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ABSTRACT
The study aims to optimize machining parameters for turning SAE 8822 Alloy steel under green machining 
(without coolant), using a CNC turning machine with a carbide tool. The controlled factors are spindle speed 
(A), feed rate (B), and depth of cut (C), with roughness (Ra) as the response variable. The experimental runs are 
conducted using an L9 Orthogonal Array (OA). Orthogonal arrays are used to efficiently explore the parameter 
space with a relatively small number of experimental runs while maintaining statistical validity. The impact 
of the machining parameters on the roughness is interpreted using Analysis of Variance (ANOVA). ANOVA 
is a statistical technique that helps identify the significance of each parameter and their interactions on the 
response variable. The result indicated that variation of A between 1500 rpm to 2000 rpm resulted in a significant 
increase in Ra. Similarly, the effect of B and C contributed towards huge variations in Ra. The optimal values of  
1500 rpm for A, 0.5 mm/rev for B, and 1 mm for C are identified as the most favorable combination for achieving 
the desired Ra. Achieving a minimum Ra of 0.04 microns indicate a very high-quality surface, which may be 
desirable in precision engineering applications. The analysis shows that the C and B have the highest influence 
followed by A on Ra.
Keywords: Optimization; CNC turning; ANOVA; RSM; Green machining.

1. INTRODUCTION
Green machining (GM), also known as sustainable machining or environmentally friendly machining, is an 
approach to manufacturing that prioritizes ecological sustainability and resource efficiency in machining 
processes. This concept addresses the environmental impact of traditional machining methods, aiming to reduce 
energy consumption, waste generation, and the overall carbon footprint associated with manufacturing. GM 
techniques includes high speed machining (HSM), dry machining (DM), minimum quantity lubrication (MQL), 
drop lubrication, cryogenics etc.

1.1. Impact of cutting fluids
While cutting fluids offer essential benefits in machining processes, it’s important to manage their usage 
carefully, considering environmental, health, and safety factors. Cutting fluids contain chemicals that can be 
harmful to the environment. Disposal and management of used cutting fluids require careful consideration to 
prevent environmental pollution. Exposure to certain cutting fluid additives may pose health risks to machine 
operators. Inhalation or skin contact with some fluids may lead to respiratory or skin issues. The use of cutting 
fluids contributes to the generation of machining residues, which require appropriate handling and disposal 
methods to prevent environmental impact. Stringent environmental regulations and workplace safety standards 
may require manufacturers to implement proper measures for cutting fluid management, increasing compliance 
responsibilities. Addressing the environmental and health-related issues associated with cutting fluids in the 
production sector often requires a significant additional investment, both in terms of financial resources and 
commitment to adopting sustainable practices. To minimize these risks dry machining techniques plays a crucial 
role providing solution.
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1.2. Dry Machining (DM)
DM refers to a machining process in which cutting operations are performed without the use of traditional liquid 
cooling or lubricating agents, commonly known as cutting fluids or coolant. Instead of relying on a continuous 
flow of fluids to cool the cutting tool and workpiece, dry machining operates without any external liquid support. 
This approach has gained attention for its potential environmental, economic, and operational benefits. One of 
the primary motivations for adopting dry machining is the reduction of environmental impact. Traditional cut-
ting fluids can contain chemicals that are hazardous to the environment. Eliminating the need for these fluids 
minimizes the potential for pollution and simplifies waste management. This technique also contribute to energy 
savings as the process eliminates the need for pumping, filtering, and treating cutting fluids. The energy required 
for the production, transportation, and disposal of cutting fluids is also reduced. By eliminating the need for 
cutting fluids, manufacturers can achieve cost savings associated with purchasing, maintaining, and disposing 
of these fluids. Additionally, the costs associated with the treatment and recycling of used cutting fluids are 
avoided.

Though DM offers several advantages, it may pose challenges in certain applications. Heat generated 
during machining can affect tool life and workpiece quality. Therefore, careful selection of cutting tools, machin-
ing parameters, and workpiece materials is crucial for successful implementation of DM technique. This article 
made an attempt towards application of dry machining technique while experimenting on SAE 8822 alloy steel.

