
DOI: https://doi.org/10.1590/1980-5373-MR-2023-0334
Materials Research. 2024; 27:e20230334 

Exploring the Impact of Chemical Composition on the Oxidation Resistance of 2000 Series 
Aluminum Alloys using Extreme Vertices Design

André da Silva Antunesa* , Samuel Augusto Wainerb, João Guilherme Jacon de Salvoa,c 

aInstituto Tecnológico de Aeronáutica, Departamento de Materiais e Processos, São José dos Campos, SP, Brasil.
bInstituto Tecnológico de Aeronáutica, Departamento de Matemática, São José dos Campos, SP, Brasil.

cInstituto de Aeronáutica e Espaço, Divisão de Materiais, São José dos Campos, SP, Brasil.

Received: July 24, 2023; Revised: October 31, 2023; Accepted: November 30, 2023

This research investigates optimizing the properties of 2024 aluminum alloy using the Extreme 
Vertices Design (EVD) method and linear regression. It examines the oxidation behavior of the alloy 
during solubilization heat treatment, specifically focusing on the effect of magnesium addition leading 
to a dark oxide layer. The study employs a comprehensive experimental design and regression models 
to estimate the specific oxidation rate constant (k). Analysis of results reveals variations in oxidation 
behavior among alloys and the influence of aluminum, copper, and magnesium concentrations on 
the oxidation rate. The regression analysis yields a comprehensive equation: k = -0.01Al - 4.06Cu - 
15.71Mg + 4.52Al·Cu + 17.01Al·Mg + 418.5Cu:Mg - 447.7Al·Cu·Mg, with statistically significant 
results (p < 0.05) for all terms. An increase in magnesium concentration was found to enhance the 
oxidation rate, implying a higher alloy susceptibility to oxidation. These findings underline the value 
of the EVD method and regression analysis in alloy property optimization, thus aiding in the design 
of aluminum alloys with improved oxidation resistance.
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1. Introduction
Aluminum alloys are widely used in industry due to 

their desirable mechanical and physical properties. Among 
the aluminum alloys, the 2000 series alloys, particularly 
the 2024 alloy, have high strength and excellent fatigue 
resistance, making them attractive for aerospace and 
automotive applications. However, the optimization of these 
properties requires the development of new alloy designs1-4. 
The aluminum alloy AA 2024 is valued for its mechanical 
strength characteristics, with the primary hardening mechanism 
attributed to the precipitation of Al2Cu and Al2CuMg. Given 
this intrinsic relationship, the concentrations of copper 
(Cu) and magnesium (Mg) in the alloy play a pivotal role 
in determining the quantity and nature of the precipitates 
formed. Therefore, a strategic approach to adjusting and 
optimizing the properties of the AA 2024 alloy involves 
manipulating these Cu and Mg proportions.

One method to optimize the properties of aluminum 
alloys is the Extreme Vertices Design (EVD) coupled with 
linear regression. This method allows for the development 
of new alloys with desirable properties by exploring the 
composition space and predicting the behavior of the alloy 
based on a mathematical model, In the field of materials 
science and engineering, the EVD methodology has 
emerged as a pivotal tool for optimizing and investigating 
various materials and processes. Its applications range from 
optimizing the mechanical properties of Glass Reinforced 
Concrete (GRC) mixtures5 to the precise determination of 
optimal Al-Si-Ni powder ratios for achieving uniform weld 

microstructures without delamination6. In the area of alloy 
design, it was identified that the only publication employing 
the EVDis a study focused on powder metallurgy to produce 
the W-Ni-Cu alloy. The study found that the multiple 
correlation coefficient R2 of the regression equation is about 
one and that the EVD method can be used to optimize the 
composition of W-Ni-Cu alloys and predict the properties 
of the alloys. These results suggest that the use of EVD in 
alloy design should be more widely disseminated, as it is 
an effective technique that has shown promising results7. 
Surprisingly, despite the notable efficiency of the EVD 
technique, it remains extremely underpublicized. Research 
in metallurgy, without the application of this method, often 
relies on trial and error approaches, indicating that metallic 
alloys are in need of optimization.

