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Abstract: Abstract - Families of 38 month-old Calycophyllum spruceanum 
planted at three locations in the Peruvian Amazon were analyzed for breeding 
purpose. Significant differences were detected among families, sites and com-
bined sites for the traits trunk diameter (D), height (H), number of nodes (NN), 
number of branches (NB) and survival rate (SUR), except for NN at site 2 and 
SUR at site 3 and combined sites. The correlation of the genotype-environment 
interaction was simple for D, H, NN, and SUR (0.77-0.89). Heritability was gen-
erally highest for D, H, NN, and NB (0.12-0.7), and the genotypic coefficient of 
variation ranged from 8.6-27.4%. Genetic correlations between these traits 
within and among sites ranged from 0.35-1.0. The selection of 75 trees from 
different families, within blocks and locations, suggested the possibility of ge-
netic gains (6.1-29.8%) for D, H, NN, and NB, and that the remaining effective 
population size can be exploited in future selection cycles.
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INTRODUCTION

Calycophyllum spruceamun (Benth.) (Rubiaceae) is a heliophytic pioneer 
tree found in alluvial forests in Brazil, Bolivia, Colombia, Ecuador and Peru, 
up to 1000 m above sea level (Reynel et al. 2003, Sears et al. 2014, Ramírez 
2016, Saldaña et al. 2021). The tree has multiple uses; its timber is exported 
to various parts of the world in view of the beautiful creamy brown color 
and high density of the wood, which makes it durable and suitable for 
construction (Taylor 2005). The very straight, cylindrical bole of adult trees 
can reach diameters of 50-120 cm and a height of 20-35 m, with a crown 
in the upper third. A study on this species with seeds from different origins 
in the Peruvian Amazon reported growth to a height of 1.4-1.6 m within 6 
months and to 3.5-4.7 m within one year (Sotelo Montes et al. 2003). In Peru, 
the response potential of the species in plantations for industrial purposes is 
considered highly efficient and promising (Orrego and Bustamante 2017). At 
the national and international level, the demand for C. spruceanum is on the 
rise, due to the wood properties and low production costs. In recent years, 
the species has been counted among the first 10 commercial species for saw 
wood production, with very diverse applications, e.g., as structural timber 
for construction, furniture and sporting goods (Orrego and Bustamante 2017, 
Saldaña et al. 2021). 
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Due to the economic and social relevance of C. spruceanum wood production by small farmers, the genetic variability 
of wild populations of the species has been the focus of some research based on genetic markers (Russel et al. 1999, 
Dávila-Lara et al. 2017, Saldaña et al. 2021) and quantitative traits (Sotelo Montes et al. 2003, Sotelo Montes et al. 
2006, Sotelo Montes et al. 2007a, Sotelo Montes et al. 2007b, Sotelo Montes et al. 2007c, Sotelo Montes et al. 2008, 
Boivin-Chabot et al. 2004, Weber and Sotelo Montes 2005, Dawson et al. 2009, Weber et al. 2009, Thauchen et al. 2011). 
However, information about the genetic variation and control of growth and quality traits of the species is currently 
limited, since these studies addressed only a minor part of the species distribution.

Due to the increase in deforestation, forest fires and intense selective cutting in the environments of C. spruceanum, as 
well as the increased demand for its seeds for reforestation (Carmo et al. 2017), strategies of conservation and breeding of 
the species are urgently needed. Provenance and progeny tests, underlying the determination of genetic variation within 
and among populations, genetic inheritance (heritability) and phenotypic and genetic correlations between quantitative 
and qualitative traits have been used for both ex situ conservation and breeding of populations (Sebbenn et al. 2005). 
These data are fundamental to evaluate whether a germplasm collection strategy efficiently represents and conserves 
the genetic variation of populations of a species ex situ and for successful selection in breeding programs (Sebbenn et 
al. 2009a). Provenance and progeny tests can therefore be used for both purposes simultaneously, ex situ conservation 
and production of somewhat improved seeds, for both commercial and environmental reforestation (Sebbenn et al. 
2005, Sebbenn et al. 2009a). To this end, the best trees with desirable traits are selected (Sebbenn et al. 2009a, Canuto 
et al. 2016). Likewise, testing families from different origins allows a better understanding of the genetic variability in 
populations of a species and detects the most adaptable genotypes to the environmental conditions of a reforestation 
site (Menegatti et al. 2016, Revilla-Chávez et al. 2022).

