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ABSTRACT: Physical properties of the Technosols formed by the tailings deposition 
may constitute a physical barrier that limits water movement and plant development 
due to the properties received from those sediments. This study aimed to evaluate the 
physical quality of the Technosols formed by the deposition of sediments displaced by 
the Fundão Dam failure, Mariana, Minas Gerais State, Brazil, based on the evaluation of 
physical properties and Load Bearing Capacity Models (LBCM). For that, three areas under 
different vegetation types were selected: eucalyptus (Euc), forest with human-assisted 
revegetation (RF), and forest with native vegetation (NF). Three sampling subareas were 
demarcated in each area: non-impacted areas (Ni), and Technosols formed in directly 
impacted areas (Di), and partially impacted areas (Pi). Undisturbed samples were collected 
in two layers and subjected to the uniaxial compression test after equilibration at five 
matric potentials. Soil compression curves and LBCM were determined. Soil bulk density 
(BD), total porosity (TP), organic matter (OM), granulometry, and particle density (PD) 
were also determined. Clay content was less significant, and the silt and very fine sand 
content was significantly higher in the Technosols, generating an increase in BD and 
reduction in TP. Technosols generally exhibited greater load-bearing capacity due to 
higher pre-consolidation pressure values attained by these soils due to the lower clay 
and OM contents. High resistance of these soils is one limitation for revegetation of the 
areas evaluated, being necessary management practices to improve physical properties 
of the Technosols.
Keywords: tailings deposition, soil physical quality, load-bearing capacity models, pre-
consolidation pressures, Technosols.
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INTRODUCTION
Mining activity is highly technified and generates wealth for a country. However, despite 
all the technology involved, the environmental impact from rupture of tailings retention 
structures leads to enormous environmental and social damage to the population, as 
occurred in Mariana (2015) and Brumadinho (2019) in Minas Gerais, Brazil (Schaefer  
et al., 2016; Carmo et al., 2017; Armstrong et al., 2019).

In Mariana, the tailings led to considerable environmental damage that involved 
displacement of 50 million m3 of sediments, affecting not only the waters of the Doce 
River, but also around 457.6 ha of forest (Marta-Almeida et al., 2016; Omachi et al., 2018). 
Permanent deposition of tailings of variable depth on the soils in native ecosystems 
and systems under agricultural production produced environmental damage, as well as 
associated economic and social damage.

Deposition of tailings along the edges of the Doce River basin, the thickness of these 
tailings, and the impossibility of removing them are sufficient indicators to classify 
the soils under study as Technosols (Huot et al., 2012, 2015; Asensio et al., 2013), a 
concept introduced in 2006 by the World Reference Base for Soil Resources (WRB-FAO)  
(IUSS Working Group WRB, 2006). According to this classification system, Technosols are 
soils constituted in the upper 1.00 m by 20 % or more (in volume) of material of human 
origin, whose properties and pedogenesis are dominated by their technical origin.

In a similar manner, in 2001, discussions began regarding the need to consider the 
limitations of the Soil Taxonomy Classification System for classifying soils impacted by 
human activity, producing revision and modification of the system in 2014 (Soil Survey 
Staff, 2014) to thus ensuring adequate classification and survey of altered soils and 
transported by humans (Wilding and Ahrens, 2002; Echevarria and Morel, 2015).

Technosols are found worldwide where human activities have led to artificial soil formation, 
sealing of original soils, or extraction of materials (Isric, 2023). They are generically defined 
as soils with indications of pedogenetic development, whose properties and functions 
were defined by human action (Séré et al., 2010; Oliveira Filho and Pereira, 2023). These 
soils may occur in urban, industrial, traffic, mining, and military areas (Leguédois et al., 
2016). Thus, mining generates large surfaces of degraded Technosols with an annual 
production of soil material of about 21 Gt yr-1 (Hayes et al., 2014; Leguédois et al., 2015).

Although the information available on Technosoils is scarce and recent, interest in 
monitoring and evaluation has grown. Studies have shown that the properties of this 
Technosol formed by tailings deposition are completely different from original soils in 
their physical, chemical, and biological properties (Schaefer et al., 2015; Guerra et 
al., 2017; Batista et al., 2020; Couto et al., 2021), limiting the adoption of soil use and 
management practices.

In relation to soil physical properties, the behavior of these waste materials is quite 
different from those of conventional soils (Radhika et al., 2020). Some studies have 
indicated the predominance of sand and silt fractions in the tailings (Silva et al., 2006, 
2015). This can cause a physical barrier that limits water movement and the capacity 
for plant development. Therefore, it is extremely necessary to evaluate soil physical 
quality, which will contribute to understanding the processes involved (Stefanoski  
et al., 2013; Rabot et al., 2018).