The 2024 alloy solution heat treatment is typically 
carried out at around 500°C for 4-16 hours8. However, in 
some cases, prolonged exposure to elevated temperatures 
during the process can result in undesirable oxidation of the 
alloy. One major challenge in the development of aluminum 
alloys is the occurrence of oxidation during the solution heat 
treatment9. In previous experiments in our laboratory, it was 
shown that the addition of magnesium to the alloy had been 
identified as a major cause of oxidation during the treatment, 
which can lead to undesirable changes in the properties 
of the alloy. In this study, we manufactured alloys with 
different chemical compositions. As a result, we observed the 
formation of a dark oxide layer on the surface of the alloy, 
which became thicker with increasing magnesium content 
after the solubilization treatment at 520°C for 12 hours. *e-mail: antunes@ita.br
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We investigated the parabolic rate law to address this 
challenge, establishing a parabolic relationship between the 
specific oxidation rate and time.

Understanding the oxidation behavior of alloys during 
the solubilization treatment is critical to avoid excessive 
oxidation and limit the composition range for subsequent 
optimization of their mechanical properties. To achieve this 
goal, the parabolic rate equation, given by m/A = k*t^(1/2), 
can be used to describe the kinetics of oxidation behavior, 
where m/A represents the specific mass increment (g.cm-2), 
t is time (h), and k (g.cm-2. h-(1/2)) is the specific oxidation 
rate constant of the material.

Therefore, this work aimed to determine the composition 
range and treatment time without significant oxidation during 
solubilization for subsequent optimization of the mechanical 
properties of the alloy by using the parabolic rate equation 
to study the oxidation behavior of the alloy.

2. Materials and Methods
In the present study, the R package “mixexp” was used to 

design the composition of the alloys. Specifically, the “Xvert” 
function was employed to create the experimental design 
using the Extreme Vertices Design approach10. The design 
was created using three factors, with lower and upper limits 
defined as 0.93 wt.% for Al, 0.04 wt.% for Cu, 0.01 wt.% for 
Mg, and 0.95 wt.% for Al, 0.06 wt.% for Cu, and 0.03 wt.% 
for Mg, respectively. Overall, this approach allowed for 
systematically exploring the design space and identifying 
promising compositions for subsequent processing and testing. 
Figure 1 shows the distribution of experimental points in the 
ternary diagram, and Table 1 presents the experimental design 
table obtained by the Xvert function. The central point was 
triplicated to improve the fitting of the experimental model.

Nine ingots were produced using primary aluminum, 
aluminum-copper master alloys with 32wt.% copper 
and aluminum-magnesium master alloy with 90wt.% 
magnesium. The proportions for each alloy composition 
were calculated, and the melting charge was prepared. For 
each ingot, primary aluminum was initially melted at 720°C, 
followed by adding the aluminum-copper master alloy. After 
15 minutes of dissolution, the bath was stirred, degassed 
with hexachloroethane, andremoved the slag. Then, a flux 
of magnesium chloride and potassium chloride was added 
to prevent magnesium oxidation, followed by the addition 
of aluminum-magnesium master alloy. After 5 minutes of 
dissolution, the bath was stirred, the slag was removed, and 

the liquid metal was cast into a refractory-coated conical steel 
ingot mold. The weight of each ingot was approximately 
90 grams. The nominal chemical composition of the produced 
ingots is presented below.

The ingots were sliced using a metallographic cutting disc 
and squared to obtain approximately 20 x 20 mm samples. 
Subsequently, the samples were subjected to an oxidation 
treatment at a temperature of 520°C for varying durations 
of 1, 2, 3, 4, 5, 7, 9, and 28 hours. The initial mass of each 
sample and the mass after each treatment were measured 
using an analytical balance. A dataset was created with the 
mass increment for each composition at each treatment time, 
totaling 72 instances.