2. LITERATURE REVIEW
The importance of machining parameters in optimization lies in their direct impact on surface finish, tool 
life, productivity, energy consumption, and overall cost-effectiveness of machining operations. By carefully 
selecting and fine-tuning these parameters, manufacturers can achieve the desired outcomes while maximizing 
efficiency and minimizing environmental impact. Well-optimized machining parameters contribute to process 
stability and consistency. This reduces the likelihood of unexpected variations in the machining results, leading 
to reliable and repeatable manufacturing processes. Optimal machining parameters contribute to reduced 
material wastage by achieving the desired outcomes with minimal excess material removal. This aligns with 
sustainable manufacturing practices and cost-effective resource utilization. The selection of suitable combination 
of parameters is a complex task and highly influenced by the skill of the person in judging the ideal level of 
parameter settings prior to machining. However, these time consuming process has been drastically reduced 
by the optimization tools and techniques resulting in significant reduction in the lead time involved with great 
accuracy and quality. On the other side, consistent changes in functionality module of CNC and high-speed 
machining tremendously increased the machining efficiency. The availability of such optimization techniques 
and sophisticated machines given a new dimension in machinability studies. Numerous research studies have 
been carried out and are on-going towards finding ways and means to improve the machining processes in 
manufacturing sectors.

For instance, the performance of the cyclone separator using design of experiments was studied by 
KUMAR et al. [1]. The study included application of multi-objective optimization and computational fluid 
dynamics (CFD) approach to arrive at the optimized values. GHOSH et al. [2] investigated the tribological 
performance of Al-7.5% SiCp using taguchi and GRA methods. The entire study was based on L27 OA with 
load, time and speed as the controlling factors and responses as friction and wear characteristics. Another study 
investigated and studied the machining behaviour [3, 4] to arrive at the optimized machining parameter for 
attaining minimum Ra using taguchi robust design. The minimum Ra was attained while working on aluminium 
alloy and grey cast iron respectively using taguchi robust design. An extensive study was made by AZIZI  
et al. [5]. The study involved experimental mathematical modeling in determining optimized level for attaining 
minimum Ra. The work involved turning process on EN19 with carbide tool considering A, B, C and D as the 
machining parameters.

SURYARAJ et al. [6] worked on RSM tool to optimize the parameter for increasing the impact toughness 
of the boride steel (AISI 1015). Optimization of Mrr was performed in EN19 steel [7] using taguchi L9 OA. Tin-
coated carbide cutting tool with 4 flutes of 8 mm diameter was used for machining operation. The study involved 
factors A, B and C as the controlling factors and Mrr as the response. An optimization study was performed on 
EN31 steel [8] using hybrid optimization techniques involving application of taguchi design and GRA. The 
study involved factors A, B and C as controlling factors for governing Ra and vibration of tool. The entire study 
was performed under MQL technique. CNC end milling were performed based on Box Behnken Design (BBD) 
followed with ANOVA analysis. SAMTAS and BEKTAS [9] investigated TiN-TiCN-Al2O3 inserts (both the 
untreated and cryogenically treated) using L18 OA. The study involved optimization of tool insert wear and 
Ra using grey relation analysis (GRA). The result showed better performance for cryogenically treated insert. 



RAMALINGAM, S.K.; KARUPPUSAMY, A.; SUBRAMANIYAM, B.M., et al.,  revista Matéria, v.29, n.2, 2024

MIA et al. [10] studied the optimization of machinability parameters on Al/SiC-MMC. The study involved 
optimization of Ra and Mrr. The study employed design of experiments (DoE) for conducting trial runs and 
ANOVA for analysis, followed by optimization using ANN.

Another study involved optimization of temperature and Ra and temperature while machining EN31 alloy 
[11]. The study involved taguchi based grey relational analysis involving face milling under minimum quantity 
lubrication environment. Parameters A, B, C and lubricant flow rate were taken as controlling factors and 
responses as temperature and Ra. ANAND et al. [12] investigated the process parameter for drilling polyamide 
6 (PA6) hybrid nano composites through optimization technique.

DEVARAJ et al. [13] investigated the MQL assisted optimization for turning AISI 1060 steel using 
taguchi design. Coated cemented carbide tool was used for the experimental work. The entire study was 
performed to analyze the behaviour of roughness in terms of Ra, Rq and Rz tool wear, and Mrr. Significant factor 
affecting the responses were identified by ANOVA. SOUNDHAR et al. [14] investigated the effect of fly ash and 
egg shell on AA6082. The hybrid composite thus developed was investigated for its performance as a measure 
of Ra and tool flank wear. For single-objective, L16 OA was employed and for multi-objective taguchi based 
GRA was opted. The result showed significant improvement in terms of machinability, wear, and mechanical 
properties. RSM method was employed to optimize the welding (CO2 laser) parameters for welding AISI 316 
and nickel 201 [15]. SRIDHAR et al. [16] investigated the wear pattern of SiC tool inserts and tool inserts 
coated with titanium nitride. The study was carried on EN8 steel and involved parameters A, B, C and tool insert 
properties as machining parameters.

