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We show that the kinetic theory of gases developed by Clausius, Maxwell, and Boltzmann can be understood
as stochastic thermodynamics. This comprehension is based on the recognition that the dynamics used by
Maxwell to demonstrate his distribution of velocities and by Boltzmann to derive his fundamental equation
is a stochastic dynamics. An essential feature of the transition rates devised by Maxwell and used by Boltzmann
is the preservation of energy and momentum. Since the dynamics is stochastic and not deterministic, we may
say retrospectively that the objections to the kinetic theory raised by the paradox of irreversibility is resolved
or is immaterial. Using these transition rates we obtain the Kolmogorov equation associated with the stochastic
dynamics We show that it reduces to the Boltzmann equation if the velocities of distinct molecules can be
considered to be statistically independent. We also show how the Boltzmann H-theorem is related to the
production of entropy.
Keyword: kinetic theory of gases, Boltzmann equation, stochastic thermodynamics.

1. Introduction

The kinetic theory of gases [1–8] was advanced by Clau-
sius in a paper of 1857 [7, 9] and developed by Maxwell
and Boltzmann in the third quarter of the nineteenth
century. They aimed to derive the macroscopic mechan-
ical and thermal properties of gases from the microscopic
structure of gases. This structure was assumed to be a
collection of molecules that move inside a vessel colliding
elastically with the walls of the vessel and with each
other. Maxwell introduced the distribution of velocities
that bears his name in a paper of 1860 [10, 11]. In this
paper he gave an incipient proof of the distribution which
was replaced in a subsequent paper of 1867 [12] by a
notable demonstration. Boltzmann in a paper of 1872
[8, 13] advanced the fundamental equation of kinetic
theory, the Boltzmann equation [14–20], and the concept
of irreversibility through his theorem of irreversibility,
known as the H-theorem.

The demonstrations and derivations carried out by
Maxwell and Boltzmann employed reasonings that were
not taken exclusively from mechanics as we might think
at first sight. They employed the laws of mechanics
intertwined with probabilistic reasonings sometimes in
an implicit form. The concepts of probability were not
used in the static sense only but also in the dynamic
sense, in the sense that we call stochastic. That is, they
implicitly considered that the system follows a stochastic
dynamics [21, 22], a concept that is the basis of the
theories of Markov and of Langevin, that appeared later,
in the first decade of the twentieth century. The time
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evolution of the probability associated with the Markov
theory is governed by the Kolmogorov equation or the
master equation, and that associated with the Langevin
equation is governed by the Fokker-Planck equation, a
significant example of which is the equation used by
Einstein to explain the Brownian motion [21, 22]

If the derivations carried out by Boltzmann came
exclusively from the deterministic Newtonian equations
of motion applied to a collection of interacting particles,
one would conclude that irreversibility contained in the
Boltzmann equation would arise from the deterministic
motion. This cannot be true, and in fact, an objection
to such a conclusion was raised a few years after the
introduction of the Boltzmann equation, which became
known as the paradox of irreversibility [18].

Strictly speaking, Boltzmann and Maxwell did not
derive their results from the deterministic Newton
equations of motion. They derived their results from
a stochastic dynamics supplemented by the condition
that the laws of conservation of energy and momentum
are complied. An important point here is that the
observation of these two laws by a system of interacting
particles does not mean necessarily that the particles
follow the Newton equations of motion. For instance, the
equations of conservation of energy and of momentum of
two particles are not in general sufficient to conclude
that they obey the Newton equations of motion. An
equivalent way of saying the same thing is to consider
the collision of two hard spheres that follow the Newton
equations of motion. It is well known that the laws of
conservation of kinetic energy and momentum alone are
not sufficient to determine the final velocities, except in
one dimension.
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Understanding that the dynamics used by Boltzmann
in deriving his equation is stochastic, and not deter-
ministic, we may say, retrospectively, that the paradox
of irreversibility is resolved, or rather, that it becomes
immaterial. The stochastic aspect of kinetic theory that
we advocate here is generally overlooked by authors
analyzing the early development of kinetic theory. They
tend to emphasize the deterministic Newtonian motion,
supposedly adopted by Maxwell and Boltzmann, as well
as the paradox of irreversibility to the detriment of the
stochastic aspect.

The texts of Maxwell and Boltzmann sometimes
appear to be exempt of probabilistic reasonings. This
happens because in these cases the texts were written
in a language in which the term probability is not
explicit mentioned. For instance, a typical proposition
of Maxwell [10, 11] is: “let the number of particles for
which x lies between x and x + dx, be Nf(x)dx”. This
should be understood as: “let f(x)dx be the probability
of the position of a particle liesbetween x and x + dx”.
This peculiar language which is still used today does
not mean that the authors did not wish to base kinetic
theory on probability grounds. On the contrary. They
employed this type of discourse simply because it was
the probabilistic language of that time.

The key to recognize that the content of the proposi-
tions of kinetic theory is probabilistic lies in the distinc-
tion we must make between probability and frequency of
an event [23]. The first term refers to an abstract concept
which can be understood as a nonnegative number
associated with a space of events. Its main property
is that the sum of the probabilities of the elementary
events that make up the whole space of events equals
the unity. The space of events are usually identified as a
set of real numbers in which case a variable that take any
value on this set is called a random variable. When this
variable depend on time, one uses the term stochastic
variable. The second term, frequency, refers to the real
counterpart of probability, or its interpretation, or yet
how it is measured. Some probabilistic propositions, such
as that of Maxwell mentioned above, were written using
words akin to frequency of an event.