In this study, the parabolic rate equation was used to 
calculate the value of k for each ingot. The equation is expressed 
as m/A = k*t^(1/2), where m/A represents the specific mass 
increment (g.cm-2), t is time (h), and k (g.cm-2. h-(1/2)) is a 
constant related to the material properties and oxidation 
conditions. This approach allowed for the evaluation of the 
oxidation behavior of the alloys and the identification of the 
composition with the best oxidation resistance.

In this study, the modeling approach used the MixModel 
function from the R package “mixexp”. The response variable 
“k”, representing the specific oxidation rate constant, was 
modeled as a function of Al, Cu, and Mg alloy components. 

Figure 1. Ternary plot of the experimental design created using the 
“Xvert” function from the R package “mixexp” with the Extreme 
Vertices Design approach. The central point represents three 
superimposed points.

Table 1. Chemical composition of produced ingots in weight percent of Al, Cu, and Mg.

Alloy Al / wt.% Cu / wt.% Mg / wt.%
A1 93.0 6.0 1.0
A2 94.0 5.0 1.0
A3 95.0 4.0 1.0
A4 93.7 4.7 1.7
A5 93.7 4.7 1.7
A6 93.7 4.7 1.7
A7 93.0 5.0 2.0
A8 94.0 4.0 2.0
A9 93.0 4.0 3.0
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The MixModel function allowed for fitting a regression model 
to estimate the relationship between the alloy components 
and the specific oxidation rate constant.

3. Results and Discussion
Figure 2 displays the specific mass increment as a function 

of oxidation time for nine different alloys (A1 to A9). Each 
data point represents experimental measurements, while the 
lines represent regression curves fitted to the data for each 
alloy. The y-axis represents the specific mass increment 
(g/cm2), and the x-axis represents the oxidation time (h). 
The legend in the top-right corner of the graph provides a 
color/shape correspondence for each alloy.

The graph clearly shows variations in the specific mass 
increment among the different alloys throughout the oxidation 
process. Notably, alloys A7 and A9 exhibit a significant 
increase in the specific mass increment compared to the 
other alloys, indicating a higher susceptibility to oxidation. 
On the other hand, alloys A1, A2, and A3 demonstrate a 
relatively low specific mass increment, suggesting a higher 
oxidation resistance. It is worth noting that the inclination 
of the regression lines represents the oxidation rate constant 
(k), with steeper slopes indicating higher values of k. 
Therefore, a greater slope of the regression line implies a 
higher k and, consequently, lower resistance to oxidation 
for the respective alloy.

The regression analysis results, presented in Table 2, 
provide each alloy’s oxidation rate constant (k) values 
and the adjusted R-squared and p-value of the regression 
fit. Based on the table results, we can conclude that the 
regression model fit is statistically reliable for most alloys. 
It is indicated by the adjusted coefficient of determination 
(Adjusted R-squared) values being close to 1, suggesting that 
the model explains a substantial portion of the data variability. 

Additionally, the p-values of the model fit are consistently 
low for all alloys, signifying the statistical significance of 
the fit. Lower p-values reflect higher statistical confidence in 
the model fit. In this case, the p-values range from 2.5E-07 
to 2.8E-05, all providing statistically solid evidence that 
the model effectively describes the relationship between 
the oxidation rate (k) and the oxidation time of the alloys.

To further understand the oxidation behavior of the alloys, 
we obtained the coefficient estimates (k) through regression 
analysis, as presented in the previous discussion. Building 
upon these results, we now investigate the influence of 
chemical concentration on the value of k. By examining the 
coefficient estimates and their corresponding significance, we 
can gain valuable insights into how chemical composition 
changes impact the oxidation rate. Table 3 presents the 
coefficient estimates, standard errors, t-values, and p-values 
for each chemical concentration variable in the regression 
analysis model. The model will be a polynomial involving 
the concentrations of Al, Cu, and Mg in the sample and the 
interaction terms Al:Cu, Al:Mg, Cu:Mg, and Al:Cu:Mg. 

Figure 2. Specific mass increment as a function of oxidation time 
for different alloys.

Table 2. Regression Analysis Results for Specific Mass Increment of the Alloys.

