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ABSTRACT: Sampling is an essential step in estimating a parameter: thus, cost and time 
associated to this step should be minimized. Sequential sampling is characterized by using 
samples of variable sizes given as a function of observations, and sequential sampling 
provides a smaller sample size than a fixed-size sample in most cases. In addition, the 
Bayesian decision theory can be incorporated into sequential sampling to perform parameter 
estimation because it allows the inclusion of a priori information about the parameter of interest, 
which optimizes the procedure. However, the great challenge to performing the Bayesian 
sequential estimation in establishing the stopping criteria. Most studies in this area investigate 
binomial distributions, while few analyze multinomial distributions. This study aimed to define 
the stopping criteria for the Bayesian sequential estimation of the parameters of multinomial 
distributions with conjugate Dirichlet priors. The proposed methodology was applied to a set 
of X-ray test data for quality control of maize seed lots. This test uses conventional sampling 
techniques in which a sample has a fixed size with 200 seeds. The influence of two priors on 
the stopping criteria was evaluated, one uniform and one conjugate, with hyperparameters 
based on reference information from the literature. The results indicated a reduction in the 
sample size in most lots evaluated.
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Introduction

Reduction of costs in the sampling process means the 
replacement of samples with fixed size of elements by a 
process that allows the use of samples with variable size 
as a function of the observations made. This process 
is known as sequential sampling, and, in most cases, 
it reduces the sample size (Schnuerch and Erdfelder, 
2020).

The Bayesian decision theory is a solid complement 
to sequential sampling in parameter estimation because 
it allows incorporating a priori information about the 
parameter of interest. Thus, it is possible to include 
information relevant to the sampling plan using priors, 
which helps decision-making (Berger, 1985).

However, a significant problem with the use of 
the Bayesian sequential estimation is the difficulty 
to establish the stopping criteria, as complex 
mathematics is required due to the dynamic nature 
of the process and the recursion in the calculations 
(Fenoy, 2017).

Most studies in this area investigate variables 
that follow discrete probability distributions in the 
univariate context for the binomial distribution, such 
as Plant and Wilson (1985), Karunamuni and Prasad 
(2003), Brighenti et al. (2019), among others. Few studies 
have been conducted on multivariate distributions. One 
example is Jones (1976), which established the stopping 
criteria for a multinomial distribution; nevertheless, it 
considered only uniform priors.

Maize is one of Brazil’s most economically 
important crops, and productivity increases in this 
sector are related to the selection of good quality seeds. 
X-ray testing evaluates seed quality, deafferenting seeds 

with good formation from those with some damage. 
This test uses conventional sampling techniques in 
which a sample has a fixed size of 200 seeds, according 
to the Rules for Seed Analysis (RAS), which regulates 
such procedures. The process of verifying these seeds 
is performed visually by an analyst, one at a time, 
which is labor intensive. Sequential sampling may 
improve these tests, as there is no need to pre-establish 
the number of seeds to assess and can optimize the 
procedure, decreasing the required sample size.

In this study, we aimed to develop the stopping 
criteria for the process of Bayesian sequential estimation 
of the parameters of a multinomial distribution for 
conjugate Dirichlet priors because the literature does 
not report on this development and multinomial 
distributions have been little explored, despite their 
great applicability to estimate proportions in problems 
with more than two response categories, such as 
estimation of the proportion of seeds with different 
types of damage in X-ray test. Thus, the developed 
methodology was applied, and the results were 
compared with those of the conventional approach to 
X-ray tests.

Materials and Methods

Multinomial distribution

In complex situations, classification of sample elements 
in more than two categories can be performed. In 
seed quality control, there is interest in estimating the 
proportion of seeds with different types of damage, 
such as insect damage, density variation, and physical 
damage, among others (MAPA, 2009).
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Thus, the variable of interest is polytomous, and 
the multinomial distribution is used to estimate the 
probability of an element belonging to more than two 
categories, which is a discrete probability distribution 
and a generalization of the binomial distribution (Najar 
and Bouguila, 2022).