Physical parameters used to evaluate soil physical quality include load-bearing capacity, 
analyzed by models (Karlen, 2004; Kondo and Dias Junior, 2014). Load-bearing capacity 
is defined as the capacity of the soil structure to resist induced stresses without 
irreversible changes in the three-dimensional arrangement of the constituent soil particles  
(Alakukku et al., 2003; Tassinari et al., 2021).
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This study aimed to create and compare load-bearing capacity models for Technosols 
formed by iron mine tailings deposition from the Fundão Dam, seeking to identify the 
most restrictive conditions for plant development in accordance with soil use, the impact 
level of the tailings, and the soil layer. We hypothesize that the Technosols formed from 
the tailings will have greater physical restrictions than original soils.

MATERIALS AND METHODS
Study area is located in southeast Brazil, in the state of Minas Gerais (Figure 1a), in the 
municipality of Mariana (Figure 1b). The soils of this area were affected by the rupture of 
the Fundão dam located along the banks of the Gualaxo do Norte River nearly four years 
after the deposition of the tailings. Three types of areas reflecting diverse vegetation  
(Figures 1c and 1d), considering their distance from the dam and, consequently, the 
displacement of the tailings, were chosen for study: an area of planted eucalyptus with 
human-assisted revegetation (Euc) located 25 km from the dam by the river channel; an 
area of forest with human-assisted revegetation through sowing of herbaceous plants 
(RF) located 38 km from the dam; and an area of forest with native vegetation (NF) 
whose tailings moved 43 km downstream (Figure 1d).

In each type of vegetation, three sampling areas with different levels of impact were 
demarcated: areas not impacted or without tailings located at the top of the landscape 
(Ni); and two areas with Technosols: areas partially impacted (Pi) by the rupture of the 
Fundão Dam, with deposition of tailings up to 0.40 m in depth, located on the slope; 
and areas with deposition of tailings up to 1.00 m depth, or directly impacted areas (Di), 
located at the bottom. The location of these areas in the landscape is shown in figure 2.

In each sampling area, five points were selected at random for collection of undisturbed 
samples in two layers: 0.00-0.03 and 0.10-0.13 m. The 0.00-0.03 m layer was chosen 
as the layer most subject to changes by biological activities, and the 0.10-0.13 m layer 
was chosen to represent the greater mechanical resistance in field analyses, which may 
limit root system development.

Undisturbed samples were taken using an Uhland sampler with 6.4 cm diameter and 
2.5 cm height rings. Samples were wrapped in plastic film and treated with paraffin 
wax to preserve their structure. These undisturbed samples were initially prepared 
by removing excess soil from the cylinders, saturated by capillarity, and placed in a 
Richards extractor, where they drained under the potentials (ψ) -10, -33, -100, -500, and  
-1500 kPa, and their weight was determined after equilibrium at each potential (Klute, 
1986). After that, these samples were subjected to the uniaxial compression test (Dias 
Junior and Martins, 2017), applying pressure through compressed air. Pressures applied to 
the samples were 25, 50, 100, 200, 400, 800, and 1600 kPa. Each pressure was applied 
until 90 % of maximum deformation was achieved. Soil compression curves were created 
with these data, where the pre-consolidation pressures (σp) were determined. Potentials 
were represented on the abscissa (x) axis, and the pre-consolidation pressures (σp) 
were represented on the ordinate (y) axis to obtain the load-bearing capacity models 
(Dias Junior et al., 2005) using the Sigma Plot 14 software. These points were fitted to a 
regression of the σp = aѰmb type, in which σp is the pre-consolidation pressure, Ѱm is 
the matrix potential, and the a and b are parameters that represent empirical parameters 
obtained from fitting the model (Severiano et al., 2013). Regressions were fitted through 
the R software, version 4.0.3 (R Core Team, 2020), which was applied to the models of 
pre-consolidation pressure of the soil samples. Estimated soil equations were statistically 
compared using the Snedecor and Cochran (1989) test for linear models, which includes 
a data homogeneity test (F test), the angular coefficient (b), and the significance of the 
linear coefficient (a) of the equation.
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After to performe the tests, samples samples were dried in a laboratory oven at 105 °C 
for 24 h to determine soil bulk density (BD) (Almeida et al., 2017). Total porosity (TP) 
was determined by the expression: TP = (1-BD/PD), in which: BD is soil bulk density and 
PD is particle density (Viana et al., 2017).