PREMNATH [17] optimized the machining parameters in EDM by working on titanium alloy. Voltage, 
current, pulse time (on and off) were the controlling factors and studied its impact on the responses Ra, Mrr and 
electrode wear rate. The entire study was performed based on central composite design. The study concluded 
with development of empirical model for predicting the responses. RAJESWARI et al. [18] employed hybrid 
Taguchi-artificial neural network approach while performing EDM for predicting Ra. The entire study was 
performed on titanium alloys. Eight parameters were considered and out of which two significantly contributing 
factors namely current and pulse on time were taken for prediction of Ra using hybrid model involving taguchi 
and neural networks. The result showed that higher discharge resulted in errors like cracks, micro pores, 
holes, residual stress and craters on the machined surfaces. KARABULUT et al. [19] studied the machining 
performance of Al2O3 micro composite by applying taguchi method in milling. The trials were based on L9 OA 
with Mrr taken as the response. Another study aimed towards determining the optimized level of geometrical 
parameters resulting in minimum vibration while working on end milling. The machining was performed on 
Al356/SiC MMC using HSS end mill cutter using L27 OA [20]. Based on the experimental data an empirical 
model was developed and optimized using particle swarm optimization.

SAINI et al. [21] made an attempt towards parameter optimization in milling operation while 
machining Al6061/Al2O3/Gr. The work involved application of RSM for optimization of Ra, machining 
forces and tool wear. RSM was used to develop mathematical model followed by analysis for its significance 
by ANOVA. An investigation on the effect of reinforced particles of SiC was performed [22] using box 
behnken design compromising of 27 experimental runs. Optimized solution was identified leading to min Ra 
and machining force using genetic algorithm. The optimized settings were validated using ANOVA for its 
significance. PRANAV KUMAR et al. [23] studied the machinability optimization in milling for AA7039. 
The experimental runs were based on taguchi L18 mixed OA followed by application of RSM and ANN for 
optimization. The results showed that artificial network was associated with less deviation compared with 
RSM. Process parameter optimization in Al6063 T6 [24] was performed using L16 OA for optimizing Mrr 
and channel variation in micro milling. The result showed that parameter B contributed with 63.10% of 
influence, claiming as the primary significant factor followed by parameter C with 33% of contribution. 
Least significant factor was found to be parameter A with a contribution of 1.16%. GNANASEKARAN  
et al. [25] optimized laser hard facing process parameters using RSM with an objective of maximizing the wear 
resistance in Ni-Based hard-faced deposits. FUAT et al. [26] investigated the effect of machining parameters 
while machining 17-4 PH stainless steel in milling using taguchi-gray relational analysis. The study involved 
L18 experimental design with tree levels of speed and feed and constant level assigned for depth of cut. 
Another research by the author was made on mold steel in turning operation. It involved experimental and 
statistical investigation on the type of coating over roughness, temperature noise and vibration. The most 
effective parameter setting were identified using ANOVA analysis [27].

MAHIR et al. [28] studied the effect of PVD-TiN and CVD-Al2O3 coatings. The study involved the 
effect of coatings on the responses namely machining forces, roughness, power consumed and temperature. The 
study employed hard turning of AISI H13 steel. Another study performed by NURSEL et al. [29] investigated 
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the statistical analysis of sustainable machining parameters involving coated cutting tools. Turning operation 
was performed on AISI P20 die steel with coated tungsten carbide tool. The experimental runs were conducted 
as per L18 orthogonal array. The analysis involved both chemical powder deposited coated tool and physical 
vapour deposited tool. The study involved controlling factors at 3 levels for spindle speed, feed rate and depth 
of cut respectively. Another study [30, 31] made a comparative investigation while working on AISI D6 steel. 
The study involved dry milling using AlTiN and AlTiSiN coated carbide tools.

2.1. Gap identified
There is a scarcity of studies specifically focusing on the dry machining of SAE 8822. Dry machining, as an eco-
friendly alternative, has not been extensively investigated for this particular alloy. Exploring the sustainability 
aspects, such as no coolant, reduced coolant usage and energy savings, in the context of this specific alloy is one 
of the gap identified based on the literature review performed.

The literature survey carried out provides an overview on the extensive research carried and on-going for 
optimizing the responses. Green Machining is the process of machining that does not include the use of coolant 
in during the operation. Moreover, SAE 8822 is a low-alloy steel with specific mechanical and chemical prop-
erties, making it suitable for various applications in different industries. The specific applications can depend on 
factors such as the alloy’s strength, toughness, and heat-treatability. SAE 8822, being a steel alloy, is commonly 
used in the automotive industry for manufacturing various components. It is employed in the production of parts 
such as gears, shafts, axles, and other structural components due to its strength and durability. For this research 
work SAE 8822 was used as a working sample, and the turning parameters were optimized using the RSM tool. 
In this instance, the turning of SAE 8822 was carried out without the utilization of coolant, and the process 
parameter was optimized, which is something that the research community has not done before.