The probabilistic character of kinetic theory was
pointed out by Jeans in his book of kinetic theory
published in 1904 who considered it to be a conse-
quence of molecular chaos [5]. The stochastic assumption
implicit in the Boltzmann equation was called the
collision number hypothesis (Stosszahlansatz) by Paul
and Tatiana Ehrenfest [24, 25]. In a paper of 1907 [26],
they expressed their views on the irreversibility of the
Boltzmann equation, contained in the H-theorem, using
an analogy with the urn model that they introduced and
which is clearly an example of a stochastic dynamics.
It is worth pointing out yet that the Gibbs statistical
mechanics, which can be understood as kinetic theory of
system in thermodynamic equilibrium, has a probabilis-
tic character which is explicitly mentioned in the title of
his book on the subject published in 1902 [27].

In the following we analyze the Maxwell derivation of
the distribution of velocities that bears his name and
the Boltzmann derivation of his equation as well as his
theorem of irreversibility. After that, we show that the
probabilistic and stochastic reasoning they used can be
employed to derive a Kolmogorov equation associated
with a stochastic dynamics [21, 22]. These results allow
us to say that the kinetic theory can be understood as
stochastic thermodynamics [28–32] avant la lettre.

2. Maxwell Distribution

The probabilistic approach to kinetic theory was explic-
itly stated by Maxwell in his comment concerning the
collision of two molecules [33]. When dealing with an
enormous number of collisions occurring in a small inter-
val of time the problem becomes insurmountable and,
says Maxwell [33]: “We are therefore obliged to abandon
the strictly kinetic method and to adopt the statistical
method”. The statistic method, which is founded on
probability theory, was used in several sciences including
physical sciences, one application of which was the
description of errors. But it was Maxwell who used it as a
description of the physical processes themselves [23, 34].
In this sense, Maxwell is the one who introduced the
probabilistic approach in theoretical physics [23, 34].

Maxwell [10, 11] introduced his distribution of veloc-
ities by stating that the number of particle whose
Cartesian coordinates lies between v1 and v1 + dv1, v2
and v2 + dv2, and v3 and v3 + dv3 is Nf(v)dv1dv2dv3
where

f(v) = ce−(v2
1+v2

2+v2
3)/α2

, (1)

which is understood as the probability density distribu-
tion of the velocity v = (v1, v2, v3), and c = 1/α3

√
π3.

The probability distribution h(v) of the absolute
value of the velocity is related to f(v) by h(v)dv =
f(v)dv1dv2dv3 from which follows

h(v) = 4πcv2e−v2/α2
. (2)

To determine the probability distribution g(ε) of the
kinetic energy ε = mv2/2 we use the relation g(ε)dε =
h(v)dv from which we obtain

g(ε) = c′√ε e−βε, (3)

β = 2/mα2 and c′ = 2β3/2/
√
π.

Maxwell made two attempts to derive his distribu-
tion of velocities. The first attempt, contained in his
paper of 1860 [10, 11], is based on the assumption of
isotropy which means that the probability distribution
f(v) cannot depend on the choice of directions of the
Cartesian axes. Thus f(v) should be a function of
v = |v|, which is invariant by any change of the Cartesian
axes. From the isotropy, Maxwell concludes that the
independent Cartesian components are also statistically
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independent leading him to the result that f(v) should
be a product of the probabilities of each one of the
Cartesian components. Using the factorization of f(v),
he was able to derive the distribution (1).

Although the assumption of isotropy leads us to
conclude that the velocity distribution is a function of
the absolute value of the velocity, it does not necessarily
implies that the independent Cartesian components of
the velocity are statistically independent. Therefore one
cannot necessarily conclude from isotropy that f(v)
factorizes into the distributions of the Cartesian com-
ponents, and this demonstration of Maxwell cannot be
considered to be a valid one [35]. If this reasoning were
correct then any isotropic system of particles, whatever
may be its dynamics, would obey the Maxwell distribu-
tion [35]. Despite its incorrectness this demonstration is
still repeated in some text books of physics dealing with
kinetic theory.

In the second attempt, contained in his paper of
1867 [12], Maxwell used probabilistic concepts that we
recognize as the fundamental concepts of a stochastic
process, and which we will examine in the following.
One of the stochastic concepts used by Maxwell is the
concept of transition rate probability which is implicit
in the following proposition concerning the encounters
of two molecules [12]:

The number of such encounters in unit time
will be n1n2Fde where n1 and n2 are the
number of molecules of each kind under
consideration, and F is a function of the
relative velocity and of the angle θ, and de
depends on the limits of variation within
which we class encounters of the same kind.