The multinomial distribution is defined assuming 
an experiment whose result is one of the events E

1
, E

2
, 

…, E
k 
with probability P[E

i
] = p

i
, where k is the number 

of classes of the multinomial distribution. For i = 1, 2, 
…, k, 0 ≤ p

i
 ≤ 1 and pii

k
=

=∑ 1
1 , and let X

i
 be a random 

variable that counts the number of occurrences of E
i
 

in m independent replicates of this experiment. Then, 
the random vector (X

1
, X

2
, …, X

k
) has a multinomial 

distribution, with parameters p
1
, p

2
, …, p

k-1
, given by 

(Najar and Bouguila, 2022):
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where: each X
i
 is a positive integer, p

1
, p

2
, …, p

k
 are 

population proportions, and x mii

k
=

=∑ 1
. There are p

1
, 

p
2
, …, p

k-1
 parameters, and because we have pii

k
=

=∑ 1
1

; 
therefore, p pk ii

k
= −

=

−∑1
1

1 . Thus, (X | m, p) ~ Multinomial 
(m, p).

The expectation, variance, and covariance of the 
multinomial distribution are given, respectively, by:

E(X
i
) = mp

i
,  (2)

Var(X
i
) = mp

i 
(1 – p

i
),  (3)

Cov(X
i
, X

j
) = – mp

i
p

j
  (4)

Bayesian estimation of the parameters of the 
multinomial distribution

The Dirichlet distribution is a discrete multivariate 
distribution widely used in the Bayesian context as 
a priori conjugate distribution of the multinomial 
distribution, a generalization of the beta distribution 
(Paulino et al., 2018).

Conjugate a priori distribution was used 
because there are closed expressions for a posteriori 
distribution, which facilitates the calculation 
because it does not require computational effort 
to implement computational algorithms. Thus, for 
less experienced researchers, expressions closed 
for a posteriori distribution provide a character to 
understand that using Bayesian inference implies 
an update rule with the possibility of generating a 
historical database.

If X=(X
1
, …, X

k
)T is a vector with k components, 

then it follows a Dirichlet distribution of order k ≥ 
2 with a vector of parameters a = (a

1
, …, a

k
)T, that 

is, (Paulino et al., 2018): (X | a) ~ Dirichlet (a). Its 
probability density function is given by:

f x x
a

a
p px k

i
k

i
i
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i
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i
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where: a aii

k

0 1
=

=∑ , Γ( )t x e dxt x= − −∞

∫ 1

0
is the gamma 

function and pii

k
=

=∑ 1
1

. The marginal distribution is a 
beta with parameters a

i
 and (a

0
 – a

i
) for each i, from 

which we have:

E X
a
a
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a a
Cov X X
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The probability vectors p, parameters of the 
multinomial distribution, follow a Dirichlet distribution 
with parameters a. Thus, if a priori distribution is a 
Dirichlet and the observed variable follows a multinomial 
distribution, then a posteriori distribution is a Dirichlet 
distribution, with another parameter:

p X Dirichlet a x a a x ak k k∼ …( , , )* *
1 1 1= + = +

where: X = (x
1
, …, x

k
, a

1
, …, a

k
)T.

Thus, the mean, variance, and covariance of a 
posteriori distribution of Dirichlet are given respectively 
by (Avetisyan and Fox, 2012):
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Stopping criteria for the Bayesian sequential 
estimation of the parameters of multinomial 
distributions

The major challenge of Bayesian sequential estimation 
is to establish the stopping criteria. This process was 
initially based on the article by Jones (1976), where the 
expressions involved in the procedure are presented, 
such as those for the immediate and expected risks, based 
on dynamic programming. However, these expressions 
are developed considering only uniform priors.

Thus, the first step was to understand how Jones 
(1976) derived the expressions for the risks using a 
uniform prior, and for this purpose, demonstrations 
were carried out to enhance the understanding of the 
process. Subsequently, these risk expressions were 
generalized for any conjugate Dirichlet prior, following 
the paths provided by the author, and corresponding 
demonstrations were also performed.

