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ABSTRACT 

Considering the spectral differences between broadleaf weeds and narrow-leaf crops and 
the influence of terrain and soil variables on weed infestations, integrating such 
information into a machine-learning algorithm can lead to accurate weed maps. 
Therefore, we aim to evaluate the effectiveness of these variables in classifying the 
occurrence of broadleaf weeds in narrow-leaf crops. Weed data was collected at 
georeferenced points across two areas covering 200 ha (pasture) and 106 ha (sorghum), 
creating classes 0 (absence) and 1 (presence). For each sample point, we obtained 11 
variables: soil clay content, cation exchange capacity, soil organic matter, terrain 
elevation, slope, NDVI, EVI, CIgreen, BGND (derived from PlanetScope images), and 
spatial information (X and Y coordinates). These variables were used as predictors of 
broadleaf weed presence and absence in the Random Forest classification algorithm. The 
presence and absence of broadleaf weeds were correctly classified in 84% and 74% of all 
predictions in the test sample sets for pasture and sorghum areas, respectively. This 
strategy represents an efficient way to map and manage the occurrence of broadleaf weeds 
in narrow-leaf crops. 

 
 
INTRODUCTION 

Manual weed sampling for mapping and site-
specific management is a costly and inefficient process, 
especially to identify infestations in extensive areas. As a 
result, traditional weed control is carried out over the entire 
area based on the average infestation rate. However, weeds 
exhibit spatial variability and typically occur in aggregated 
patterns (Martín et al., 2015), which favors site-specific 
management. Therefore, demand for tools that enable the 
mapping of weed occurrence and allow for localized 
control, leading to agronomic, economic, and 
environmental benefits, is growing. 

Using imagery collected by sensors onboard 
remotely piloted aircraft (RPA), popularly known as drones, 
has become a strategy for digital mapping and weed 
management (Hunter et al., 2020). An example is the 

utilization of high spatial and spectral resolution sensors, 
combined with machine learning, to generate vegetation 
maps, distinguishing between crops and weeds. However, 
this mapping type has specific characteristics that make 
obtaining the desired products challenging. These 
challenges include additional image processing of 
segmented images, complex information fusion techniques, 
high computational costs, ground sample distance (GSD) 
restrictions, and resolution loss due to image quality 
reduction (Sa et al., 2018). Additionally, to achieve quality 
imaging, RPA flights must be conducted when there is no 
shading in the inter-row spaces, usually with wind speeds 
not exceeding 36 km/h and under clear sky conditions. 

Satellite images can be more easily obtained 
compared with RPA images. However, the ability to 
spectrally differentiate between vegetation and weeds can 
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be affected by the spectral and spatial resolution of these 
sensors due to the spectral similarities between weeds and 
crops (Lamb & Brown, 2001). Additionally, soil 
background effects impact weed differentiation after crop 
emergence (Thorp & Tian, 2004). 

As a weed management strategy, monocotyledonous 
and dicotyledonous weeds, due to their morphological and 
physiological variations, are commonly categorized as 
“narrow-leaf” and “broadleaf,” respectively. In this regard, 
broadleaf plants generally exhibit spectral and architectural 
characteristics that clearly distinguish them from narrow-
leaf plants, favoring their differentiation by remote sensing 
techniques (Gitelson et al., 2005). In this context, Souza et 
al. (2020) observed significant spectral differences between 
sugarcane (monocotyledonous) and weeds, especially those 
in the dicotyledonous group. This can also be considered for 
other narrow-leaf crops, such as pasture and sorghum. Note 
that vegetation indices (VIs), which enhance spectral 
features of interest, provide a valuable alternative in remote 
sensing for agricultural monitoring. 

In digital soil mapping, an alternative aimed at 
increasing the reliability of spatial predictions and reducing 
sampling costs is the use of variables associated with 
specific soil attributes as predictor variables (Pusch et al., 
2023). For example, topographic features, climate, 
vegetation indices, and parent material of the soil (Wadoux 
et al., 2020) can be employed in creating maps that represent 
soil attributes like organic matter and pH (Szatmári et al., 
2019). Considering that the spatial distribution of weeds can 
vary due to dispersion factors (wind, water flow, and 
others), soil-related factors, and the soil seed bank 
(Metcalfe et al., 2019; Nordmeyer, 2006), environmental 
variables can similarly be used for weed mapping. 