According to this statement, F is a function of |v −
u| = |v′ − u′| and of the angle θ which is half of the
angle between the relative velocities v − u and v′ − u′.
These two dependences is equivalent to saying that F
is a function of v − u and v′ − u′. Maxwell then writes
n1 = f1(v, t)dV and n2 = f2(u, t)dV from which follows
that the number of encounters is proportional to

f1(v, t)f2(u, t)F (v − u,v′ − u′)τ, (4)

where τ is a small interval of time. This expression is
interpreted as the probability density that at a given
instant of time t the velocities of the molecules are
(v,u) and that at an earlier time t− τ they are (v′,u′).
The product f1(v, t)f2(u, t) is the probability density
that at time t the first particle has velocity v and
the second has velocity u. Finally, the quantity F is
interpreted as the probability density that the particles
have velocities (v,u) at time t, given that that at an
earlier time t − τ they had velocities (v′,u′). In other
words F is the transition probability rate of the process
(v,u) → (v′,u′),

In thermodynamic equilibrium, the state of a gas
becomes unchanged. Maxwell tell us that this happens

when the number of pairs of molecules that changes
from (v,u) → (v′,u′) is equal to the number of the
reverse process (v′,u′) → (v,u). This is equivalent to
the condition

f1(v)f2(u)F = f1(v′)f2(u′)F ′, (5)

where here F stands for the transition probability rate
F (v − u,v′ − u′) of the direct process and F ′ stands
for the transition probability rate F (v′ − u′,v − u)
of the reverse transition. The equality between (5) is
identified as the reversibility condition usually called
detailed balance condition.

Next, Maxwell makes the probabilistic assumption
that the transition probability rate of the direct process
equal that of the reverse process, that is, F = F ′, from
which follows the relation

f1(v)f2(u) = f1(v′)f2(u′). (6)

Using this relation, Maxwell derives his distribution of
velocities using the conservation of the kinetic energy
before and after collision, given by (72). Comparing this
expression with the logarithm of (6), one concludes that

ln f1(v) = c1 − βm1v
2/2, ln f2(u) = c2 − βm2u

2/2,
(7)

which may be written in the form

f1(v) = c′
1e

−βm1v2/2, f2(u) = c′
2e

−βm2u2/2, (8)

which is the Maxwell distribution of velocities.
If we denote by v1, v2, v3 the Cartesian components

of v, then the Maxwell probability density distribution
is written as

f(v1, v2, v3) = ce−βm(v2
1+v2

2+v2
3)/2, (9)

where c = (βm/2π)3/2. From this distribution we may
obtain the probability distribution of the absolute value
v = (v2

1 + v2
2 + v2

3)1/2 of v, which is

h(v) = 4πc
(
βm

2π

)3/2
v2e−βmv2/2. (10)

It is worth writing the Maxwell distribution in terms of
the kinetic energy x = mv2/2, which is

g(x) = c′√x e−βx, (11)

where c′ = 2β3/2/
√
π.

Let us write the reversibility condition (5) as

F ′

F
= f1(v)f2(u)
f1(v′)f2(u′) . (12)

We have seen above that Maxwell assumed F = F ′ from
which he obtained the relation (6) and from this relation
he reached the distribution of velocities. We could of
course assume the Maxwell distribution of velocities and
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then conclude that F = F ′, provided that the kinetic
energy is conserved.

Let us suppose that instead of the velocities we use the
kinetic energy to describing the state of the molecules.
In this case, the reversibility condition is written as

G′

G
= g1(x)g2(y)
g1(x′)g2(y′) , (13)

where x and y are the kinetic energies of the molecules
before a collision and x′ and y′ after the collision, and the
g1 and g2 are the distribution of energies given by (11),
and G and G′ are the transition rates of the direct and
reverse processes. Using (13) and bearing in mind the
conservation of energy, x+ y = x′ + y′, we find

G′

G
=

√
xy

√
x′y′ , (14)

which is the ratio between the transition rates when the
states of the molecules is written in term of the kinetic
energy instead of the velocity.

3. Boltzmann equation

In the very first paragraph of his paper of 1872 [8, 13],
Boltzmann declares the probabilistic character of kinetic
theory. He says that “the problems of the mechanical
theory of heat is a problem of probability theory”.
He then continues stating that a result of the theory
of probability, “like the result of any other theory, is a
necessary consequence of definite premises,” and that the
result is confirmed on account of the enormous number of
molecules involved. In other words, Boltzmann says that
the theory of probability is an essential part of kinetic
theory and not just a method for obtained incomplete
or approximate laws.

In his paper of 1872 [8, 13], Boltzmann retakes the
Maxwell problem of finding the final distribution of
velocities of a gas. In this process he reaches the equation
that bears his name. Instead of using the velocity v to
define the dynamic state of a molecule, as did Maxwell,
Boltzmann chose the kinetic energy x = mv2/2. In a
second part of the paper, however he used the velocity
as the dynamic state of a molecule. In the following we
derive his equation using the space of kinetic energies
and after that, the space of velocities.

Let g(x, t)dx be the number of molecules in unit
volume such that at time t the molecules have kinetic
energy between x and x+dx. The change in the number
of molecules per unit volume during an interval of time
τ is g(x, t + τ)dx − g(x, t)dx. To find this variation we
determine the number of molecules per unit volume that,
in the interval τ , acquires the energy between x and
x + dx, which we denote by dA, and the number of
molecules per unit volume that, in the same interval τ ,
loses energies between x and x+dx, which we denote by
dB. We may thus write

g(x, t+ τ)dx− g(x, t)dx = dA− dB. (15)

The change in the energy of the molecules is due
to the elastic collision between two molecules. These
collisions change the kinetic energies of the molecules
while keeping their sum constant. The determination of
dA is thus reduced to the determination of the number of
collisions occurring in the interval τ such that after the
collision one of the molecules have energy between x and
x+ dx. Similarly, dB is determined by considering that
before the collision the energy of one of the molecules
have energy between x and x+ dx.

