hydrological processes, 14:1909-1929, 2000.