Integrating multiple sources of information 
associated with weed infestations, such as topographic data, 
soil data, and spectral vegetation data as predictors of the 
presence and absence of broadleaf weeds in narrow-leaf 
crops, can meet the need for sensors with high spatial 

resolution and allow for the generation of maps with a low 
error rate for weed management in precision agriculture. 
Therefore, we developed classification models within a 
machine learning algorithm using the mentioned variables 
as indicators of the occurrence of broadleaf weeds in areas 
where pasture and sorghum are cultivated. Our goal is to 
assess the effectiveness of these variables in classifying the 
occurrence of broadleaf weeds in narrow-leaf crops. 
 
MATERIAL AND METHODS 

Experimental Areas 

The research was conducted in 2019 and 2023 in two 
agricultural commercial production areas in the state of São 
Paulo, Brazil (Figure 1). Area A, situated in the 
municipality of Caiuá (21°38’15.5”S, 51°54’44.9”W), 
spans 200 ha in an integrated crop-livestock management 
system, with pasture composed of a mix of Brachiaria and 
millet, preceded by soybean cultivation. The pasture was 
seeded from March 31, 2019, to April 6, 2019. Area B, 
located in the municipality of Cosmópolis (22°41’56.7”S, 
47°10’32.5”W), covers 106 ha in a crop succession system, 
where sorghum was sown on March 20, 2023, preceding the 
soybean crop. Both areas are managed in a no-tillage system 
and the fertilization and pesticide application schedules 
followed the grower standards. 

The climate in Area A is classified, according to 
Köppen, as tropical with a dry winter (Aw), with an average 
annual temperature of 24 °C and precipitation of 1,400 mm 
(Alvares et al., 2013). The terrain features gently undulating 
topography, and the soils are predominantly categorized as 
Eutrophic Clayey Latosol with medium texture (16 to 25% 
clay). In Area B, the climate is classified as tropical with a 
hot summer (Cfa), according to Köppen, with an average 
annual temperature of approximately 20 °C and annual 
precipitation of 1,600 mm (Alvares et al., 2013). The terrain 
is gently undulating, and the soil is predominantly classified 
as typical mesic latosol with clayey texture (36 – 60% clay).
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FIGURE 1. Location of the experimental areas and sampling points. Area A – Caiuá, PlanetScope image 07/05/2019, true color 
composite (red, green, and blue). Area B – Cosmópolis, PlanetScope image 06/05/2023, true color composite (red, green, and 
blue). São Paulo database: IBGE and Google Earth, 2023. 
 
Predictor Variables 

In the classification models, we used 11 predictor 
variables that, according to the literature, could be related to 
weed infestations. These include three soil variables, two 
topographic variables, four vegetation indices, and spatial 
information (X and Y coordinates). 

a) Soil Variables 

We conducted soil sampling at 0 to 0.2 m depth to 
analyze soil fertility and texture in the areas using an 
automated drill-type soil sampler (Model Trail Tech 500) 
attached to a quad bike. Each composite sample comprised 
four individual samples collected within a 3 m radius over 
up to three subsequent days. Area A had 100 sampling 
points and Area B had 89 (Figure 1). In Area A, sampling 
points were randomly stratified throughout the field. In 
Area B, the points were allocated according to a multi-
objective optimized spatial sampling plan (SPSANN – 
optimization of spatial samples via simulated annealing), as 
used in a study for predicting soil variables (for more 
details, refer to Pusch et al., 2023). Among the results of soil 
analyses, we used clay content (g/kg), cation exchange 
capacity (CEC – mmol/dm3), and soil organic matter (SOM 
– g/kg) as predictor variables in the classification algorithm. 
Maps of these soil attributes were constructed using 
geostatistical interpolation with ordinary kriging. The choice 
of the best semivariogram model (spherical, exponential, or 
Gaussian) was based on the optimal values of root mean 

squared error (RMSE) and coefficient of determination (R2), 
calculated by leave-one-out cross-validation. 