Let x and y be the kinetic energies of two colliding
molecule and x′ the kinetic energy of one of the molecule
after the collision. The kinetic energy y′ of the other
molecule becomes determined by the conservation of the
kinetic energy x′ + y′ = x+ y. Let us denote by dn the
number of collisions that takes place during an interval
τ such that the kinetic energies of one of the molecules
before the collision lies between x and x + dx and the
other is between y and y + dy. Boltzmann argues that
this number is proportional to g(x, t)dx, to g(y, t)dy, and
to a factor ψ(x, y;x′, y′)dx′ which depends on the nature
of the collision. Therefore,

dn = τg(x, t)dxg(y, t)dyψ(x, y;x′, y′)dx′, (16)

where y′ = x+y−x′. If we integrate in all possible values
of y and x′, determined by the restriction 0 ≤ x′ ≤ x+y,
we find the number of collisions in unit volume occurring
in the interval τ such that the kinetic energy is between
x and x+ dx, which is the quantity dB, that is

dB = τdx

∫ ∞

0

∫ x+y

0
g(x, t)g(y, t)ψ(x, y;x′, y′)dydx′.

(17)
To write an expression for dA, we have to consider

the the number of collisions that takes place during an
interval τ such that the kinetic energy of one of the
molecules after the collision lies between x and x + dx,
and the energies of the molecules before the collision lies
between ξ and ξ+dξ, and between ξ′ and ξ′ +dξ′, which
we denote by dν. Boltzmann argues that this quantity
is given by

dν = τg(x′, t)dx′g(y′, t)dy′ψ(x′, y′;x, y)dx, (18)

where y = x′ + y′ − x, and that

dA = τdx

∫ ∞

0

∫ x+y

0
g(x′, t)g(y′, t)ψ(x′, y′;x, y)dx′dy,

(19)
where y′ = x+ y − x′.

Replacing the expressions for dA and dB in equation
(15), dividing by τ and taking the limit τ → 0, we find

∂

∂t
g(x, t) =

∫
{g(x′, t)g(y′, t)ψ(x′, y′;x, y)

− g(x, t)g(y, t)ψ(x, y;x′, y′)}dx′dy, (20)

where y′ should be replaced by x+x′ −y and the integral
carried out in the region y ≥ 0 and x′ ≤ x+ y, which is
the Boltzmann equation.
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Let N(t) be the integral of g(x, t) in the variable x. If
we take the time derivative of N , and replace ∂f/∂t by
the right-hand side of (20) we find dN/dt = 0. It means
that N is a constant in time, and we may choose its value
to be the unity. We may write then∫ ∞

0
g(x, t)dx = 1, (21)

and that g(x, t) can indeed be understand as a probabil-
ity density distribution.

The crucial quantity in the derivation of the Boltz-
mann equation is ψ(x, y;x′, y′), understood as the tran-
sition rate probability from from (x, y) to (x, y′), that
is, proportional to the conditional probability density
that the molecules have energies x′ and y′ at a certain
time t, given that they had energies x and y at an
earlier time t− τ . This quantity cannot be derived from
pure mechanics reasoning alone, but should be consistent
with the conservation of mechanical energy, which, in
the present case of hard spheres is the kinetic energy,
x+ y = x′ + y′.

It is worth mentioning that dn equals τdxdydx′

multiplied by

g(x, t)g(y, t)ψ(x, y;x′, y′), (22)

which is the first term of the integrand in (20), and that
dν equals τdxdydx′ multiplied by

g(x′, t)g(y′, t)ψ(x′, y′;x, y), (23)

which is the second term of the integrand in (20).
The first term above is proportional to the probability
density that the molecules have energies x′ and y′ at
a certain time t and that they have energies x and
y at an earlier time t − τ . A similar interpretation
is obtained for the second term above by exchanging
(x′, y′) and (x, y). The equalities of these two quantities
is the condition of detailed balance used by Maxwell
to reach his distribution of velocities, and also used by
Boltzmann as we shall see below.

Boltzmann adopts a form for ψ(x, y;x′, y′) which is
equivalent to

ψ(x, y;x′, y′) = ϕ(x, y;x′, y′)
√
xy

, (24)

where ϕ(x, y;x′, y′) = ϕ(x′, y′;x, y), from which we get

ψ(x, y;x′, y′)
ψ(x′, y′;x, y) =

√
x′y′

√
xy

, (25)

and we see that ψ coincides with G given by equation
(14). Replacing the form (24) in (20) gives

∂

∂t
g(x, t) =

∫ ∞

0

∫ x+y

0

{
g(x′, t)√

x′

g(y′, t)√
y′

− g(x, t)√
x

g(y, t)
√
y

}
ϕ(x, y;x′, y′)dydx′, (26)

which Boltzmann calls the fundamental equation for the
time variation of g(x, t). We recall that in this equation
one should make the replacement y′ = x+ x′ − y.