Some concepts are involved in the Bayesian 
sequential estimation procedure, such as the loss 
function, Bayes risk, immediate risk, expected risk, and 
cost function. It follows that a sequential procedure d is 
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a decision rule. This is a function defined in the space 
of the possible results of an experiment that assumes 
values in the space of possible actions.

Each decision d and each possible value of 
the parameter p can be associated with a loss, which 
assumes positive values, in addition to the cost function 
C(n), indicating the cost of taking n observations.

The loss function is defined as L(p, d). According 
to Ali (2015), the loss function most used in estimation 
problems is the quadratic loss function, defined as:

L p p p pˆ, ˆ( ) = −( )2 .  (10)

The risk of a decision rule, denoted by R(p, d), is 
the expected loss of a posteriori, that is (Berger, 1985):

R(p, d) = E
posteiori

[L(p, d)].  (11)

The Bayes risk of a sequential procedure d is 
defined by:

r(p, d) = Ep [R(p, d)],  (12)

that is, the expected risk associated with the procedure 
to estimate parameter p given a prior p, after n 
observations.

Therefore, the Bayes estimator of p concerning the 
loss function has the lowest Bayes risk. In the case of 
using a quadratic loss function, the Bayes estimator for 
the parameter p is the mean of its posterior distribution 
(Berger, 1985; Ali, 2015).

The “one-step look ahead” method can be 
considered one of the most valuable methods to 
develop the stopping criteria for the Bayesian sequential 
estimation procedure proposed in the literature. Based 
on this method, the Bayes risk of making an immediate 
decision is r

0
(pn, n) = inf

a∈A 
(pn, a, n), where A is the set 

of available actions and r
0
(pn, a, n) = Epn [L(q, a, n)] is the 

expected a posteriori loss of action a in n (Berger, 1985).
The lowest a posteriori Bayes risk was demonstrated 

is the variance of the posterior distribution, denoted by 
var

post 
(n) (Pratt et al., 1964). The posteriori risk under 

quadratic loss function is simply the variance, that is 
(Ali, 2015, 2013):

r
0
(pn, n) = var

post 
(n).  (13)

Thus, the expected a posteriori Bayes risk when 
another observation is made is the expectation of this 
variance, that is (Pham-Gia, 1998):

r1(pn, n) = E[var
post 

(n)].  (14)

In this sense, to determine the stopping criteria, 
it is necessary to calculate the immediate risk, r

0
(pn, n), 

plus the cost of n observations, and the expected risk, 
r1(pn, n) with the increase in the cost with one more 
observation (Berger, 1985).

However, the risks are given by a recurrence 
relationship, and a closed formula must be found to 
solve a recurrence, but the function E[var

post 
(n)] is 

generally not available in closed form, which makes the 
whole calculation highly complex. Thus, to calculate the 
risks, an adaptation to the “one-step look ahead” method 
was performed using dynamic programming equations 
instead of calculating E[var

post 
(n)].

The After evaluating the nth observation, the 
procedure consists of comparing r

0
(pn, n) with r1(pn, n). 

If r
0
(pn, n) > r1(pn, n), sampling continues; if r

0
(pn, n) ≤ 

r1(pn, n), the sampling stops. The Bayes sequential rule 
is also known as Bayesian learning because a posteriori 
distribution calculated for the current n is used to 
update a priori distribution still to be used in the (n + 
1)-th inspection (Berger, 1985).

Therefore, we considered the multinomial 
distribution with (k+1) classes to determine the 
stopping criteria. The probability of an observation in 
the i-th class is p

i
, with i = 1, 2, …, k, and that in the 

(k+1)-th class is 1
1

−( )=∑ pii

k because p pk ii

k

( )+ =
= −( )∑1 1

1  
since pii

k

=

+∑ =
1

1
1.

The a priori information about the parameter p, 
given by p = (p

1
, p

2
, …, p

k
)T, can be adequately represented 

by a member of the natural conjugate Dirichlet family of 
distributions with integer parameters a

0
, a

i
, i = 1, 2, …, 

k, with density proportional to:

p pi
a

i

k

i
i

k a a

i

i

−

= =

− −
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1

1 1

1

1
0 Σ

.