b) Topographical characteristics 

We collected elevation data densely across the areas 
using a global navigation satellite system (GNSS) receiver 
with differential correction, model Starfire 7000-SF1, 
attached to the harvester. The GNSS receiver allows 
continuous data collection along the machine’s path, 
resulting in dense terrain coverage, and the differential 
correction compensates for potential systematic errors in 
coordinates. We interpolated this data using ordinary 
kriging, similar to the approach used for soil data. However, 
due to the high volume of data, we implemented the 10-fold 
cross-validation method to validate the interpolation model. 
From the elevation map, we calculated the terrain slope 
(rad) using the RSAGA package in the R software 
(Brenning et al., 2022). 

c) Vegetation indices 

We obtained a PlanetScope system image for both 
areas with a spatial resolution of 3 m close to the sampling 
date, without cloud interference. From the individual 
spectral bands of the images, we calculated the vegetation 
indices (VIs) NDVI and EVI, widely used in agricultural 
studies; CIgreen, developed for spectral differentiation of 
species; and BGND, which uses bands in the visible region 
(Table 1).

 



Cenneya L. Martins, Agda L. G. Oliveira, Isabella A. da Cunha, et al. 
 

 
Engenharia Agrícola, Jaboticabal, v.44, e20230148, 2024 

TABLE 1. Vegetation indices. 

Vegetation indices Names Formulas References 

NDVI 
Normalized difference 

vegetation index 
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (Rouse et al., 1973) 

EVI Enhanced vegetation index 𝐺
𝑁𝐼𝑅 −

𝑁𝐼𝑅 + 𝐶1 𝑅 − 𝐶2 𝐵 + 𝐿
 (Huete et al., 1999) 

CIgreen Chlorophyll index – Green 
𝑁𝐼𝑅

𝐺
− 1 

(Gitelson et al., 
2005) 

BGND 
Blue Green Normalized 

Difference 
𝐺 − 𝐵

𝐺 + 𝐵
 - 

*Spectral bands: NIR = Near-Infrared; R = Red; RE = RedEdge; G = Green; B = Blue. 
*EVI: C1 and C2 = coefficients for aerosol resistance (C1 = 6; C2 = 7.5). 
 
Weed Sampling 

Weed sampling in the areas was co-located with soil 
sampling points (Figure 1). In Area A, we conducted weed 
sampling in July 2019. At the time of sampling, during a 
period of low water availability, the pasture was 
underdeveloped. Emerged broadleaf weed species at the 
sampling point were counted and identified. The presence 
and absence of broadleaf weeds resulted in a binary data 
column: 0 (absence) and 1 (presence). We considered weeds 
presence when at least one plant was present in a 1 m² area. 

In Area B, we conducted weed sampling in June 
2023 during the flowering stage of sorghum. At each 
sampling point, the absence (0) or presence (1) of broadleaf 
weeds was visually classified when they occupied at least 
50% of the sampling point area (3 × 3 m area, considering 
the size of the pixels in the PlanetScope images used in this 
study). Subsequently, weed data were co-located with the 
data from all predictor variables. 

Analysis 

a) Class Balancing 

To avoid model bias toward the majority class, we 
balanced the class with the synthetic minority oversampling 
technique (SMOTE). This technique generates synthetic 
examples from the minority class by introducing new 
instances that are weighted combinations of existing 
observations (Chawla et al., 2002). Area A had 100 points 
before balancing, and only 20% of the data belonged to 
class 0. After balancing, we obtained 126 points, with 50% 
of the data in each class. Out of 89 sample points in Area B, 
48% of the data belonged to class 0, and balancing              
was unnecessary. 

b) Classification of occurrence of broadleaf weeds 

Using the random forest (RF) machine learning 
algorithm, we employed the variables to classify broadleaf 
weeds in both areas separately. The data was randomly 
divided into 70% training and 30% testing sets. All 
variables were used as predictors for classes 0 and 1, 
assigned to the absence and presence of broadleaf weeds 
(target variable). To choose the best hyperparameter values, 
we performed an optimization using the random search 
method (1000 iterations) with the number of trees tested 

between 100 and 3000 (ntree), the number of variables 
selected at each split from 1 to 14 (mtry), and the minimum 
number of terminations from 2 to 30 (nodesize). The 
hyperparameters were evaluated with 10-fold cross-
validation on the training set, considering the highest 
accuracy value as the best choice. Subsequently, confusion 
matrices were generated with the test data (30% of balanced 
data). This includes 38 samples in Area A and 26 in Area B, 
with both areas having 50% of these data belonging to class 
0 and 50% to class 1. From the data in each confusion 
matrix, we calculated the metrics: accuracy, precision, 
specificity, recall, and F1 score. Accuracy is a general 
metric that measures the proportion of the model’s correct 
predictions from the total predictions. Precision measures 
the proportion of correct positive predictions from the total 
positive predictions classified by the model (Equation 2). 
Specificity measures the proportion of true negatives from 
the total real negative cases (Equation 3). Recall or 
sensitivity measures the proportion of correct positive 
predictions made by the model from the total real positive 
cases (Equation 4). The F1 Score is a metric that combines 
precision and recall into a single score and indicates 
whether these metrics are balanced (Equation 5). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(்ேା )