The detailed balance condition is represented by the
equality of the expressions (22) and (23) or equivalently
by the vanishing of the integrand of (26), which is

g(x′)√
x′

g(y′)√
y′ = g(x)√

x

g(y)
√
y
. (27)

To find f from this equation, we should keep in mind
that this equation should be consistent with the con-
servation of kinetic energy x′ + y′ = x + y. Comparing
this equation with the logarithm of the equation above
we find

ln g(x) − 1
2 ln x = c− αx. (28)

or

g(x) = C
√
xe−αx. (29)

Recalling that x = mv2/2 is the kinetic energy of a
molecule, we see that this is no other than the Maxwell
distribution of velocities written in terms of the kinetic
energy.

It is worth writing the Boltzmann equation (26) as

∂

∂t
g(x, t) =

∫ {
g(x′, t)√

x′

g(y′, t)√
y′

− g(x, t)√
x

g(y, t)
√
y

}
ϕ(x, y;x′, y′)dydx′dy′,

(30)

where now we are including y′ as the third variable of
integration, with the understanding that the integral is
carried out over the surface y + y′ − x′ = x of the space
spanned by the variables x′, y, and y′, such that y ≥ 0,
x′ ≥ 0, and y′ ≥ 0.

We now consider the space of velocities. Let f(v)dv
be the probability of finding a molecule with velocity
v withe Cartesian coordinates v1, v2, and v3 inside the
element dv = dv1dv2dv3. If (v,u) are the velocities of
two molecules before a collision and (v′,u′) the velocities
after the collision, we assume the probability transition
rate is that given by Maxwell which we denoted by F (v−
u,v′ −u′) and we recall that |v−u| = |v′ −u′|. In other
words, if this condition is not fulfilled, F vanishes. We
remember that this condition is a consequence of the
conservation of the kinetic energy, which in the case of
molecules with the same mass is

v2 + u2 = v′2 + u′2. (31)

Using the same reasonings employed before in the case
of the space of kinetic energy, we arrive at the following
equation for the time evolution of f(v, t,

∂

∂t
f(v, t) =

∫
{f(v′, t)f(u′, t) − f(v, t)f(u, t)}

× F (v − u,v′ − u′)dudv′du′, (32)
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where the integral is performed in the surface defined
by (31).

The detailed balance condition is now represented by
the equation

f(v′)f(u′) = f(v)f(u), (33)

which is the same as the Maxwell condition given by
equation (6). Therefore, we obtain from this condition
the Maxwell distribution of velocities as we did above
from equation (6).

4. Theorem of Irreversibility

As we have seen, Boltzmann derived the Maxwell dis-
tribution (29) by considering the stationary solution
of equation (26) which is given by the condition of
irreversibility or detailed balance (27). He then asked
whether (29) would be the asymptotic solution of (26)
for any initial condition. To answer this question he
introduced the quantity

E =
∫ ∞

0
g(x, t)

{
ln g(x, t)√

x
− 1

}
dx, (34)

and demonstrated that this quantity can never decrease,
dE/dt ≥ 0. We call this proposition the irreversibility
theorem but it is usually called Boltzmann H-theorem.
Boltzmann used the letter E in his original paper of
1872, as we did above, but some years later someone
denoted it by the letter H, and Boltzmann himself ended
up using the letter H in his book on kinetic theory.
Boltzmann remarks that one could use the expression

E1 =
∫ ∞

0
g(x, t) ln g(x, t)√

x
dx, (35)

which differs from E by a constant as the integral of f
equals the unity. Deriving E with respect to time, we
find

dE

dt
=

∫ ∞

0

∂g(x, t)
∂t

ln g(x, t)√
x

dx. (36)

To reach this result we should bear in mind that the
integral of g(x, t) in x equals the unity.

Replacing (26) in (36), we may write
dE

dt
=

∫
ln g(x, t)√

x

× {g2(x′, y′) − g2(x, y)}ϕ(x, y;x′, y′)dxdx′dydy′,
(37)

where g2(x, y, t) = g(x, t)g(y, t)/√xy and we have
dropped the explicit time dependence of g2. If we
perform the changes of variables x ↔ y and x′ ↔ y′, we
find an expression which added which added with (37)
gives
dE

dt
= 1

2

∫
ln g2(x, y)

× {g2(x′, y′) − g2(x, y)}ϕ(x, y;x′, y′)dxdx′dydy′.
(38)

If we now we now perform the changes x ↔ x′ and
y ↔ y′, we find an expression which added which added
with the previous expression gives

dE

dt
= 1

4

∫
ln g2(x, y)
g2(x′, y′)

× {g2(x′, y′) − g2(x, y)}ϕ(x, y;x′, y′)dxdx′dydy′.
(39)

It should be remarked that all transformations above
leaves ϕ(x, y;x′, y′) invariant.

Let us write the integrand as

I = ln g2

g′
2

(g′
2 − g2)ϕ. (40)

If g′
2 ≥ g2 than ln(g2/g

′
2) ≤ 0 and I ≤ 0 because ϕ ≥ 0.

If g′
2 ≤ g2 than ln(g′

2/g2) ≥ 0 and and again I ≤ 0.
Therefore we conclude that the dE/dt ≤ 0, that is, E can
never decrease, and the the Boltzmann irreversibility
theorem becomes demonstrated.