Therefore, this study analyzed the genetic variation and control of quantitative and qualitative traits of 38-month-old 
C. spruceanum trees in progeny trials in the Peruvian Amazon, to obtain information for the implementation of second-
generation seed orchards with high seed quality for forest restoration.

MATERIAL AND METHODS

Study sites and progeny tests 
The progeny tests were established at three locations in the Aguaytía river basin, on the eastern slope of the Cordillera, 

in the department of Ucayali, Peru (between lat 9º 24’ 25.87” S, long 75º 54’ 38.91” W and lat 7º 57’ 36.47” S, long 74º 
5’ 33.64” W, in an area 100 km E-W and 60 km N-S). The vegetation of the area is mainly tropical premontane forest, 
with a mean annual temperature of 26 °C (Holdridge 1978). Rainfall increases with increasing elevation: at sites 1, 2 
and 3, at average elevations of 150, 200, and 260 m asl, respectively, mean annual precipitation is 1656.3, 1926.45, 
and 2501.0 mm ha-1 year-1, respectively (Hijmans et al. 2005). However, water stress of 1, 4 and 5 months was observed 
at sites 3, 2 and 1, respectively (Ugarte-Guerra and 
Domínguez-Torrejón 2010). Data of the progeny tests 
and characteristics of the three experimental sites are 
listed in Table 1.

The progeny tests were arranged in a randomized 
complete block design, with five blocks, 200 open-
pollinated families and two plants per plots. The families 
were derived from seeds collected from 200 seed trees 
in June 1998, at 13 sites in the Aguaytia river basin: 39 
families from the district of Nueva Requena; 5 families 
from the Neshuya river, at km 49.5 of the countryside 
highway Carretera Federico Basadre (CFB); 5 families 
from the Tahuayo river basin, at km 72 CFB; 10 from the 
Curimaná river basin; 6 from the Aguaytía river basin; 
7 from the Yurac-Aguaytía river basin; 21 from Puerto 
Inca; 6 from Von Humboldt; 43 from Macuya; 50 from 

Table 1. Location, progeny test and edaphoclimatic characteristics of 
evaluation plots of Callycophyllum spruceanum at three sites in the 
Aguaytia river basin, Ucayali, Perú 

Description of the trials Site 1 Site 2 Site 3
Number of families 200 200 200
Number of blocks 5 5 5
Number of plants per plot 2 2 2
Elevation (m)€ 150 200 260
Rainfall (mm/ha/year)€ 1656 1926 2501
Number of months under water stress£ 5 4 1
Terrace€ low medium high
Soil€ very sandy sandy loam clayey
Phosphorus availability (P) low low high
Levels of K, Ca and MG€ medium medium high

€ Hijmans et al. (2005); £ Ugarte-Guerra and Domínguez-Torrejón (2010); K= Potassium; 
Ca= Calcium; Mg= Magnesiun
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San Alejandro; 7 families from along the CFB up to km 72; 6 from along the Curimaná road; and 3 families from the 
Aguaytía river basin along the CFB to the district of Tournavista (Table 2). Each block comprised a total of 400 plants, 
200 plots and 2 plants per plot, at a spacing of 2.5 x 2.5 m, on an area of 2,500 m2 per block. Two plant rows around 
the blocks were considered border rows that were not evaluated and they were separated by a 5-m wide fire strip. At 
the time of planting, 1600 kg of earthworm humus ha-1 and 320 kg of rock phosphate ha-1 (1 kg and 200 g per plant, 
respectively) were applied to the experimental area. In the second and third years, fertilization was repeated, with 112 
kg ha-1 urea, 316 kg ha-1 rock phosphate and 160 kg ha-1 potassium chloride (i.e., 70, 185, and 100 g of each product per 
plant, respectively). During the first 12 months, plants stunted by weeds, insects and rodents were eliminated.