(்ேାி௉ାிேା் )
                                   (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

(்௉ାி௉)
                                               (2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
்ே

(்ேାி௉)
                                            (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

(்௉ାிே)
                                                    (4) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2
(௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟)

(௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟ )
                               (5) 

In which:  

TN – True negative;  

TP – True positive;  

FN – False negative, 

FP – False positive. 
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Based on the classifications, we also ranked the 
variables and selected those that presented at least 70% 
importance for the model. After the selection step, we again 
classified broadleaf weeds using only the selected variables, 
separately for each study area. The performances of the 
model constructed with all predictor variables and the 
model with the selected variables were evaluated by 
applying each model to the test set. When the variable 
selection worsened the classifications, we applied the model 
to the maps of all variables to predict the broadleaf weed 
map. When the selection allowed for better classifications 
or the classifications remained the same as those obtained 
with all variables, we constructed the map of the presence 
and absence of broadleaf weeds by applying the model to 
the maps of the selected variables. For these analyses, we 
used the mlr package in the R software (Bischl et al., 2016). 
 
RESULTS AND DISCUSSION 

In Area A, the broadleaf weed species found were: 
Macroptilium lathyroides, Crotalaria incanum, Sida sp., 
Calopogonium mucunoides, Macroptilum atropurpureum, 
Senna occidentalis, Commelina benghalensis, 
Macroptilium lathyroides, Gomphrena globosa, 
Desmodium tortuosum, Amaranthus deflexus, Physalis 
angulata, Alysicarpus vaginalis, and Glycine max 
(soybeans from the previous harvest). 

In Area B, the broadleaf weed species found were: 
Bidens pilosa, Commelia benghalensis L., Amaranthus sp., 
Ipomoea sp., Alternanthera sessilis L., and Solanum 
americanum. Note that the species Commelina 
benghalensis is often categorized as a broadleaf weed, due 
to its morphological characteristics that resemble this 
group. However, the species is a monocotyledonous plant. 

To facilitate the distinction in the context of pasture and 
sorghum, we decided to include it as a broadleaf plant. 

The strategy combining various sources of 
information as predictor variables in a machine learning 
algorithm effectively mapped the presence of broad-leaf 
weeds in narrow-leaf crops. For localized management, the 
model must ideally make as few mistakes as possible. 
However, when it comes to weed management, it is more 
acceptable for the model to make errors by indicating the 
presence of weeds where there is none (FP) rather than the 
opposite (FN). This more favorable result occurred in Area 
A, with 4 points classified as FP and only 2 as FN (Table 
2). The FP would result in herbicide applications in points 
where they are not needed. On the other hand, FN would 
lead to non-application in points that require control, and 
fewer errors of this type indicate a lower chance of 
infestation hotspots remaining in the areas, competing for 
resources with the crop. Thus, in Area A, the model 
correctly classified 84% of all samples in the test set 
(accuracy). Of the times the model predicted the presence 
of weeds, 88% of these predictions were correct (precision). 
The model correctly predicted 89% of samples with the 
absence of weeds, i.e., only the presence of pasture 
(specificity). Additionally, the proportion of true positives 
(correctly classified positive cases) in relation to the total 
real positive cases was 79% (recall). The F1 score with a 
value of 83% indicates a good balance between precision 
and recall. In the variable importance ranking for the 
classification model, the first six variables jointly presented 
74% importance (Figure 2). The model worsened when 
using only the six most important variables for 
classification, increasing the number of errors (Table 3). 
Therefore, variable selection was dispensed with for this 
area. Thus, we used all variables to map the presence and 
absence of weeds in the pasture area (Figure 3).

 
TABLE 2. Confusion Matrix. Classification of presence-absence of broadleaf weeds in Area A. 