3. TAGUCHI METHOD
Several tools and techniques were used in predicting the optimized level of machining parameters for better 
machinability and process. Taguchi design is one of the optimization tool, playing an important role in defining 
quality by eliminating the variations before they affect the process. This design is an off-line technique for ensur-
ing better performance of a process. One of the best advantage of taguchi is that it provides the value in terms 
of performance characteristics close to the target defined ensuring quality improvement in the defined objective. 
Moreover, this technique requires few experimental runs based on OA opted, involving minimum cost and time 
to execute. Taguchi method [5, 6] refers to a set of concepts built to ensure quality into the process. It serves as 
a base for evaluating and providing means of improvement in process or product. So called improvements are 
aimed towards enhancing the favored characteristics and simultaneously decreasing the defects by optimizing 
strategies to propose the optimal solutions [7–10]. Taguchi proposed a trendy system for making use of his 
approach for optimizing any technique. The outcome of the study is to attain optimal solution for minimizing 
the responses influencing the process. To attain this objective, the controllable parameters are systematically 
iterated using orthogonal array [12, 15]. Once the experiments were conducted then the impact of response 
was interpreted using the signal-to-noise (S/N) ratio. Taguchi specializes in arriving at the best outcome using:  
a) Signal-to-noise ratio and b) Orthogonal arrays.

3.1. Orthogonal array
Degrees of freedom has its own importance in selection of orthogonal array for conducting initial trial runs. In 
this study, 3 factors were considered with 3 levels assigned to each factors as enlisted in Table 1. According to 
taguchi design, for 3 factors and 3 levels either L9 or L27 orthogonal arrays (OA) can be opted for experimental 
runs, where 9 and 27 represents the total number of trial sequences involved. In this study, L9 OA was finalized 
as shown in Table 2.

Table 1: Controlling parameters with assigned levels.

LEVELS PARAMETERS

SPINDLE SPEED, rpm (A) FEED RATE, mm/min (B) DEPTH OF CUT, mm (C)

1 2500 0.05 0.5

2 2000 0.12 0.75

3 1500 1.20 1.0
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3.2. S/N ratio
S/N ratio eventually showcases the design reliability and based on the objective function, performance of the 
expected function is interpreted that covers both internal and external variations. S/N ratio is characterized in 
three patterns: Larger-is-better for maximizing the response and is represented by Equation (1). Nominal-is-
best for responses relied on standard deviations alone and represented by Equation (2). Smaller-is-better for 
minimizing the response and is represented by Equation (3). This study involves the optimization using smaller-
the-better function.

S/N = −10 *log(Σ(1/Y2)/n)� (1)

S/N = −10 *log(σ2)� (2)

S/N = −10 *log(Σ(Y2)/n))� (3)

3.3. Analysis of variance
Analysis of Variance (ANOVA) is a statistical technique used to assess the differences among group means in a 
sample. It is used in manufacturing and engineering to analyze the effects of different factors (such as machining 
parameters or material variations) on the outcome of a process, such as surface roughness or tool wear. It helps 
identify which factors significantly influence the variability in the results. It helps in assessing variations in 
product quality attributing to factors such as machinery, operators, or raw materials. This information aids in 
optimizing processes and improving overall product quality. Following are the significance of ANOVA related 
to this study:

a)	 It helps identify which factors or variables have a statistically significant impact on the response variable.
b)	Helps in evaluating the significance of each factor or parameter, aiding optimization of parameters.
c)	 It not only identifies main effects but also helps understand interactions between different factors.
d)	 It provides a quantitative measure of variability in the data, distinguishing between variation due to random 

factors and variation attributed to the manipulated variables.
e)	 It serves as a tool for validating the accuracy and effectiveness of the model. It helps researchers assess 

whether the model adequately represents the real-world system and whether the predicted outcomes align 
with the observed results.

3.4. Response surface methodology
It is a statistical tool effective in analyzing the data for construction of models, evaluating the data in arriving at 
the optimal solutions, interpretation the interactive effects between the factors considered for the study. It offers 
the investigator a cost effective platform for performing the evaluation on the effects of one or more factors 

Table 2: L9 sequences with parameters.

S. No. A B C

1. 2500 0.05 0.5

2. 2500 0.12 0.75

3. 2500 1.20 1.0

4. 2000 0.05 0.75

5. 2000 0.12 1.0

6. 2000 1.20 0.5

7. 1500 0.05 1.0

8. 1500 0.12 0.5

9. 1500 1.20 0.75
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simultaneously. Since the graphical presentation are in 3-dimensional form, it provides a lucid view on the 
factors taken for the study and its influence in various levels. Few highlights of this methodology are:

a)	 It allows for the design of experiments in a systematic and efficient manner. It helps researchers select a 
limited number of experimental runs while still capturing the essential information needed to model and 
optimize the process.

b)	 In situations where the relationships between variables are complex and nonlinear, RSM provides a powerful 
tool for building accurate mathematical models. These models can then be used to predict responses across a 
range of input variables.

c)	 RSM facilitates the exploration of interactions between multiple factors. It helps researchers understand how 
changes in one variable may affect the response, considering the influence of other variables.