Estimates of genetic parameters
The data were arranged in a randomized block design and processed as described below. The REML/BLUP procedure 

(restricted maximum likelihood/best unbiased linear prediction) by the linear mixed model was used in individual 
analyses to estimate the variance components and genetic parameters of each trait evaluated at each site, using the 
SELEGEN software, based on the statistical Model 1 (Resende 2016), y = Xr + Za + Wp + e, where y, r, a, p and e are 
the data, effects of repetition (fixed) added to the overall mean, individual additive genetic effects (random), effects of 
portion and the error or residual vector (random), respectively. Capital letters represent the incidence matrices for the 

Table 2. Score used to measure stem shape (SSh) in 38-month-old Calycophyllum spruceanum trees

Class Terminal
but presence

Terminal
but dominance Branch orientation Branch position Stem Score

Stem shape yes yes vertical different straight 100
yes yes horizontal different straight 98
yes yes vertical different crooked 96
yes yes horizontal different crooked 94

Branched stem yes yes vertical different - 92
yes yes horizontal different - 90
yes yes vertical single plane - 88
yes yes horizontal single plane - 86
no yes vertical different - 84
no yes horizontal different - 82
no yes vertical single plane - 80
no yes horizontal single plane - 78
yes no vertical different - 76
yes no horizontal different - 74
yes no vertical single plane - 72
yes no horizontal single plane - 70
no no vertical different - 68
no no horizontal different - 66
no no horizontal single plane - 64
no no vertical single plane - 62

Inclined stem shape yes yes vertical different - 60
yes yes horizontal different - 58
yes yes vertical single plane - 56
yes yes horizontal single plane - 54
no yes vertical different - 52
no yes horizontal different - 50
no no vertical single plane - 48
no no horizontal single plane - 46
yes no vertical different - 44
yes no horizontal different - 42
yes no vertical single plane - 40
yes no horizontal single plane - 38
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said effects. For combined site analysis, Model 4 (Resende 2016) was used: y = Xr + Za + Wp + Ti + e, where y is the data 
vector; r the vector of repetition effects (fixed) added to the overall mean; a the vector of individual additive genetic 
effects (random); p the vector of plot effects (random); i the vector of the effects of the genotype - environment (GE) 
interaction (random); and e the error or residual vector (random). Capital letters represent the incidence matrices for the 
said effects. By analysis of variance, the following components of interest were estimated: σ2

A = additive genetic variance; 
σ2

f = genetic variance among families; σ2
e = variance due to family × replication interaction effects; σ2

e(s) = variance due to 
the interaction between the families within and replications within environments; σ2

gxe = variance of the GE interaction; 
and σ2

w = phenotypic variance within family. The genetic correlations between sites (rge), mean heritability among families 
(h2

m) and within family (h2
w) for each site were estimated by: h2

m = 
σ2

f

σ2
f + 

σ2
e

J  + 
σ2

w

n ̅J

 and h2
w = (1−0.25) σ2

A

σ2
w

, and for combined 

analysis of sites (s) by: h2
m(s) = 

σ2
f

σ2
f + 

σ2
gxe

S  + 
σ2

e(s)

SJ  + 
σ2

w

n ̅SJ

, and h2
w(s) = 

[(1−0.25)/n̅]σ2
A

σ2
e(s) + σ2

w

n ̅

, where S, J and n ̅ are the number of sites, 

replication and the harmonic mean of the number of plants per plot. We also calculated the coefficients of environmental 

variance (CVe(%) = 100( σ2
e /x)), genetic variance among families (CVg(%) = 100( σ2

g /x)), and additive genetic variation 
among families (CVgi(%) = 100( σ2

A /x)), where x is the mean of the trait under study. The relative correlation coefficient 
was estimated by CVr = CVg(%)/CVe(%). The genetic (rg) and phenotypic (rf) correlations between pairs of traits were 
computed as proposed by Resende (2002), taking only traits with genetic variation among families into consideration. 
The genetic gain by selection among and within families (Gaw) was estimated for each site for selection intensities of 
37.5% of the best families (70:200) and 25% of the best trees within families (5:10), based on the equation, Gaw(%) = 
100(da h

2
m + dw h2

w)/x), where da and dw are the selection differentials among and within families, respectively. da was 
estimated by da = xsa − x, where xsa is the mean of the selected families and x the population mean for the traits under 
study. dw was estimated by dw = xsw − x, where xsw is the mean of selected trees within family for the traits under study. 