Alloy k / g.cm-2. h-(1/2) Adjusted R-squared p-value
A1 0.47E-04 0.93 5.8E-05
A2 0.67E-04 0.77 2.5E-03
A3 0.79E-04 0.85 7.3E-04
A4 2.37E-04 0.99 2.5E-07
A5 2.63E-04 0.98 8.0E-07
A6 2.63E-04 0.98 8.0E-07
A7 6.46E-04 0.99 3.2E-04
A8 3.29E-04 0.97 5.2E-06
A9 7.91E-04 0.95 2.8E-05

Table 3. Coefficient Estimates of the Regression Analysis for the Influence of Chemical Concentration on k.

Coefficients Estimate Std. Error t value Pr(>|t|)
Al -1.157e-02 1.728e-03 -6.698 0.0216
Cu -4.062e+00 5.405e-01 -7.515 0.0172
Mg -1.571e+01 1.927e+00 -8.153 0.0147

Al:Cu 4.519e+00 6.053e-01 7.466 0.0175
Al:Mg 1.701e+01 2.092e+00 8.132 0.0148
Cu:Mg 4.185e+02 4.668e+01 8.965 0.0122

Al:Cu:Mg -4.477e+02 5.010e+01 -8.937 0.0123
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The coefficient estimates provide insights into the magnitude 
and direction of the effect of each chemical concentration 
on the oxidation rate constant (k). The t-values and p-values 
indicate the statistical significance of these effects, providing 
evidence for the influence of chemical concentrations on the 
oxidation process.

Firstly, the standard errors represent the precision of the 
coefficient estimates. Smaller values indicate a higher level 
of precision, suggesting a more reliable estimation of the 
true population coefficient. Our analysis shows relatively 
tiny standard errors for most coefficients, indicating good 
precision in estimating their values. Secondly, the t-values are 
calculated by dividing the coefficient estimate by its standard 
error. A higher absolute t-value indicates a greater coefficient 
significance in the model. In our results, several coefficients 
exhibit large t-values, suggesting their strong influence on 
the oxidation rate. Lastly, the p-values reflect the statistical 
significance of each coefficient. They indicate the probability 
of observing a coefficient as extreme as the one estimated, 
assuming the null hypothesis of no relationship between the 
predictor variable and the response variable. In our study, 
most coefficients have p-values below the conventional 
significance level of 0.05, providing strong evidence against 
the null hypothesis and supporting a relationship between 
the chemical concentrations and the oxidation rate.

The results, taken together, indicate that the regression 
model effectively describes the data and provides meaningful 
insights into the influence of chemical concentrations on 
the oxidation rate of the alloys. The statistically significant 
coefficients and their precise estimation support the model’s 
reliability, reinforcing the understanding of the complex 
interplay between alloy composition and oxidation behavior.

The regression analysis model has resulted in a comprehensive 
equation that explains the specific oxidation rate constant (k) in 
terms of the chemical compositions of the alloys. The equation 
provides detailed insights into the combined and individual 
effects of Al, Cu, and Mg on the oxidation rate. This complex 
relationship between the alloy composition and its oxidation 
behavior underscores the importance of a delicate balance 
in alloy composition to optimize its resistance to oxidation. 
It’s important to note that this equation is constrained to the 
parameters of the experimental design, with the composition 
limits defined explicitly as 0.93 to 0.95 wt.% for Al, 0.04 to 
0.06 wt.% for Cu, and 0.01 to 0.03 wt.% for Mg, and it is 
strictly applicable within this boundary.

0.01 4.06 15.71 4.52 .
17.01 . 418.5 . 447.7 . .

k Al Cu Mg Al Cu
Al Mg Cu Mg Al Cu Mg

= − − − + +
+ −

 

Figure 3 displays the mixture effect plots illustrating the 
impact of aluminum (x1), Copper (x2), and Magnesium (x3) 
concentrations on the oxidation rate constant (k). Each plot 
represents these chemical components’ individual and combined 
effects on k. This graphical representation facilitates the 
identification of trends and interactions among the component 
concentrations, contributing to a better understanding of how 
each component and its combinations influence the material’s 
resistance to oxidation. It can be observed that from the center, 
an increase in the amount of magnesium causes a significant 
increase in the value of k. At the same time, the increment of 
the other elements is less significant.