3.5. Pareto analysis
Pareto Analysis is a decision-making tool used to prioritize and focus efforts on the most significant factors 
contributing to a particular problem or outcome. In optimization processes, Pareto Analysis can be applied in 
various ways to streamline efforts and enhance efficiency. It helps in identifying the critical factors that have 
the most significant impact on a particular outcome. By identifying and prioritizing the factors contributing the 
most to a problem or objective, Pareto Analysis aids in optimizing the allocation of resources. It allows for a 
targeted approach, ensuring that resources are directed toward addressing the most influential factors. It helps in 
distinguishing between major and minor contributors, guiding efforts toward addressing the root causes effec-
tively. In the context of sustainability and energy efficiency, Pareto Analysis can be applied to identify the major 
energy-intensive aspects of the machining process. This information guides efforts toward optimizing energy 
consumption and minimizing environmental impact.

4. EXPERIMENTAL WORK

4.1. Materials
SAE 8822, an alloy steel mainly consisting of nickel-chromium-molybdenum exhibiting high hardenability. 
It finds its application in various heavy-duty purposes due to its superior core strength and heat treatability. 
Mostly its available in both carburized and non-carburized form based on its area of applications. These alloys 
are heat-treatable between 1168˚C to 1249˚C. The chemical and mechanical properties of SAE 8822 is listed in 
Table 3 and Table 4.

Table 3: Chemical composition SAE 8822.

ELEMENTS CONTENT (%)
Carbon 0.25
Sulphur 0.04

Chromium 0.4
Manganese 0.85

Phosphorous 0.035
Molybdenum 0.35

Nickel 0.5
Silicon 0.30

Table 4: Mechanical properties-SAE8822.

PROPERTY METRIC
Poisson’s Ratio 0.30

Density 7.79 g/cm3

Hardness 245 BHN
Modulus of Elasticity 207 GPa
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4.2. Machine and tool
MTAB Flex turn was used for performing the experimental runs and cemented carbide (coated) tool is used for 
machining as shown in the Figure 1. Cemented carbide coatings are known for their exceptional hardness and 
wear resistance. These properties make them ideal for cutting, milling, drilling, and other machining processes 
where tools are subjected to high levels of abrasion and wear. The hardness and wear resistance of cemented 
carbide coatings contribute to extended tool life. Tools with these coatings can withstand prolonged use without 
experiencing significant wear, resulting in longer intervals between tool replacements. It exhibits excellent 
resistance to high temperatures, making them suitable for applications involving elevated cutting temperatures. 
This is particularly advantageous in cutting hard materials or performing high-speed machining operations. The 
enhanced hardness and wear resistance of cemented carbide coatings allow for increased cutting speeds and feeds. 
This leads to higher machining efficiency and productivity, as tools can maintain their performance even under 
demanding conditions. The low coefficient of friction of cemented carbide coatings contributes to reduced heat 
generation during machining making it suitable for dry machining. This is beneficial for minimizing tool wear, 
improving surface finish, and avoiding thermal damage to the workpiece. Table 5 describes the specifications of 
the MTAB Flex Turn CNC machine.

Table 5: Detailed specification of the MTAB flex turn CNC machine.

PARAMETERS SPECIFICATION
Chuck size (mm) 100
X - Travel (mm) 95
Z - Travel (mm) 210

Swing over bed (mm) 245
Swing over cross slide (mm) 80

Distance between centers (mm) 345
Spindle bore (mm) 20

Spindle speed range (rpm) 150 – 4000
Spindle motor (KW) 3.73 AC spindle motor

Controller FANUC
Machine overall dimensions (mm) Length – 1710

Width – 1000
Height – 1650

Figure 1: Experimental run - turning of SAE 8822 without coolant.
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4.3. Surface tester
The Ra was measured using MITUTOYO Surface Tester as shown in Figure 2. For each runs the Ra was measured 
thrice and the average value is taken for calculation. Table 6 shows the average Ra measured as per the sequence 
of experimental runs using MITUTOYO Surface Tester according to ASTM D7127.

5. RESULTS AND DISCUSSION

5.1. S/N ratio
The S/N ratio is performed based on smaller-the-better approach defined in taguchi design. Table 7 and Table 8 
shows the responses of ratio and means. The stated tables provide a clear picture that the SAE8822 machining 
process is highly influenced by the parameter B (delta = 18.639) followed by C (delta = 9.237). Though the delta 
score of A 8.515 is nearest to C, its significance affecting the entire machining process is rated to the lowest rank. 
It implies that for optimizing the machining process, B and C must be given priority to attain the minimum Ra.