The effective population size (Ne) after selection was estimated as Ne = 0.5/Θ, where Θ is the group coancestry 
(Lindgren et al. 1996), estimated by Θ =[mn0.5(1 + Fp)+ mθxyn(n − 1)]/(nm)2 (Sebbenn et al. 2009b), where m and n are 
the number of selected families and plants within family, respectively; Fp is the inbreeding coefficient in the parental 
population; and θxy the coancestry between plants within family, assumed as half-sibs (θxy = 0.125).

RESULTS AND DISCUSSION

Significant differences among families at sites and combined sites were detected for D, H, NN, NB and SUR, with 
exception for NN at site 2, and SUR at site 3 and in the combined analysis. These results indicated genetic variability 
among families for D, H, NN, NB and SUR and the possibility of breeding by selection of the best families (Table 3). The 
correlation of the GE interaction (rge) was positive and high for D, H, NN, and SUR (rge: 0.768-0.891), indicating that the 
GE interaction is simple.  Little family rank changes for the GE interaction between sites were observed, indicating that 
selection for these traits can be done efficiently at a single site. In contrast, the rge for NB (0.554) and SF (0.154) indicated 
a complex type GE interaction, where family rank changes between sites are involved, and that selection for these traits 
should be performed specifically for each site. 

The mean values of all traits were lowest at site 1 and highest at site 3 (Table 3). After 38 months, the mean survival 
rate (SUR) among sites (92.3%) indicated a high adaptation of the families to the three studied sites. The mean growth 
among sites for D (8.16 cm) and H (6.4 m) was greater than the mean reported for the species at other locations in Peru 
after 39 months (D= 5.86 cm, H= 6.21 m; Sotelo Monte et al. 2006). In contrast, the NN (35.9) and NB (12.9) were lower 
than the mean reported at other locations in Peru after 18 months (NN= 41.21, NB= 23.49; Sotelo Monte et al. 2003). 
These results showed that the families studied here have the potential to produce good quality wood (low number of 
knots in the wood), since the low values of NN and NB indicate wood with less defects (knots).

The traits D, H, NN, and NB generally have higher mean heritability among families (h2
m), heritability within family 

(h2
w), selective accuracy (ra), coefficient of genotypic additive genetic variation (CVgi), and coefficient of relative variation 
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(CVr) than stem shape (SSh) and SUR, suggesting that high genetic gains by selection can be expected for D, H, NN, and 
NB. The coefficient h2

m was higher than h2
w for all traits (except for SUR) in the site and combined site analysis (h2

m: 0.024-
0.696, h2

w: 0.003-0.52), indicating that higher genetic gains can be expected from selection among than within families. 
For SUR, the range of h2

m was 0.033 to 0.196 among sites (combined= 0.292). The selective accuracy (ra) was 0.375 to 
834 for D, H, NN and NB; 0.443 for SUR at site 1; and 0.54 for the combined sites, which indicated that the phenotype 
mean is a good predictor of the additive genetic value of families. 

Our results showed that the genetic parameters were generally lower for D, H, and NN and higher for SUR at site 
1 than at the other two locations. In other words, the highest genetic gains from selection can be expected at sites 2 
and 3 for D, H, and NN, and at site 1 for SUR (Table 3). However, our results may have been affected by the mortality 
rate at site 1, resulting from inter-tree competition, which may have affected growth traits such as D and H, decreasing 
the estimates of genetic parameters such as h2

m, h2
w, and ra, because D is competition -sensitive (Leonardecz-Neto et al. 

2003, Pavan et al. 2011). This could explain the inverse patterns of the estimated heritability and tree mortality rate. 
Under this condition, an efficient genetic selection at site 1 would be difficult, because D would be affected by a major 
environmental effect (competition), which would also affect the selection of genotypes for the best progeny for tree 
growth (Pavan et al. 2011). This aspect also has a negative effect on the selection of genotypes for growth control with 

Table 3. Mean and estimates of genetic parameters for trait at site and combined sites in tests with 38-month-old Calycophyllum 
spruceanum progenies