Material excess removed from the rings was used as disturbed samples. They were air-dried, 
passed through a 2.0 mm sieve, and used in the following analyses: organic matter 
(OM) (Cantarella et al., 2001); granulometry by the pipette method, with fractionation 
of sand to determine the very fine (VF), fine, media, coarse, and very coarse sand 
fractions (Donagemma et al., 2017); and particle density by the volumetric flask method  
(Viana et al., 2017).

A completely randomized experimental design was set up to statistically analyze the results 
to BD, PD, TP, clay, silt, sand, and sand fractions. Before proceeding with the analysis, 
a transformation that maximizes the likelihood of the normal model was selected for 
each variable (Box and Cox, 1982). On the other hand, when factors and/or interactions 
were detected with significant effects in ANOVA, comparisons of means were conducted 
using the Scott-Knott test (p<0.01).

RESULTS

Characterization and physical properties of the soils

Soils under study belong, in general, to the medium texture group, but the original soils 
are classified in the sandy clay loam texture, while the Technosols range from loam to 
sandy loam texture.

Particle size distribution in the studied soils is shown in figure 3. Soils are clustered 
according to the results of the Scott-Knott test (p<0.01) and classified in an ascending 
manner. Soils with the highest values for each trait or property are always in the 
first groups. Thus, the clay contents were highly variable, generating seven groups  
(Figure 3a). For this trait, the lowest values correspond to Di and Pi (clustered in “d”, 

Figure 1. Location of the areas of interest (a) state of Minas Gerais (MG), municipality of Mariana 
(b), area under study (c), sampling areas and their location in relation to the Fundão Dam (d).
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“e”, “f” and “g”) with clay from 45 to 105 g kg-1. These soils also obtained the highest 
values for silt (419-480 g kg-1) grouped in “a”, in contrast with the Ni soils (“b” and “c” 
groups), which had silt from 165 to 280 g kg-1 (Figure 3b).

In contrast, the soils were separated into only two groups regarding the total sand 
content, with impacted and non-impacted soils in both groups (Figure 3c). In addition, the 
results for very fine sand (VFS) are similar to silt (Figure 3d). For the Ni soils, the values 
ranged from 33 to 65 g kg-1 (group “c”), whereas for the Technosols, the values were from  
189 to 279 g kg-1 (groups “a” and “b”), exhibiting significantly higher values.

The PD (Figure 4) were highly variable in the soils studied, generating seven groups. In 
the first five are the areas under the Technosols (Di and Pi), which have PD from 2.78 to  
2.94 Mg m-3, compared to the Ni soils, which had PD from 2.40 to 2.60 Mg m-3. The highest 
PD corresponded to the soils under RF, with PD of 2.94 Mg m-3 in the two layers evaluated. 
On the other hand, soil bulk density (BD) in the 18 conditions analyzed exhibited four 
homogeneous groups (Figure 5a), with the highest BD corresponding to the Technosols, 
with values from 1.59 to 1.88 Mg m-3 (clustered in “a” and “b”). Regarding total porosity 
(TP), the soils were clustered in three homogeneous groups; in this case, the Technosols 
were clustered in “b” and “c”, with TP from 0.33 to 0.43 m3 m-3, significantly lower than 
in original soils (Figure 5b).

In the case of OM, the results obtained show highly variable in the soils under study, 
giving rise to eight groups (Figure 6). In general, the OM was greater in the soils without 
tailings and clustered in “a”, “b”, “c”, “d”, and “e” (12.3 to 26.3 g kg-1). In Di and Pi, 
OM was 2.7 to 8.9 g kg-1. Thus, in Ni in the three vegetations evaluated, the OM values 
were higher in the surface layer than in the subsurface layer in the following sequence: 
NF > Euc > RF, with values from 17.8 to 26 g kg-1 in the surface layer and from 12.3 to 
19.5 g kg-1 in the subsurface layer. Technosols showed the same trend, except for RFPi, 
which had higher OM contents in the subsurface layer. In Pi and Di, the OM values were 
variable both in the uses and in the layers evaluated, with values from 2.7 to 8.9 g kg-1.

Figure 2. Elevation maps indicating the location of the three vegetation types (1. Euc: eucalyptus; 2. NF: native forest; 3. RF: 
revegetated forest), the sampling areas with different impact levels (Di: directly impacted; Pi: partially impacted; and Ni: not impacted), 
distance between them, and their altitude.
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Results of the correlation between clay content and BD, PD, TP, and OM are shown in 
figure 7. For all traits evaluated, the clay content played a fundamental role in their 
clustering or segregation. Thus, Ni have the greatest clay contents, with less restrictive 
or limiting values for the parameters evaluated, whereas in the soils with lower clay 
contents (Technosols), the properties evaluated were impacted, generating more restrictive 
or limiting values for them.