5.2. Analysis of variance (ANOVA)
ANOVA is performed to determine whether the means of two or more factors are unique or different. It provides 
a simple method to ensure the influence of factors on each other through comparison of the calculated means of 
the measured samples. The influencing trends can be interpreted by the main effect plots generated. Based on 
the trend of the factors the optimum result is predicted. Most importantly, understanding and interpreting the 
influence of individual factors plays the prominent role in providing the best solution for process under study. 
Statistical analysis, ANOVA determines the percentage contribution of the controlling factors. ANOVA analysis 
provides a lucid view on which factor needs significant attention.

Table 6: Measured values of Ra for the sequence of experimental runs.

S. No. A B C Ra S/N RATIO
1. 2500 0.05 0.5 0.59 4.5830
2. 2500 0.12 0.75 1.87 –5.4368
3. 2500 1.20 1.0 2.09 –6.4029
4. 2000 0.05 0.75 0.63 4.0132
5. 2000 0.12 1.0 1.27 –2.0761
6. 2000 1.20 0.5 2.03 –6.1499
7. 1500 0.05 1.0 0.04 27.9588
8. 1500 0.12 0.5 1.39 –2.8603
9. 1500 1.20 0.75 2.19 –6.8089

Figure 2: Surface roughness measurement of workpiece after turning.
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Table 7: S/N ratios responses for different levels versus input parameters.

FUNCTION: SMALLER IS BETTER
LEVEL A B C

1 6.097 12.185 –1.476
2 –1.404 –3.458 –2.744
3 –2.419 –6.454 6.493

Delta 8.515 18.639 9.237
Rank 3 1 2

Table 8: Response – means for different levels versus input parameters.

FUNCTION: SMALLER IS BETTER
Level A B C

1 1.2067 0.4200 1.3367
2 1.3100 1.5100 1.5633
3 1.5167 2.1033 1.1333

Delta 0.3100 1.6833 0.4300
Rank 3 1 2

Table 9: S/N ratios responses for different input parameters.

SOURCE DF SEQ (SS) ADJ (SS) ADJ (MS) F P P (%)
A 2 129.8 129.8 64.90 1.04 0.433 43.3
B 2 601.1 601.1 300.54 4.81 0.086 8.6
C 2 150.44 150.4 75.22 1.51 0.398 39.8

Residual Error 2 99.54 99.54 49.77
Total 8 980.9

Table 10: Response – means for different input parameters.

Source DF SEQ (SS) ADJ (SS) ADJ (MS) F P P (%)

A 2 0.149 0.149 0.074 30.17 0.032 3.2
B 2 4.373 4.373 2.187 82.60 0.001 0.1
C 2 0.277 0.277 0.139 56.02 0.018 1.8

Residual Error 4 0.005 0.005 0.003
Total 8 4.806

The ANOVA analysis for the S/N ratios and Means are shown in Table 9 and Table 10. The relative 
importance of each parameter with the response can be easily interpreted by coefficients attained in ANOVA 
analysis. The interpretation is simple as the highest coefficients signifies the greatest impact on the machining 
process. The sum of squares (Sequential and adjusted) also provides the significance of the influence caused 
based on the attained values of coefficients. In this study, B shows highest influence on the process as claimed 
in the Table 7 and 8. The process found to be significant at 90% confidence level. For SN rations, A (p = 0.433), 
B (p = 0.086) is attained and for means A (p = 0.32), B (p = 0.001).
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5.3. PARETO analysis
Figures 3, 4 and 5 shows the PARETO analysis of Ra with respect to parameters A, B and C based on the 
experimental runs and measured responses recorded. From Figure 3 for speed, one can predict that the min Ra 
is attainable in all levels spreading between 1500 rpm to 2500 rpm (Ra varying between 0.04 µm to 0.63 µm). 
The interpretation makes it clear that for machining SAE8822, factors B and C plays much vital role when 
compared to A. Consider exploring the interactions and synergies between factors B and C. It’s possible that 
the combined effect of feed rate and depth of cut, rather than their individual effects, contributes significantly 
to achieving the desired surface finish. Interaction plots or response surface analysis provide more insights into 
these relationships. Adjustments in feed rate and depth of cut, rather than focusing on spindle speed alone, leads 
to more effective control over surface roughness. This information is valuable for process optimization and 
setting machining parameters in real-world applications.

Figure 4: Pareto chart of surface roughness (Ra) by feed rate (B).

Figure 3: Pareto chart of surface roughness (Ra) by spindle speed (A).
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Figure 5: Pareto chart of surface roughness (Ra) by depth of cut (C).