  Predicted 

  
Presence 

1 
Absence 

0 

Observed 

Presence 
1 

17 
(TP) 

2 
(FN) 

Absence 
0 

4 
(FP) 

15 
(TN) 

 

 

FIGURE 2. Ranking of variable importance for classifying the presence-absence of broadleaf weeds in Area A. 
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TABLE 3. Confusion Matrix. Classification of the presence-absence of broadleaf weeds in Area A by using the selected 
variables. 

  Predicted 

  
Presence 

1 
Absence 

0 

Observed 

Presence 
1 

15 
(TP) 

4 
(FN) 

Absence 
0 

4 
(FP) 

15 
(TN) 

 

 

FIGURE 3. Maps of predictor variables and presence-absence map of broadleaf weeds in Area A.  
 

In cultivating sorghum (Area B), the model showed 
inferior results compared with Area A but still had a 
satisfactory capacity to classify the presence and absence of 
weeds (Table 4). The model indicated the absence of weeds 
where they were present more times, presenting 6 FN (Table 
4). Some infested points could potentially miss receiving 
control. Despite this, it made only one error in indicating 
presence where they were absent, 1 FP. Regarding the 
metrics generated from the confusion matrix, the model 
correctly classified 74% of all samples in the test set 
(accuracy). Of the times the model predicted the presence 
of weeds, 67% of these predictions were correct (precision). 

The model correctly predicted 57% of samples from the 
absence of weeds class, i.e., only the presence of sorghum 
(specificity). Additionally, the proportion of true positives 
(correctly classified positive cases) concerning the total real 
positive cases was 92% (recall). The F1 score was 77%, 
indicating a good balance between precision and recall. In 
the variable importance ranking for the classification 
model, the first three variables jointly presented 73% 
importance (Figure 4). The predictive potential of the model 
remained the same using only three variables as predictors 
in Area B; therefore, we used them to create the map of the 
presence and absence of weeds (Figure 5). 
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TABLE 4. Confusion Matrix. Classification of the presence-absence of broadleaf weeds in Area B. 

  Predicted 

  
Presence 

1 
Absence 

0 

Observed 

Presence 
1 

8 
(TP) 

6 
(FN) 

Absence 
0 

1 
(FP) 

12 
(TN) 

 
FIGURE 4. Ranking of variable importance for classifying the presence-absence of broadleaf weeds in Area B. 

 

 

FIGURE 5. Map of selected predictor variables and presence-absence map of broadleaf weeds in Area B. 
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In both areas, at least one positional variable (X or Y 
coordinates) was identified as more important (Figures 2 and 
4). The significance of these variables in classifications may 
be associated with specific environmental characteristics, 
such as wind speed and direction, which influence the 
formation of weed seed banks in the areas (Pallavicini et al., 
2020). Additionally, this may indicate the existence of spatial 
autocorrelation. In this context, the presence of spatial 
patterns, such as aggregation commonly observed in the 
distribution of these plants, favors site-specific weed 
management (SSWM), where herbicides are applied only in 
areas where these plants are present (Martín et al., 2015). 

Among the vegetation indices, CIgreen, especially in 
Area B, stood out as one of the most important for 
classification (Figures 2 and 4). This index is efficient for 
distinguishing chlorophyll levels among species with 
distinct characteristics, as is the case with crops such as 
soybeans (broad leaves) and corn (narrow leaves) (Gitelson 
et al., 2005). According to these authors, this results from 
soybeans, besides having a higher amount of chlorophyll on 
the adaxial surface of the leaves, having a predominantly 

horizontal leaf arrangement, whereas corn has a more 
hemispherical shape in the distribution of leaf angle when 
viewed from above, contributing to such differentiation. 
Such characteristics are also observed in broad-leaved 
weeds and crops evaluated in our research. In Area B, the 
map of the presence and absence of weeds also shows a 
spatial distribution similar to CIgreen, where points with 
weeds had lower vegetation index values, i.e., lower 
biomass (Figure 5). This was indeed observed in the field. 
In places where weeds were absent, and sorghum was in full 
development, the crop canopy was closed (Figure 6 A-B), 
whereas in places infested with weeds, the vegetation was 
less dense, even showing exposed soil (Figure 6 C-D). This 
result corroborates with Pallavicini et al. (2020), who 
observed in cereal crops (narrow leaves) that weeds were 
predominantly annual smaller in size compared with 
cultivated plants. In addition, at the time of data collection, 
the sorghum was more developed than the pasture (Figure 7 
A-B). Therefore, in Area B, compared with Area A, this 
architectural difference observed between the weeds and the 
sorghum favored their differentiation by spectral data.