Trait h2
m h2

w ra CVgi (%) CVr GS (%) rge

Diameter (D, cm)
Site 1 4.7* 0.269 0.220 0.519 11.9 0.27 18.4
Site 2 8.6* 0.464 0.416 0.681 18.3 0.42 27.7
Site 3 11.2* 0.512 0.383 0.715 14.5 0.46 19.5
Combined 8.16* 0.654 0.329 0.808 15.8 0.40 26.5 0.84
Height (H, m)
Site 1 3.2* 0.203 0.201 0.450 13.7 0.22 13.2
Site 2 6.41* 0.555 0.520 0.745 13.5 0.44 23.9
Site 3 8.52* 0.549 0.502 0.741 14.5 0.49 14.5
Combined 6.4* 0.696 0.429 0.834 16.1 0.50 16.6 0.891
Stem shape (SSh)
Site 1 94.8 0.027 0.008 0.163 1.1 0.07 0.1
Site 2 95.3 0.030 0.012 0.172 0.9 0.08 0.1
Site 3 95.6 0.035 0.012 0.186 0.9 0.08 0.1
Combined 95.2 0.024 0.003 0.154 0.5 0.03 0.1 0.154
N. of nodes (NN)
Site 1 26.9* 0.141 0.121 0.375 8.6 0.18 7.0
Site 2 37.0 0.276 0.238 0.526 9.6 0.28 8.8
Site 3 42.6* 0.300 0.233 0.548 8.8 0.29 6.1
Combined 35.5* 0.473 0.263 0.687 12.0 0.35 25.5 0.85
N. of branches (NB)
Site 1 7.9* 0.379 0.376 0.616 27.4 0.35 29.8
Site 2 13.4* 0.321 0.288 0.567 17.9 0.32 11.7
Site 3 17.6* 0.392 0.372 0.626 11.0 0.31 8.7
Combined 12.9* 0.404 0.197 0.636 13.7 0.29 16.6 0.554
Survival (SUR, %)
Site 1 86.6* 0.196 - 0.443 11.9 0.22 1.7
Site 2 93.5* 0.039 - 0.197 3.2 0.09 0.2
Site 3 96.9 0.023 - 0.151 1.8 0.07 0.1
Combined 92.3 0.292 - 0.540 6.6 0.14 2.4 0.768

* P< 0.05, with 0.5 degrees of freedom for likelihood ratio test (LRT), χ2 deviance chi-square; rge is the genetic environmental correlation; h2
m and h2

w are the mean heritabili-
ties among and within family, respectively; ra is the selective accuracy; CVgi and CVr are the coefficients of additive genetic and relative variation, respectively.
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regard to tree quality. For this purpose, the number of nodes 
(NN) is evaluated, which is related to the branching habit. 
The nodes are related with the wood quality for causing 
defects in the trunk, since most fractures in wood structures 
occur due to the presence of knots (Jansons et al. 2009, 
Corvalan-Vera 2020, Reyes-Esteves et al. 2022). 

After selection, NN can be mitigated by silvicultural 
practices such as selective thinning and pruning. However, 
breeding allows a more effective long-term solution, since 
if sufficient genetic variation for NN is available (Vargas-
Hernández et al. 2003), its expression can be controlled. 
Therefore, breeding programs include the control of traits 
associated with wood quality (Tong et al. 2013), as well 
as other traits related to branching, sinuosity and stem 
branching (Sotelo Montes et al. 2007a, Santos et al. 2010, 
Tung et al. 2010).

For D and H, the h2
m was higher than reported in a test 

with 36-month-old Guazuma crinita progenies, assessed 
at the same sites (Revilla-Chávez et al. 2022), where 
h2

m values were low for D (0.033-0.39, site mean = 
0.369) and H (0.052-0.36, site mean = 0.34). This 
comparison indicated a higher potential for breeding 
by selection of the tested C. spruceanum than the 
G. crinita progenies. 