From Figure 4, min Ra is achieved when B is maintained at lower level of 0.05 mm/rev as evident. 
Increase in Ra is witnessed as level of B increased from 0.12 mm/rev to 1.20 mm/rev). From Figure 5, one 
can interpret the behaviour of factor C. The graph shows the scattered display of min Ra across all levels. It is 
noteworthy to state that, Ra varies from minimum to higher value as C is increased from 0.50 mm to 0.75 mm. 
Whereas, when C is further increased from 0.75 mm to 1 mm one can witness a gradual decrease in Ra resulting 
in minimum Ra. This varying effect is induced due to the interaction effect of parameters B and A. As a whole, 
the most influencing factor is B followed by C and A. The varying effect of depth of cut (C) is attributed to the 
interaction effect with parameters B (feed rate) and A (spindle speed). This indicates that the influence of C on 
Ra is not isolated but is influenced by the levels of feed rate and spindle speed. Understanding these interactions 
is crucial for making informed decisions during process optimization. The overall conclusion is that the most 
influencing factor is B (feed rate), followed by C (depth of cut) and A (spindle speed). This hierarchy of influ-
ence is vital for prioritizing optimization efforts. Focusing on adjusting feed rate within optimal levels appears 
to have a more substantial impact on achieving the desired surface finish.

5.4. Response Surface Methodology (RSM)
RSM explores the relationship that exists between the parameters and the responses under examination. The 
advantage of such analysis is that more information can be collected with minimum experimental data. And it 
also helps in to study the interaction affect between the parameters in a better way. Figure 6 shows the contour 
plot for Ra influenced by A and B. Parameter B shows variations between 0.05 to 0.3 mm/rev providing varia-
tions in Ra. Beyond that higher Ra can be witnessed. The min Ra is figured when lowest level is assigned to B. 
Whereas, A shows significant change in Ra depending on the assigned level of B. However, min Ra is evidences 
when both are assigned with lowest levels.

The contour plot shows the optimized level is achieved when A is maintained between 1500 rpm to  
1750 rpm with B at 0.05 mm/rev or less. Hence it is noteworthy to state that setting level for B is crucial for 
optimizing the process. The contour clearly shows that the C has higher influence in governing the Ra with 
respect to A. There is gradual increase in Ra as the C is improved followed by decrease as the A reaches its higher 
level. Figure 7 shows the contour plot for Ra influenced by A and C. The plot shows varied influence on Ra. The 
varied influence is due to the presence of another factor highly influential to these two. The graph shows that 
min Ra (Ra< 0.5 µm) is predicted when C is maintained at low level and A with higher level. Ra between 0.5 µm 
to 1 µm is predicted when A is maintained between 1750 rpm to 2250 rpm and C between 0.65 mm to 0.97 mm. 
It is evident from the plot that C provides very narrow flexibility towards minimum Ra.
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The contour clearly shows unpredictable and unstable relationship. For the machining of SAE8822, the 
interaction effect of these two parameters are very much significant. Since there is uneven pattern of distribu-
tion, a small variation in level will lead to drastic change in Ra. The plot clearly shows the Ra attained in the 
experimental runs performed. As stated previously, to have optimum Ra, the C need to be maintained at higher 
level as far as SAE8822 is considered. Figure 8 shows the contour plot for Ra influenced by B and C. These two 
parameters are contradictory in behaviour. As a combination of both parameters, min Ra is achievable only when 
B is assigned with lower level and C assigned with higher level. The contour plot shows the optimized value is 
achieved when the B is maintained at a lower level of 0.05 mm/rev and C maintained between 0.97 to 1.0 mm. 
From the graph, it is clearly evident that B plays a dominant role over C. The interaction between these two 
parameters shows that, the optimum level for B can be assigned only between 0.1–0.2 mm/rev. However, due 
to the influence of A, the same is achieved at 0.5 mm/rev. This shows the concentration of influence individual 
parameter on the entire machining process.

5.5. SEM analysis
The following section explains on the SEM images taken for the experimental runs conducted. To have further 
interpretation on surface texture attained by the dry machining, SEM analysis was carried out as shown in the 
below sections. Figure 9(a to d) shows the SEM images for runs 1, 4, 5 and 7 at a magnification level of 500×. 
In all the images, one could find the presence of adhered material fragments developed during plastic defor-
mation during machining. Smeared materials and presence of micro pores and grooves were the other features 
that could be visible in the image. These are formed during the material removal process and found be present 
throughout as the machining. The Figure 9(d) shows the SEM image that resulted in minimum Ra.

Figure 7: Contour plot for roughness (Ra) versus spindle speed (A) and depth of cut (C).

Figure 6: Contour plot for roughness (Ra) versus spindle speed (A) and feed rate (B).
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Figure 8: Contour plot for roughness (Ra) versus feed rate (B) and depth of cut (C).