Load-bearing capacity of the soils

In comparison of the LBCM from soil surface layers (0.00-0.03 m), no differences were 
observed between the Di and Pi soils under different vegetation types evaluated (Table 1), 
and they were clustered in a single model. In Ni, soils also did not differ between different 
vegetation types; therefore, they were clustered in a single model. Consequently, two 
models were obtained for the surface layer of the nine conditions studied (Figure 8a).

In the 0.10-0.13 m layer, as in the surface layer, there were no significant differences 
between angular coefficients and linear coefficients of the Di and Pi soils under different 
vegetation types, and these LBCM were clustered in a single model, as shown in table 
2. The same occurred with the LBCM of the Ni soils, which did not differ significantly 
and were clustered in a single model. Thus, two LBCM were obtained for the subsurface 
layer, as shown in figure 8b.

In the LBCM of the surface layer obtained after clustering (Figure 8a), the value of the 
estimated “a” parameter was 82.0 in the A1 model that clusters the original soils, and 
137.9 in the A2 model that clusters the Technosols. In the same way, the value of “b” 
parameter was from 0.91 to 0.12, respectively (Figure 8a).

The “A1” and “A2” models have an R2 of 0.91 and 0.62, indicating their good fit, considering 
that the fitting parameters had highly significant results, with values lower than 0.01. 
The A2 model has pre-consolidation pressures (PCP) of around 325 kPa under a matric 

Figure 3. Clay (a), silt (b), total sand (c), and very fine sand (VFS) (d) contents clustered by the Scott-Knott test at 1 %, in areas 
affected by the rupture of the Fundão Dam, Minas Gerais, Brazil. Vegetation type: NF (native forest), RF (revegetated forest), 
Euc (eucalyptus). Impact level: Ni (not impacted), Pi (partially impacted), Di (directly impacted). Evaluated layers: 1 (surface  
layer: 0.00-0.03 m), 2 (subsurface layer: 0.10-0.13 m).
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potential of -1,500 kPa, whereas the A1 model has values of 220 kPa at the same potential. 
In contrast, the coefficients of determination (R2) of the B1 and B2 models were 0.87 and 
0.83, respectively, and significant at 1 %, showing the good fit of the models (Figure 8b). 
For these models, the a and b parameters had values of 67.0 and 80.1 (a parameter), 
and 0.23 and 0.21 (b parameter). For the B1 model, the pre-consolidation pressure was 
below 350 kPa at the matric potential of -1,500 kPa, and for the B2 model, it was above 
350 kPa at the same potential.

Table 3 presents the comparison of the LBCM for the 0.00-0.03 and 0.10-0.13 m layers. 
Four final models were obtained, since there were significant differences upon making 
a comparison with the linear model test of Snedecor and Cochran (1989), regardless of 
the layer or the level of impact compared. Since these models were not clustered, they 
conserved the values of the “a” and “b” coefficients, as the R2 already indicated (Figure 9).

DISCUSSION

Soil characteristics and physical properties

Textural variability of the studied soils was determined by the deposition of material 
coming from the dam with high silt and very fine sand content, and low clay content. For 
the total sand values, only two groups were differentiated. Thus, our research shows that 
as a consequence of the low coarse sand contents in the tailings that gave rise to the 
Technosols, the values of this particle size do not represent a criterion of differentiation 
among them and the Ni soils, whereas the finer sands represent a criterion of differentiation.

In this respect, Silva et al. (2015) described the particle size composition of this sediment 
as consisting of around 90 % sand and silt and only 10 % clay, compacted, and with 
low porosity and absence of structure. This information corroborates that of Silva  
et al. (2006); in similar tailings, they observed contents of around 54 g kg-1 coarse 
sand, 729 g kg-1 fine sand, 122 g kg-1 silt, and less than 100 g kg-1 clay. This information 
regarding the characteristics of the tailings explains the granulometry of the Technosols 
evaluated in this study, coinciding with the results of Silva et al. (2021a); their research 
showed that the silt contents in the soils impacted by the dam had a general effect on 
the physical properties of these soils. Similarly, in their research on Technosols formed 
by mining, Kozłowski et al. (2023), characterized the texture of these soils as sandy loam 
because the sand fractions were greater than 50 % and the clays were less than 20 %. 