FIGURE 6. Photos of Area B, sorghum crop. A and B – sorghum in full development in locations without broadleaf weeds, 
and C and D – locations with broadleaf weeds. 

A B

C D
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FIGURE 7. Photos of the areas on the sampling dates. A – Area A, pasture. B – Area B, sorghum crop. 
 

Identifying and preventing weed growth in 
agricultural areas represents a significant challenge, which 
can increase expenses related to the excessive use of 
herbicides. For example, Rozenberg et al. (2021) used an 
RPA  to map weeds in onion fields and found that, in five of 
the 11 analyzed fields, weed coverage was less than 7%. 
However, according to the authors, herbicide use covered the 
entire area in all 11 fields. This practice needs to consider 
weeds’ ecology and aggregation characteristics, which rarely 
cover the entire area. Consequently, excessive spending is 
incurred even when unnecessary. In our research, weed maps 
indicated that these plants were present in 70% of the pasture 
area (Figure 3). On the other hand, in sorghum cultivation, 
these plants covered only 42% of the area (Figure 5). In this 
case, especially in sorghum cultivation, applying herbicide 
only in infested areas could generate savings and avoid 
excessive use of these pesticides. In practice, employing a 
digital weed mapping strategy that integrates environmental 
information as predictors in a machine learning algorithm 
allows to create maps with reasonably low predictive errors, 
as observed. Therefore, targeted herbicide applications can 
be utilized given the specificity of certain active substances 
for controlling broadleaf weeds (Gutjahr et al., 2012). 

However, as observed in our results, we must 
emphasize that the variables explaining the spatial behavior 
of weeds vary between cultivation areas. This results from 
each area presenting unique characteristics, with 
environmental variables (e.g., slope, wind, texture, moisture, 
and soil acidity) spatially distributed in diverse ways. 
Consequently, the influence of these variables on the spatial 
and temporal patterns of weeds will vary, and environmental 
variables will influence each weed group differently. In this 
context, Pätzold et al. (2020) observed that, despite the 
diversity of weed species varying over ten years of 
observations, spatial patterns (weed patches) remained 
stable. This temporal stability suggests that the same 
environmental variables could be used for classifying weed 
occurrences in future crops in the same area. However, this 
will depend on the correct selection of predictor variables in 
the production area since using variables based on 
correlations derived from knowledge in other areas can 
compromise mapping accuracy (Pusch et al., 2023). 
Therefore, considering that digital data is often readily 
available, working with a comprehensive set of variables, 
followed by selection techniques with an evaluation of the 

metrics generated in predictions, is more advantageous than 
excluding or selecting variables based solely on the initial 
perception of the analyst. In this context, when evaluating 
the metrics of our predictions in an integrated manner, we 
observed good performance of the models. Thus, the 
variables we employed proved to be suitable for mapping 
broadleaf weeds in narrow-leaf crops. 

Currently, farmers widely adopt the use of spectral 
data for weed sampling guidance. However, integrating 
spectral images and environmental variables as targeted 
sampling predictors can make these efforts more efficient. 
Consequently, samples would be collected in locations with 
a higher probability of weed occurrence, reducing the need 
to collect numerous samples scattered throughout the area of 
interest. Furthermore, before crop establishment, pre-
emergence application is carried out across the entire area 
due to the lack of information about where weeds will 
emerge. With previous studies on the stability of the seed 
bank of these weeds over time in the production area, the 
strategy combining variables for weed mapping can also be 
tested to assist in identifying locations for pre-emergence 
herbicide application. Combining these techniques with 
coexistence periods can also benefit integrated weed 
management, reducing excessive herbicide use and 
promoting agroecosystem sustainability. 
 
CONCLUSIONS 

The combination of machine learning techniques and 
multiple sources of information related to weed infestations, 
such as vegetation indices, soil data, topographical 
characteristics, and spatial information (X and Y coordinates) 
represents an efficient way to map and manage the occurrence 
of broadleaf weeds in narrow-leaf crops. 
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