Genetic (rg) and phenotypic correlations (rp) varied 
between pairwise traits at the sites (Table 4). Genetic 
correlations (rg) were high and positive (≥ 0.6) between pairwise traits D, H, NN, and NB at each and all sites (rg: 0.77-
1.0), except between NN and NB at site 3 (rg= 0.56). The phenotypic correlation (rp) was generally high between pairwise 
traits at each and all sites (rp: 0.6-0.89), except between D and NN at site 3 (0.59), D and NB at site 2 and the combined 
sites (0.48-0.57) and between H and NB at site 3 and combined sites (0.42-0.56), NN and NB at sites 2 and 3, and 
combined sites (0.36-0.55). Our findings corroborated results of Sotelo Montes et al. (2006) for the study species, who 
also reported high rg between D and H (0.89-0.91), and data of Sotelo Montes et al. (2003) and Tauchen et al. (2011), 
who found high rp between D and H (0.85) and moderate rp between NN and NB (0.45). The high rg between D and H 
indicated that the two traits can be considered as one in the selection process, since the selection for trees with higher 
D will also induce an increase in H, and since rg between both traits is largely influenced by the same pleiotropic genes 
(Vencovsky and Barriga 1992). This result is very favorable for indirect selection, since positive associations between 
traits indicate that selection on one trait can lead to indirect gains in another (Sotelo Montes et al. 2007a, Revilla-Chávez 
et al. 2022, Schoffen et al. 2023).

Table 4. Genotypic (rg, below diagonal) and phenotypic (rp, 
above diagonal) correlations for diameter (D), height (H), num-
ber of nodes (NN) and number of branches (NB) of each site 
and combined sites in tests with 38-month-old Calycophyllum 
spruceanum progenies

  D H NN NB
Site 1
D 0.81 0.77 0.88
H 0.89 0.79 0.96
NN 0.68 0.80 0.97
NB 0.71 0.67 0.6  
Site 2
D 0.88 0.78 0.74
H 0.87 0.87 0.89
NN 0.67 0.74 0.85
NB 0.57 0.65 0.55  
Site 3
D 0.85 0.82 0.71
H 0.78 0.97 0.68
NN 0.59 0.68 0.56
NB 0.65 0.42 0.49  
Combined
D 0.89 0.91 0.95
H 0.83 0.97 0.96
NN 0.65 0.64 1.0
NB 0.48 0.56 0.36  

Table 5. Number of selected trees and families, group coancestry, and effective population size (Ne) of each site and combined sites 
in tests with 38-month-old Calycophyllum spruceanum progenies

Site 1 Site 2 Site 3 Combined
Selected trees per block (1 tree/family) 75 75 75 75
Total number of selected trees per site 375 375 375 1125
Total number of selected families per site 172 173 175 199
Group coancestry per block: Θb 0.0067 0.0067 0.0067 0.0067
Group coancestry per site: ΘS 0.0019 0.0019 0.0018 0.0011
Effective population size per block: Ne(b) 75 75 75 75
Effective population size per site: Ne(S) 265 264 270 472
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The progeny test was designed to serve two purposes: the ex situ conservation of Calycophyllum spruceamun combined 
with the production of seeds with some level of breeding. Thus, since the installed blocks were isolated from each other 
within the sites, we chose the strategy of selecting 75 of the 200 families (among) and one plant within each family 
(selection within) per block at each site (Table 5). Therefore, each block was transformed into a seed orchard, resulting 
in a total of 172-175 families per site and 199 families across the three sites for selection. This established an effective 
population size of 75 within the blocks, varying from 264 to 270 between sites, and totaling an effective population size 
of 472 for the three sites. This selection strategy achieved the genetic gains expected by selection among and within 
families, which varied between traits and sites. As expected, the possibility of genetic gains for the traits with highest 
heritability (D, H, NN and NB) was between 6.1 and 29.8%.

CONCLUSIONS

Genetic variation among families was detected at each site and combined sites for the traits trunk diameter (D) and 
height (H) and number of branches (NB), as well as for number of nodes (NN) at sites 1 and 3 and combined sites, and 
for survival rate (SUR) at sites 1 and 2, which can be exploited by selection in breeding programs with 38-month-old C. 
spruceanum progenies. 

The genotype - environment interaction for the traits D, H, NN, and SUR in 38-month-old trees is simple, so selection 
may be carried out at only one site. 

The genetic control of the traits D, H, NN and NB, measured by heritability coefficients among and within families, 
varies from moderate to high, indicating the possibility of genetic gains by selection among and within families. 

The genetic and phenotypic correlations between D, H, NN, and NB for each site and combined sites are positive 
and high, and selection for any of these traits will result in indirect genetic gains for the others. 

The strategy of applying selection among and within families, within blocks and sites, serves two purposes: 
improvement by breeding and ex situ conservation, while the effective size of the remaining population can be exploited 
in other selection cycles.
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