Figure 4. Particle density (PD), clustered by the Scott-Knott test at 1 %, in areas affected by 
the rupture of the Fundão Dam, Minas Gerais, Brazil. Type of vegetation: NF (native forest), RF 
(revegetated forest), Euc (eucalyptus). Level of impact: Ni (not impacted), Pi (partially impacted), 
Di (directly impacted). Evaluated layers: 1 (surface layer – 0.00-0.03 m), 2 (subsurface layer – 
0.10-0.13 m).
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Clay content in Technosols can also be explained by the nature of the parental material 
already described because, as mentioned, the newly-formed soils have characteristics 
received from the sediment of origin, whereas the higher contents of this size of particles 
in the original soils is a product of the differentiated pedogenesis that occurred in them.

Changes in granulometry can also explain the PD, which changes the physical composition 
and probably the mineralogical composition of the soils because of the origin of the tailings 
deposited. High PD in the profile of Technosolos formed from mining tailings was found 
in recent research (Kaczmarek et al., 2021; Shishkov et al., 2022) and was attributed to 
the characteristics of the origin material. In this sense, Santos et al. (2019) and Couto 
et al. (2021) found a predominance of iron oxides in locations impacted by the Fundão 
Dam. These minerals are typical of tailings dams in the iron mining processes and can 
explain the PD results. For example, Hematite has a PD of 5.3 Mg m-3 (Chen et al., 2019), 
explaining the higher particle density in the Technosols compared to the original soils 
with significantly greater clay content (Figure 7a).

Our results for BD coincide with those of Schaefer et al. (2015), Silva et al. (2016, 2021a) 
and Couto et al. (2021), who evaluated depositions of tailings coming from mining, always 
obtaining higher BD compared to the BD in the soils without tailings. Similarly, Radhika 
et al. (2020) found that Technosoils produced by mining, like those in this research, 
presented BD above 1.7 Mg dm-3, with little variability in the profile. These increases may 
also be related to the lower clay and high silt and sand contents, as already discussed 
(Figure 7b), the soils with highest clay contents (non-impacted soils) have the lowest BD, 
while the Technosols, both those formed by partial impact and those formed by direct 
impact of the tailings, have the highest bulk densities.

However, it is noteworthy that the BD (and consequently lower TP) in these soils may 
have increased beyond the densification of the tailings over the period of pedogenesis 
that occurred in the four years after their deposition, in accordance with the principles 
proposed by Ferreira (2010). In other words, their compaction may have increased by 
the pedogenetic process of densification brought about in this case by the quantity of 
silt (content >400 g kg-1) and very fine sand (content >200 g kg-1) particles. Deposition 
of the non-consolidated material generated remodeling of the topography at the base 
of the lowlands, in the floodplains, and in the colluvial areas, coinciding with the areas 
sampled in this study.

Figure 5. Soil bulk density (BD) (a) and total porosity (TP) (b), clustered by the Scott-Knott test at 1 %, in areas affected by the 
rupture of the Fundão Dam, Minas Gerais, Brazil. Vegetation type: NF (native forest), RF (revegetated forest), Euc (eucalyptus). 
Level of impact: Ni (not impacted), Pi (partially impacted), Di (directly impacted). Evaluated layers: 1 (surface layer – 0.00-0.03 m), 
2 (subsurface layer – 0.10-0.13 m).
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In the same way, the OM content in the soils is correlated with the clay values  
(Figure 7d), which explains why in the Ni soils the organic matter contents were significantly 
greater than in the Technosols, in agreement with the results of Batista et al. (2020), 
Silva et al. (2021a) and Couto et al. (2021). This result is due to organic matter variability 
matter carried by the dam rupture, which produced its accumulation at random in the 
Technosols. The reduction of OM in the Technosols is also closely related to the reduction 
in microbial activity in these soils (Silva et al., 2021a). In this respect, Batista et al. (2020) 
showed that the physical-chemical properties and the presence of low bioavailable heavy 
metals contents in the dam tailings led to changes in the microbial communities through 
reductions in C storage and in biogeochemical cycling of nutrients in comparison with 
those in undisturbed reference soils in the surroundings. This, therefore, has negative 
implications for ecosystem operations.

Total clay content has been indicated as the main characteristic that determines soil 
properties, due to its effect on soil structure, density, porosity, organic matter, and 
other properties (Dexter, 2004; Mazurana et al., 2017; Martín et al., 2018). In this 
study, this response can be seen in figure 7 by the high correlation between clay 
and the other properties evaluated. There is thus a high negative correlation with PD  
(r = -0.88) and BD (r = -0.92), and high positive correlation with TP (r = 0.87) and OM  
(r = 0.91). In the same way, this figure shows the similarity of the Technosols regarding 
the properties evaluated, regardless of their position in the landscape, as a consequence 
of their formation from the tailings that were deposited at random over the original soils, 
which exhibited greater variability resulting from the differentiated pedogenesis in the 
natural environment.