We now consider the theorem of irreversibility written
in terms of the probability defined in the space of
velocities. In this case the quantity E is defined by

E =
∫
f(v) ln f(v)dv. (41)

Deriving this expression with respect to time,

dE

dt
=

∫
∂f(v)
∂t

ln f(v)dv. (42)

Replacing ∂f/∂t given by the Boltzmann equation (32),
we get

dE

dt
=

∫
ln f(v){f(v′, t)f(u′, t) − f(v, t)f(u, t)}

× F (v − u,v′ − u′)dudv′du′dv. (43)

Performing the exchange of variables v ↔ u and v′ ↔
u′, and defining f2(v,u, t) = f(v, t)f(u, t), we obtain
the expression

dE

dt
= 1

2

∫
ln f2(v,u)

× {f2(v′,u′) − f2(v,u)}Fdudv′du′dv. (44)

If now we perform the exchange of variables v ↔ v′ and
u ↔ u′, we reach the expression

dE

dt
= 1

2

∫
ln f2(v,u)
f2(v′,u′)

× {f2(v′,u′) − f2(v,u)}Fdudv′du′.dv (45)

We remark that the exchanges of variables just employed
leaves F (v−u,v′ −u′). Again, using the reasoning used
above, we conclude that the integrand is negative from
which follows that dE/dt ≤ 0 because F ≥ 0.
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5. Kolmogorov equation

The Boltzmann equation can be understood as an
approximation to the Komolgorov equation, the fun-
damental equation of stochastic thermodynamics. This
equation gives the time evolution of the probability
distribution defined on the space of all the coordinates
and velocities of the particles of a collection of molecules.

Let us consider a gas consisting of N molecules of mass
m each, that occupy a vessel of volume V . We denote by
ri and vi the position and velocity of the i-th molecule,
respectively. The collections of variables {ri} and {vi}
are denoted by r and v, respectively, and the state of
the gas is denoted by (r,v). We use an abbreviation in
which (ri,vi) is denoted by ξi and the full state (r,v)
by ξ. The states ξ comprise a vector space called phase
space.

As time goes by the state of the gas follows a trajectory

ξ′ → ξ′′ → ξ′′′ → ξiv → . . . (46)

in phase space and we are considering that time is
discretized in intervals τ , which we consider to be small.
Given that the state of the system is ξ′ at time t we ask
for the conditional probability density that it is found
in state ξ at time t + τ . The stochastic dynamics that
is the basis of stochastic thermodynamics is founded
on the assumption that the aforementioned conditional
probability depends only on ξ′ in addition to depend
on ξ, and which we denote by P(ξ|ξ′). Within the
theory of stochastic processes, this assumption is known
as Markovian. This conditional probability may also
depend on t, but here we consider that it is time
independent. It is worth pointing out that∫

P(ξ|ξ′)dξ = 1, (47)

independently of ξ′.
Let us ask for the probability density P(ξ, ξ′) that the

system is in state ξ at time t+ τ and in state ξ′ at time
t. It is given by

P(ξ, ξ′) = P(ξ|ξ′)P(ξ′, t), (48)

where P(ξ′, t) is the probability density that the system
is in state ξ′ at time t. To determine the probability
P(ξ, t + τ) that the system is in state ξ at time
t+ τ , it suffices to determine the marginal distribution
associated with ξ from the joint probability density (48).
This amounts to integrate (48) in ξ′. The result is

P(ξ, t+ τ) =
∫

P(ξ|ξ′)P(ξ′, t)dξ′. (49)

From the property (47) and from (49) it follows that∫
P(ξ, t)dξ = 1, (50)

at any time t.

Equation (49) gives the evolution of the probability
distribution in discrete time. To derive the continuous
time version of this equation, we define, for ξ ̸= ξ′,
the transition probability rate W(ξ|ξ′) as the limit when
τ → 0 of the ratio P(ξ|ξ′)/τ . If we subtract (49) from
the identity

P(ξ, t) =
∫

P(ξ′|x)P(ξ, t)dξ′, (51)

and divide the result by τ we find, after taking the limit
τ → 0, the equation

d

dt
P(ξ) =

∫
{W(ξ|ξ′)P(ξ′) − W(ξ′|ξ)P(ξ)}dξ′, (52)

where we have dropped the explicit dependence in t. This
equation gives the time evolution of the probability dis-
tribution P(ξ) and is known as the Kolmogorov equation
or a master equation. The equation is completely defined
once we are given the transition probability rateW (ξ|ξ′).

The transition rate used by Maxwell and Boltzmann
is such that only the states of two molecules will change,
whereas the state of the others remain the same. If we
let i and j be these two molecules this type of transition
rate is denoted by

w(ξ′
i, ξ

′
j |ξi, ξj), (53)

and the total transition rate is the sum

W(ξ|ξ′) = 1
N

∑
i<j

w(ξ′
i, ξ

′
j |ξi, ξj). (54)

Replacing this expression in (52), we obtain the equation

d

dt
P(ξ) = 1

N

∑
i<j

∫
{w(ξi, ξj |ξ′

i, ξ
′
j)P(ξ′)

− w(ξ′
i, ξ

′
j |ξi, ξj)P(ξ)}dξ′. (55)

Let us integrate over all variables ξi except ξ1. We find

d

dt
P(ξ1) =

∫
{w(ξ1, ξ2|ξ′

1, ξ
′
2)P(ξ′

1, ξ
′
2)

− w(ξ′
1, ξ

′
2|ξ1, ξ2)P(ξ1, ξ2)}dξ′

1dξ
′
2dξ2. (56)

This is an equation that gives the time evolution for
the one-particle probability density P(ξ1). It is an exact
equation as much as equation (55) is, but it cannot be
solved alone because it is not closed in P(ξ1).