Figure 4 shows a Pseudo Component Ternary Plot of the 
Regression Model. The plot shows the relationship between 
the alloy components Al (aluminum), Cu (copper), and Mg 
(magnesium) and the specific oxidation rate constant (k). The 
plot is based on the fitted regression model and represents 
the predicted values of k for different combinations of 
alloy compositions. The axis represents Al, Cu, and Mg 
concentrations, while the color intensity represents the specific 
oxidation rate constant (k). The contour lines indicate the 
regions of similar k values. The plot is generated using the 
ModelPlot function from the R package “mixexp”.

Notice that as the amount of magnesium increases, the k 
index also increases, indicating lower resistance to oxidation 
of the alloy. Additionally, it is essential to observe that the 
contour lines in the magnesium corner are not parallel to the 
copper axis, suggesting an interaction between magnesium and 
copper. This interaction implies that an increase in magnesium 
and copper concentrations contributes to an increase in k, 
although the effect is more pronounced for magnesium.

Figure 3. Mixture Effect Plots for Aluminum (x1), copper (x2), 
and magnesium (x3) concentrations.

Figure 4. Pseudo Component Space Ternary plot of the Regression 
Model. The plot shows the relationship between the alloy components 
Al (aluminum), Cu (copper), and Mg (magnesium) and the specific 
oxidation rate constant (k).
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Further discussion on this observation can be found 
in Figure 3. We can correlate Figures 3 and 4 as follows: 
If we increase variables x1, x2, and x3, i.e., deviate from the 
centroid in the positive direction, the value of k increases 
significantly for x3, while it decreases for x1 and x2. 
However, if we decrease variables x1, x2, and x3, i.e., deviate 
from the centroid in the negative direction, the value of k 
increases considerably for variable x1, increases very little 
for variable x2, and decreases for variable x3.

Within the confines of this work, we did not specifically 
identify the oxides formed on the alloy surface. Based on 
observations and existing literature, we speculate that the 
oxidation rate might be influenced by the phases present on 
the surface. The phases of the aluminum matrix, along with 
frequently observed precipitates in the alloy such as Al2Cu 
and Al2CuMg, could play a significant role in this context. 
The proportion of these phases and their potential mode of 
oxidation (be it through pure oxides, represented by XmOn, 
or mixed compounds indicated by XmYnOp) might relate 
to the value of the rate constant k. Moreover, it’s relevant to 
consider a potential kinetic influence of these phases, as they 
might have originated during the alloy’s slow solidification. 
At the oxidation temperature used, such phases might 
gradually dissolve into the alloy, theoretically influencing 
the oxidation kinetics. However, the exact significance of 
each of the mentioned phenomena remains unknown to us. 
We emphasize that our analysis is a macroscopic attempt 
to elucidate potential microscopic effects suggested above.

4. Conclusions
This study investigated the optimization of aluminum 

alloy properties, specifically focusing on the 2024 alloy, 
widely used in aerospace and automotive applications. The 
Extreme Vertices Design (EVD) coupled with linear regression 
proved to be an effective method for designing new alloys 
and predicting their properties. By systematically exploring 
the composition space using EVD, we identified promising 
compositions for subsequent processing and testing.

One major challenge in aluminum alloy development is 
the occurrence of oxidation during the solubilization heat 
treatment process. Our findings revealed that increased 
magnesium content resulted in a higher susceptibility to 
oxidation, forming a thick oxide layer on the alloy’s surface. 
We studied the oxidation behavior using the parabolic rate 
equation and established a relationship between the specific 
oxidation rate and time.

The findings emphasized the importance of carefully 
considering the magnesium content to avoid undesirable 
oxidation during the solubilization heat treatment. However, 
future studies should focus on evaluating the beneficial effects 
of beryllium on oxidation resistance during the solubilization 
process of aluminum alloys, as mentioned by Zhu et al.11.
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