On the other hand, it has already been demonstrated that high silt contents in these 
soils, can result in surface crusting and consequent erosion problems (Rabot et al., 
2018; Cruz et al., 2020; Silva et al., 2021a). In addition, together with the very fine 
sand, silt is associated with the predominance of smaller size pores, with consequent 
problems of permeability, imposing restrictions on water movement (Silva et al., 2018, 
2021b). This occurs because the predominance of these particles generates a structure 
of greater density in which the grains of fine sand and silt occupy the spaces (plug) of 
the pores formed by the coarser sand, leading to the predominance of small pores in the 
soil, as reported by Ribeiro et al. (2007). Therefore, regarding their physical properties, 
the Technosols represent a challenge for management, whether for reforestation for 
biodiversity recovery or for agricultural use, considering that the tailings also reached 
areas under cultivation.

Figure 6. Soil organic matter (OM), clustered by the Scott-Knott test at 1 %, in areas affected 
by the rupture of the Fundão Dam, Minas Gerais, Brazil. Vegetation type: NF (native forest), RF 
(revegetated forest), Euc (eucalyptus). Impact level: Ni (not impacted), Pi (partially impacted), Di 
(directly impacted). Evaluated layers: 1 (surface layer – 0.00-0.03 m), 2 (subsurface layer – 0.10-
0.13 m).
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In contrast, the properties and characteristics of the original soils classified as sandy 
clay loam generally fit within what is expected for soils of this textural classification in 
comparison with diverse studies regarding this type of soil (Ottoni et al., 2014; Obour  
et al., 2019; Arruda et al., 2021). Nevertheless, this comparison does not allow differences 
to be seen regarding their degradation or loss of quality, which is expected in highly 
human-impacted soils.

Figure 7. Relationship between clay content and particle density (PD) (a), soil bulk density (BD) (b), total porosity (TP) (c), and 
organic matter (OM) (d) in areas affected by the rupture of the Fundão Dam, Minas Gerais, Brazil. Impact level: Ni (not impacted), 
Pi (partially impacted), Di (directly impacted).
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Table 1. Comparison of the load-bearing capacity models [σp = 10(a + bƟ)] for the 0.00-0.03 m layer in areas affected by the rupture 
of the Fundão Dam, Minas Gerais, Brazil, according to the procedure described in Snedecor and Cochran (1989)

Model Homogeneity
F

Decision
Linear coef. (log a) Angular coef. (b)

EucDi*NFDi H NS NS Cluster

EucDi+NFDi*RFDi H NS NS Cluster

EucPi*NFPi H NS NS Cluster

EucPi+NFPi*RFPi H NS NS Cluster

EucNi*NFNi H NS NS Cluster

EucNi+NFNi*RFNi H NS NS Cluster A1

EucDi+NFDi+RFDi* 
EucPi+NFPi+RFPi H NS NS Cluster A2

EucDi+NFDi+RFDi+ 
EucPi+NFPi+RFPi
*EucNi+NFNi+RFNi

H NS *, ** Don’t cluster

Vegetation type: NF (native forest), RF (revegetated forest), Euc (eucalyptus). Level of impact: Ni (not impacted), Pi (partially impacted), Di (directly 
impacted). F test of homogeneity of variance for the regression parameters fitted; H: homogeneous; *: significant at 5 %; **: significant at 1 %; NS: 
not significant.
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Soil load-bearing capacity

For all evaluated soils, the σp increased as suction decreased (Figure 9). Similar results 
were observed by several authors (Martins et al., 2013; Severiano et al., 2013; Andrade 
et al., 2017; Tassinari et al., 2019). Both in studies to evaluate load-bearing capacity 
(LBC) and in the compaction evaluation. Reduction in soil resistance in accordance with 
greater moisture content is because as soil moisture content increases, the activity of the 
cohesive forces of the soil and the internal friction decrease, thus leading to a reduction 
in soil mechanical resistance (Assis et al., 2009; Lima et al., 2013).

Technosols had higher σp, and this condition is closely associated with soil granulometry, 
as reported by Severiano et al. (2013), whose research showed that soil resistance 
decreases as clay content increases. In addition, Technosols have high silt contents, and, 

Figure 8. Load-bearing capacity models of the surface layer (0.00-0.03 m) (a) and subsurface layer (0.10-0.13 m) (b) in areas 
affected by the rupture of the Fundão Dam, Minas Gerais, Brazil. Vegetation type: NF (native forest), RF (revegetated forest), Euc 
(eucalyptus). Impact level : Ni (not impacted), Pi (partially impacted), and Di (directly impacted).