If we approximate the two-particle probability density
P(ξ1, ξ2) by the product of the one-particle probability
densities P(ξ1) and P(ξ2), we reach the equation

d

dt
P(ξ1) =

∫
{w(ξ1, ξ2|ξ′

1, ξ
′
2)P(ξ′

1)P(ξ′
2)

− w(ξ′
1, ξ

′
2|ξ1, ξ2)P(ξ1)P(ξ2)}dξ′

1dξ
′
2dξ2,

(57)
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which is a closed equation for the one-particle probabil-
ity density and can be solved. In this approximation, the
master equation is recognized as the Boltzmann equa-
tion. It should be remarked that the original Boltzmann
equation, given by (32), is written in terms of velocities
only. This happens because the transition probability
rate considered by Boltzmann, as well as by Maxwell,
depends only on velocities of the molecules and not on
their positions.

Considering that the transition rate w depends on the
velocities, we may integrate (57) in all positions to find

d

dt
P(v1) =

∫
{w(v1,v2|v′

1,v′
2)P(v′

1)P(v′
2)

− w(v′
1,v′

2|v1,v2)P(v1)P(v2)}dv′
1dv′

2dv2.
(58)

Using the property

w(v′
1,v′

2|v1,v2) = w(v1,v2|v′
1,v′

2), (59)

it can be written as
d

dt
P(v1) =

∫
{P(v′

1)P(v′
2) − P(v1)P(v2)}

× w(v1,v2|v′
1,v′

2)dv′
1dv′

2dv2, (60)

which is identical to the Boltzmann equation (32).
The above result allow us to conclude that the Boltz-

mann equation can be understood a master equation in
the approximation of one-particle, which is an approx-
imation equivalent to say that the dynamic variables
of distinct molecules are statistically independent. This
independence assumption was called molecular disorder
(molekularen Unordnung) by the Ehrenfests [24, 25].

6. Entropy Production

One of the fundamental concepts of stochastic thermo-
dynamics is that of entropy production, to be defined in
the following. The entropy of the system described by
the probability density P(ξ, t) is defined by

S = −
∫

P(ξ) ln P(ξ)dξ, (61)

where we are dropping the explicit dependence on t, Its
time derivative is

dS

dt
= −

∫
∂P(ξ)
∂t

ln P(ξ)dξ. (62)

Replacing ∂P/∂t given by (52), we find

dS

dt
=

∫
W(ξ′|ξ)P(ξ) ln P(ξ)

P(ξ′)dξdξ
′. (63)

The right-hand side of the equation above is split in
two parts

dS

dt
= Π + Ψ, (64)

where Ψ is the entropy flux from the outside to the
system, given by

Ψ = −
∫

W(ξ′|ξ)P(ξ) ln W(ξ′|ξ)
W(ξ|ξ′)dξdξ

′, (65)

and Π is the production of entropy, given by

Π =
∫

W(ξ′|ξ)P(ξ) ln W(ξ′|ξ)P(ξ)
W(ξ|ξ′)P(ξ′)dξdξ

′. (66)

We remark that the entropy is not a conserved quantity
like energy. The time variation of the entropy is not
in general equal to the flux of entropy Ψ. Entropy
is also created by virtue of the irreversible processes
occurring inside the system. This contribution is the
entropy production rate Π and is always nonnegative.

To demonstrate that Π is a nonnegative quantity we
write it as

Π = 1
2

∫
{W(ξ′|ξ)P(ξ) − W(ξ|ξ′)P(ξ′)}

× ln W(ξ′|ξ)P(ξ)
W(ξ|ξ′)P(ξ′)dξdξ

′, (67)

which is obtained performing the exchange of variables
ξ ↔ ξ′ in the integral of equation (66). The integrand
in (67) has the form (a − b) ln(a/b) which is a non-
negative expression, a result that allows us to conclude
that Π ≥ 0.

Let us consider the transition probability rate
employed by Maxwell and Boltzmann. The transition
rate they employed is invariant under the exchange of the
velocities of the molecules before and after the collisions.
This is equivalent to say that

W(ξ′|ξ) = W(ξ|ξ′). (68)

Replacing this property in the expression (65) shows
that the flux of entropy vanishes identically. Thus the
Kolmogorov equation associated with the Boltzmann
kinetic theory describes a closed system. There is no
exchange of entropy nor of energy. As to the entropy
production rate, wee see that it coincides with the
variation of entropy, that is Π = dS/dt. Since Π ≥ 0,
it follows that

dS

dt
≥ 0, (69)

which can be understood as the Boltzmann theorem of
irreversibility. To reach this conclusion, it suffices to see
that the entropy S is the Boltzmann quantity E with
the reversed sign.

To verify that equation (45) derived by Boltzmann
is indeed identical to (63), it suffices to use (68), and
write the probability distribution P(ξ) as a product of
one-particle probability distributions.
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7. Collision of two particles

Let v and u be the velocities of two molecules before the
collision and v′ and u′ after the collision. If the kinetic
energy and momentum are conserved before and after
collision then the absolute value of the relative velocities
are the same before and after the collision,

|v − u| = |v′ − u′|. (70)

Usually this result is demonstrated assuming that the
particles obeys the Newton equations of motion. How-
ever, this is not necessary. It is a consequence of any type
of motion, be it Newtonian or not, as long as it leads to
the conservation of energy and momentum.