Figure 9: SEM images of experimental runs conducted (a) run 5 (b) run 4 (c) run 1 (d) run 7.

6. CONFIRMATORY RUNS AND SEM IMAGES
Confirmatory runs were conducted with the optimized values to validate the results and the following Table 10 
shows the results recorded and the deviations registered. The deviation shows a minimal variations and confirms 
the validity of the optimized parameters. Figure 10(a) and (b) shows the SEM images recorded for the confirma-
tory runs conducted at the optimized parameter combination. The SEM images shown in Figure 10(a) and (b), 
reflects the surface morphology recorded resulting in minimum Ra as recorded in Table 11.

Moreover, the confirmatory SEM in Figure 10(a) and (b) also resembles the pattern shown in Figure 9(d)  
which also reflects the experimental run that resulted in minimum Ra. A finish machining study on AISI 
1019 registered a deviation of 4.2% between the predicted value of 0.769 microns and experimental value of  
0.738 microns [23, 24, 25]. Considering the above case, the result attained in the optimization of SAE8822 is 
appreciable with minimum deviation.
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Table 11: Confirmatory runs – roughness predicted and experimental.

S. No. A B C Ra (Pred) Ra (Exp) DEVIATION
1. 1500 0.05 1.0 0.047 0.054 +0.007
2. 1500 0.05 1.0 0.055 0.078 +0.023
3. 1500 0.05 1.0 0.052 0.069 +0.017

Figure 10: SEM images of confirmatory runs conducted.

7. CONCLUSION
The taguchi method, through its robust experimental design and S/N ratio analysis, provides valuable insights 
into the most influential factors affecting the response variable. The Signal-to-Noise (S/N) ratio analysis has 
identified the most influential factors in the machining process, with feed rate and depth of cut playing crucial 
roles.

a)	 The high delta score of 18.639 for the feed rate indicates its substantial influence on the machining process.
b)	 In Taguchi experimentation, a higher S/N ratio generally corresponds to better performance. Therefore, a 

positive delta score for feed rate suggests that increasing or optimizing this parameter can lead to improved 
machining outcomes, possibly in terms of surface finish, accuracy, or efficiency.

c)	 The S/N ratio’s delta score of 9.237 for depth of cut also signifies its noteworthy impact on the machining 
process.
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d)	A positive delta score indicates that variations or adjustments in the depth of cut can significantly affect the 
machining performance. Optimizing the depth of cut according to the experimental conditions definitely lead 
to improved results.

ANOVA results provided the following valuable insights into the significance of different factors in affecting 
surface roughness (Ra) during machining.
a)	 The F values from ANOVA are indicators of the significance of each factor. In this study, feed rate has the 

highest F value (4.81), suggesting it as the most influential factor affecting surface roughness.
b)	Depth of cut follows with an F value of 1.51, indicating a moderate level of influence. Spindle speed has the 

least impact, as reflected by its lower F value.
c)	 The minimum Ra was achieved under specific conditions: spindle speed at 1500 rpm, feed rate at 0.5 mm/rev, 

and depth of cut at 1 mm.
d)	This configuration represents the optimal combination of machining parameters that result in the lowest 

surface roughness. It’s noteworthy that finding the optimal conditions can lead to improved product quality 
and performance.

e)	 The observation of a drastic increase in Ra when spindle speed increased from 1500 rpm to 2000 rpm 
indicates that higher spindle speeds may negatively impact surface roughness. This insight is crucial for 
setting operational limits and avoiding conditions that lead to suboptimal outcomes.

f)	 The higher F value for feed rate reinforces its significance in affecting surface roughness, emphasizing the 
need for careful optimization of this parameter. Depth of cut, while not as influential as feed rate, still plays 
a substantial role in the machining process.

7.1. Future scope of work
a)	 Exploring the application of advanced tool coatings or treatments to further enhance the performance 

of cutting tools. Investigate how different coatings may affect tool life, wear resistance, and the overall 
machining process.

b)	Analysis of the environmental impact of machining without coolant and explore eco-friendly alternatives. 
Evaluate the overall sustainability of the optimized machining process by considering factors such as energy 
consumption, waste generation, and emissions.

c)	 Performing a detailed analysis of the microstructure and material properties of SAE 8822 Alloy steel after 
machining. Investigate any changes in material integrity, hardness, or other mechanical properties that may 
result from the optimized machining process.

d)	Development of mathematical models for predicting tool wear and estimating tool life under the optimized 
machining conditions. This can contribute to proactive maintenance strategies and further improvements in 
the efficiency of the machining process.

e)	 Multi-objective optimization by simultaneously optimizing for multiple performance criteria, such as surface 
roughness, tool life, and energy efficiency. This approach can lead to a more holistic optimization considering 
various aspects of the machining process.
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