A1: EucNi+NFNi+RFNi
σp= 82.0341*Ѱm0.9139, R2= 0.91
A2: EucDi+NFDi+RFDi+ EucPi+NFPi+RFPi: 
σp= 137.9383*Ѱm0.1159, R2= 0.62

B1: EucNi+NFNi+RFNi
σp= 66.9677*Ѱm0.2277, R2= 0.87
B2: EucDi+NFDi+RFDi+ EucPi+NFPi+RFPi: 
σp= 80.1173*Ѱm0.2074, R2= 0.83
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Figure 9. Final soil load-bearing capacity models in areas affected by the rupture of the Fundão 
Dam, Minas Gerais, Brazil.

A1: 0-3cm EucNi+NFNi+RFNi: 
σp= 82.0341*Ѱm0.9139, R2= 0.91
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σp= 137.9383*Ѱm0.1159, R2= 0.62
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σp= 66.9677*Ѱm0.2277, R2= 0.87
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σp= 80.1173*Ѱm0.2074, R2= 0.83
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under these conditions, the internal contact friction becomes significant, increasing soil 
resistance (Carrera et al., 2011).

These results coincide with those obtained by Islam (2023), who evaluated three different 
types of mining tailings, demonstrating that tailings with higher clay content presented 
lower consolidation values. In this sense, Radhika et al. (2020) affirm that tailings deposits 
suffer significant deformations and alterations in the proportion of voids, which, together 
with the effect of the weight of the material itself, produces the consolidation of these 
residues.

Greater resistance of the subsurface layers shown in figure 8 is consistent with 
different studies that show that the soil subsurface layers tend to have greater 
resistance than the surface layers (Oliveira et al., 2003; Araujo-Junior et al., 2011; Iori  
et al., 2012), which is closely related to the greater biological activity and, consequently, 
to the significantly greater OM of the surface layers. Technosols, however, had lower OM, 
as well as high variability in the different uses and layers evaluated, as a consequence 
of microbial activity reduction. This generated the selection of microbial groups more 
adapted to the conditions of the tailings with low OM content and greater silt content, as 
found by Silva et al. (2021a), which makes these newly-formed soils have greater LBC, 
even greater in the surface layer, compared to the non-impacted soils under pressures 
lower than 500 kPa.

In addition to the emergency measures adopted after the collapse of the Fundão Dam, 
programs were later developed and monitored related to coverage and production 
of plant biomass, monitoring of soils (including evaluation of physical, chemical, and 
microbiological properties), and forest restoration activities. At the beginning of 2019, 
increases were already seen in the organic matter contents through the evolution of this 
planting (Fundação Renova, 2019; Ramboll, 2019).

Among the activities developed for tailings management, using a mixture of herbaceous 
seeds (legumes and grasses) stands out to create a root network that can reduce 

Table 2. Comparison of the load-bearing capacity models [σ = 10(a+bƟ] for the 0.10-0.13 m soil layer in areas affected by the 
rupture of the Fundão Dam, Minas Gerais, Brazil, and according to the procedure described in Snedecor and Cochran (1989)

Model Homogeneity
F

Decision Model
Linear coef. (log a) Angular coef. (b)

EucDi*NFDi H NS NS Cluster

EucDi+NFDi*RFDi H NS NS Cluster

EucPi*NFPi H * NS Don’t Cluster

EucPi*RFPi H NS NS Cluster

EucNi*NFNi H NS NS Cluster

EucNi+NFNi*RFNi H NS NS Cluster B1

EucDi+NFDi+RFDi*
EucPi+ RFPi H NS NS Cluster

EucDi+NFDi+RFDi+ 
EucPi+ RFPi*NFPi H NS NS Cluster B2

EucDi+NFDi+RFDi+ 
EucPi+RFPi+NFPi
* EucNi+NFNi+RFNi

H * NS Don’t Cluster

Vegetation type: NF (native forest), RF (revegetated forest), Euc (eucalyptus). Impact level: Ni (not impacted), Pi (partially impacted), Di (directly 
impacted). F test of homogeneity of variance for the regression parameters fitted; H: homogeneous; *: significant at 5 %; **: significant at 1 %;  
NS: not significant.
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instability and sliding of the accumulated tailings (Fundação Renova, 2019). Therefore, 
it is quite probable that these actions, together with the pedogenesis that occurred, 
favored differentiation of the layers of the Technosols, generating significant differences 
in the LBCM.