Our premises concerns the total momentum of the
two molecules and the total kinetic energy. The total
momentum is the same before and after the collision,

m1v′ +m2u′ = m1v +m2u, (71)

as well as the kinetic energy, which we write as

m1v
′2 +m2u

′2 = m1v
2 +m2u

2, (72)

where m1 and m2 are the masses of the molecules, and
we are using a boldface letter to represent a vector and
an ordinary letter to represent its absolute value.

The two equations above can be obtained from a
parametric formulation as follows

v′ = c + µ

m1
|v − u|e, (73)

u′ = c − µ

m2
|v − u|e, (74)

where µ = m1m2/(m1 +m2), e is a unit vector, |e| = 1,
and c is the velocity of the center of mass, defined by

c = m1v +m2u
m1 +m2

. (75)

That is, given v and u, then v′ and u′ given para-
metrically by the equations (73) and (74) obey the two
conservation laws above for an arbitrary unitary vector
e.

Multiplying (73) by m1 and summing with (74)
multiplied by m2, we find the result

m1v′ +m2u′ = (m1 +m2)c, (76)

which is equivalent to the conservation of momentum
(71) if we consider the definition of c.

Taking the square of (73) and of (74), summing the
resulting equations after multiplying by m1 and m2,
respectively, we find

m1v
′2 +m2u

′2 = (m1 +m2)c2 + µ|v − u|2. (77)

Replacing the definition of c in this equation we are led
to the conservation of energy (72).

Subtracting the equations (73) and (74), we get

v′ − u′ = |v − u|e, (78)

from which follows the result (70) because |e| = 1.
In the one-dimensional case,

v′ − u′ = |v − u|e (79)

where e takes the values +1 if v < u and −1 if v > u.
In any case v′ − u′ = u − v and v′ and u′ are uniquely
given by

v′ = c+ µ

m1
(u− v) = (m1 −m2)v + 2m2u

m1 +m2
, (80)

u′ = c− µ

m2
(u− v) = (m2 −m1)u+ 2m1v

m1 +m2
. (81)

The transition rates that we consider here are asso-
ciated with processes in which the velocities of two
molecules changes while their momentum and their
kinetic energy remains unchanged. The parametric for-
mulation that we defined above becomes appropriate to
describe such processes. The transition rate can then
be calculate by considering that the unit vector e is an
independent random variable with a given probability
density distribution which we denote by P (e). The
conditional probability density of (v′,u′) given (v,u) is
obtained by

P (v′,u′|v,u)dv′du′. = P (e)de (82)

In one dimension the velocities v′ and u′ are uniquely
determined by v and u. Therefore in one dimension
the motion determined by the conservation of kinetic
energy and momentum cannot be stochastic and remains
deterministic. In fact, in this case the conservation of
kinetic energy and momentum leads to the conclusion
that the motion follows the Newton equations of motion.

Another result of the one dimensional case is as
follows. If all particles have the same mass than from
the equations (80) and (81), the particles exchange their
velocities in a collision. Therefore the probability density
distribution does not change and remains that of the
initial condition. There is no relaxation to the Maxwell
distribution, unless the initial condition is already a
Maxwell distribution. In other words, both sides of the
Boltzmamm equation vanish identically.

8. Conclusion

We have shown that the kinetic theory of gases devel-
oped by Clausius, Maxwell, and Boltzmann can be
understood as stochastic thermodynamics. This result
was accomplished by showing that the dynamics used by
Boltzmann to reach his equation is a stochastic dynamics
and not properly a deterministic Newton equation of
motion. Using the probability transition rate devised
by Maxwell and used by Boltzmann we constructed the
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Kolmogorov equation, that gives the time evolution of
the probability density distribution associated with the
whole state of the system.

The Kolmogorov equation is the basic equation of
the stochastic thermodynamics from which we deter-
mine the time evolution of the entropy as well as the
flux of entropy and the entropy production rate. The
Boltzmann equation is reached using an approximation
which corresponds to consider the velocities of dis-
tinct molecules as independent statistically. Within this
approximation we have also shown that the entropy pro-
duction rate is associate with the Boltzmann H-theorem.

The Markov assumption is the fundamental hypothe-
sis of the stochastic dynamics developed here. Another
assumption is the one related to statistical independence
of the molecules, which we have employed as an approx-
imation to reach the Boltzmann equation from the
Kolmogorov equation. These two distinct assumption are
implicit in the paper of Boltzmann of 1872 but they are
not clearly distinguished in the historical texts on the
kinetic theory. Boltzmann himself did not distinguish
them and considered them consequences of the gas being
molecularly disordered (molekular Ungeordnet) [3]. The
two assumptions were distinguished by Jeans but he
considered them consequences of molecular chaos [5].
The Ehrenfests on the other hand not only distinguish
them but gave them different names. The fundamental
hypothesis concerning the stochastic dynamics they
called the collision number hypothesis (Stosszahlansatz)
[24, 25] and the one related to the statistical inde-
pendence of velocities they called molecular disorder
(molekularen Unordnung) [24, 25].
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