With p
i
 ≥ 0 and pii

k

=∑ ≤
1

1.
The a

i
 parameter of the Dirichlet distribution is 

a vector parameter, and the other parameter of this 
distribution can be written as a aii

k

0 1

1
=

=

+∑ . Therefore, 
a a ak ii

k

( )+ =
= − ∑1 0 1

, according to the previous definition 
for k +1 classes.

According to the Bayes theorem, after m 
observations resulting in x

i
 in the i-th classes, the posterior 

density of p is given by a Dirichlet with parameters a
0
 + 

m, a
i
 + x

i
, where m is the total number of observations 

or the sample size, and x
i
 is the number of observations 

in each of the i-th classes (Jones and Madhi, 1988).
The result of the sampling can be represented as 

a sample path that begins at point (a, a
0
), where a = (a

1
, 

a
2
, …, a

k
), in the whole dimensional space (k + 1) and 

is interrupted when the stopping limit, which must be 
determined, is reached.

The uniform distribution is a particular case of the 
Dirichlet distribution, corresponding to the case in which 
a

1
 = a

2
 = … = a

k
 = 1. A uniform prior is noninformative 

because all possible values of the parameter of interest 
are equally probable. The fact that the Dirichlet class 
includes these “noninformative” natural antecedents is a 
reason to use it as a priori distribution of the multinomial 
distribution (Paulino et al., 2018).

To obtain the stopping limits, the quadratic loss 
is considered in the estimate of p by d = (d

1
, d

2
, …, d

k
)T, 
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and this has the general quadratic form (p – d)TK(p - d), 
where K is a positive symmetric I x I matrix of constant 
loss (Chen, 1988; Jones, 1976). Then, according to Ali 
(2015) using a quadratic loss, the Bayes estimator d* is 
the mean of a posteriori distribution of (x, m), that is, is 
the mean of posteriori Dirichlet distribution, given by:

d E X
a x
a x

a x
a x

a x
a mi i

i i

i i

i i

i

i i* ( ) .= =
+
+( )

=
+
+

=
+
+

p
Σ Σ0 0

  (15)

The above equalities come from the fact that 
a aii

k
=

=

+∑ 01

1
 from the Dirichlet distribution and x

i
 comes 

from the likelihood, in this case, multinomial, which 
represents the number of observations in each class, and 
therefore, it is known that x mii

k
=

=

+∑ 1

1
.

In the case of the use of a uniform prior, then the 
parameters are a

i 
= 1 and a

0
 = k + 1. Replacing them in 

expression Eq. (15), the Bayes estimator using a uniform 
prior is given by (Jones, 1976):

d
x

m ki
i* ( )

( )
.=

+
+ +

1
1

  (16)

The expression given by d
i
* is also a posteriori 

marginal probability of the following observation within 
the i-th class.

The Bayes risk or immediate risk, or even the 
risk of the stopping decision-making, is given by (Jones, 
1976):

S((x
1
, ..., x

k
), m) = S(x, m) = trace (KΣ),    (17)

where: K is a positive symmetric square matrix of 
dimension I x I of constant loss and Σ is the dispersion 
matrix of a posteriori Dirichlet distribution of dimension 
I x I.

Therefore, considering a uniform prior, the 
immediate risk is given by:

S m
K d K d d

m k

ii i ij i ji j

k

i

k

( , ) .
* * *

,
x =

−( )
+ +

== ∑∑ 11

2
  (18)

The dynamic programming equations providing 
the partition for the stop and continuation points are 
given by (Jones, 1976; Jones and Madhi, 1988):

D(x, m) = min[S(x, m), B(x, m)],  (19)

B m c D m d D m dii

k

ii

k
( , ) , , ,* *x x e xi= + + +( )  + +( ) −( )= =∑ ∑1 1 1

1 1    
  (20)

where: B(x, m) is the risk of making an additional 
observation at a cost c (expected risk). D(x, m) is the 
minimum risk or also known as ideal risk.

Therefore, S(x, m) is the immediate risk, B(x, m) is 
the expected risk, and D(x, m) is the minimum between 
the immediate and the expected risks. The ideal risk 
D(x, m) is equal to that expected when the decision is 
to continue sampling; otherwise, when the decision is to 
stop sampling, it is equal to the immediate risk.