Furthermore, the A2 and B2 models generally have greater pre-consolidation pressures 
compared to the A1 and B1 models (Figure 9). In these models, greater load-bearing 
capacity is observed nearly throughout the entire suction range evaluated. However, 
for 1000 kPa, the B1 model, corresponding to the subsurface layer of the original soils, 
has an important increase, exceeding that of the A2 model. Nevertheless, the high 
pre-consolidation pressure at low moisture levels shown by the A2 and B2 models 
indicate that these soils may offer greater resistance to root development of the plants, 
as reported by (Dias Junior et al., 2019).

Preconsolidation pressure depends on intrinsic and extrinsic soil factors – texture and 
mineralogy, soil structure and bulk density, management and use, organic matter content 
and characteristics, among others (Richart et al., 2005; Severiano et al., 2013; Dias Junior 
et al., 2019). Thus, it is possible to understand how tailing deposition from mining and 
the Technosols formed from the pedogenesis that occurred on this material have greater 
resistance, even comparable to the soils affected by agricultural activity (Severiano et 
al., 2013; Andrade et al., 2017; Martins et al., 2018; Tassinari et al., 2019), even though 
the Technosols are quite different from the weathered soils of Brazil regarding particle-
size composition.

Considering the physical limitations described for the Technosols studied and based on the 
functionality of these soils, Leguédois et al. (2015) highlight the importance of a holistic 
approach in focus on the multifunctionality of Technosols for providing local ecosystem 
services. Said proposals, commonly aim at recovering agricultural areas degraded by 
agriculture, based on the development of sustainable systems that can promote high 
resilience and conserve natural resources (Mosier et al., 2021; Shahmohamadloo et al., 
2021; Spratt et al., 2021). However, it can be applied to manage the areas under study 
here and the agricultural areas that were impacted by the dam rupture. We understand 
that from the homogeneity of the tailings, which, in turn, generated quite homogeneous 
Technosols, it is possible to predict the current physical condition of all the impacted soils.

To this end, several authors propose the combination of strategies commonly used 
in environmental restoration and soil recovery plans, including the combination of 
various practices, such as cover plants, conservationist growing systems, use of organic 

Table 3. Comparison of the load-bearing capacity models [p = a*Ѱm b] for the 0.00-0.03 and 0.10-0.13 m layers in areas affected 
by the rupture of the Fundão Dam, Minas Gerais, Brazil, and according to the procedure described in Snedecor and Cochran (1989)
Model Homogeneity Linear coef. (log a) Angular coef. (b) Decision
A1 0.00-0.03 m: 
EucNi+NFNi+RFNi * B1 10-13: 
EucNi+NFNi+RFNi'

H NS *, ** Don’t Cluster

A20-3cm: EucDi+NFDi+RFDi+ 
EucPi+NFPi+RFPi * B2 0.10-0.13m: 
EucDi+NFDi+RFDi+EucPi+ RFPi+NFPi

H NS *,** Don’t Cluster

A1 0.00-0.03 m: EucNi+NFNi+RFNi * 
B2 0.10-0.13 m: EucDi+NFDi+RFDi+ 
EucPi+ RFPi+NFPi

H *,** NS Don’t Cluster

B1 0.10-0.13 m: EucNi+NFNi+RFNi * 
A2 0.00-0.03 m: EucDi+NFDi+RFDi+ 
EucPi+NFPi+RFPi

H * NS Don’t Cluster

Vegetation type: NF (native forest), RF (revegetated forest), Euc (eucalyptus). Impact level: Ni (not impacted), Pi (partially impacted), Di (directly 
impacted). F test of homogeneity of variance for the regression parameters fitted; H: homogeneous; *: significant at 5 %; **: significant at 1 %;  
NS: not significant.
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compost, phytoremediation, reforestation and short-term rotational (LaCanne and 
Lundgren, 2018; Schreefel et al., 2020; Fenster et al., 2021; Kaczmarek et al., 2021;  
Kozłowski et al., 2023; Oliveira Filho and Pereira, 2023). Therefore, it is recommended to 
continue investigating the formed Technosols to determine which management practices 
are the most appropriate to improve their properties.

CONCLUSIONS
Higher silt and very fine sand contents in the Technosols generated an increase in soil 
bulk density and a decrease in total porosity. Technosols generally have the highest 
pre-consolidation pressure values and the lowest organic matter values, resulting in 
greater load-bearing capacity for these soils. The high resistance of the Technosols is their 
main physical limitation, and it is necessary to combine various management practices 
to improve their physical properties and full multifunctionality.
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