Therefore, the dynamic programming Eq. (19) and 

(20) are used successively for m ≤ N* to find the smallest 
integer m that satisfies (Jones, 1976):

B(x, m) > S(x, m), D(x, m + 1)= S(x, m + 1) for all x (21)

and this m provides the maximum sample size. Thereby, 
the sequential inspection procedure known as “one-
step look ahead”, in which the inspection ends in the 
smallest integer m that satisfies the two conditions in Eq. 
(21), is characterized.

Therefore, the expression of the expected risk B(x, 
m) that establishes the stopping criterion, for uniform 
priors, is given by:

B m c S m
m k
m k

( , ) ( , ) .x x= +
+ +
+ +









1
2

  (22)

The following flowchart (Figure 1) summarizes the 
steps of the Bayesian sequential estimation procedure.

Example and application to maize seed damage 
submitted to the X-ray test

Finally, a hypothetical example is presented to explain 
the procedure and the recursion involved thoroughly. In 
addition, after the theory for the consolidated Bayesian 
sequential estimation is presented, it is applied to the 
data of maize seeds subjected to X-ray testing for quality 
control to verify and discuss the results.

The X-ray testing for the maize seed analysis was 
conducted in the city of Lavras, Minas Gerais State, 
Brazil. The radiographic images were generated by a 
Faxitron MX-20 device (Faxitron X-ray Corp) connected 
to a computer and monitor. It was configured at 26 kV, 
and the seeds were exposed to radiation for 20 s.

A total of 100 lots of maize seeds were analyzed, 
with four replicates of 50 seeds for each lot, totaling 
200 seeds per lot, fixed in an orderly manner on acrylic 
plates (21 × 15 cm) with double-sided transparent tape 
adequately labeled with the lot number, the replicate, 
and the position of each seed to allow individual 
identification in subsequent analyses. Each seed was 
analyzed individually. 

In the X-ray test, digital radiographs were generated 
that were visually analyzed to classify the presence or 
absence of damage. Intact seeds were defined as those 

Figure 1 – Flowchart of the Bayesian sequential estimation 
procedure. 
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without any type of damage, such as insect damage, 
physical damage, or damage due to density variations.

Therefore, the proportion of seeds was estimated 
for the three classes: seeds without damage, seeds with 
variations in density, and seeds with other types of 
damage (insect damage + physical damage), considering 
two priors, a uniform prior, where the values of the 
hyperparameters were equally probable (all equal to one). 
Another prior derived from the literature, constructed 
through elicitation based on the results of Javorski and 
Cicero (2017), who evaluated the damage to sorghum 
seeds and grasses, such as maize, using X-ray tests.

Results 

Development of the stopping criterion

Expressions involved in the Bayesian sequential estimation 
procedure for the parameters of the multinomial 
distribution are presented in Jones (1976); however, these 
are developed considering only uniform priors.

Jones (1976) used a uniform prior to obtain the stop 
limits to facilitate the calculations and find the immediate 
and expected risks. This is a particular case of the Dirichlet 
distribution, where the parameters all assume value one.

The expressions contained in Jones (1976) for 
uniform priors are demonstrated as follows for a better 
understanding and generalization to the use of any other 
conjugate Dirichlet priors:

Considering a uniform prior, the dispersion matrix 
of the posterior distribution has the elements:

var( )
( )* *

p
d d
m ki

i i=
−

+ +
1

2
 and cov( , ) .

* *

p p
d d

m ki j
i j= −
+ + 2

      (23)

Given that the matrix K is a definite positive 
symmetric matrix of constant loss, then it is known that 
K is a square matrix and K

ij
 = K
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.
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−
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  (24) 

For the case where i = j, K d d K d dij i ji

k

ii i ii

k∗ ∗
=

∗ ∗
=∑ ∑=1 1

.   
Equation (24) is reduced to:

S m
K d K d d

m k

ii ii

k

ij i ji j

k

( , ) .
,

x =
−( )
+ +

∗
=

∗ ∗
=∑ ∑1 1

2
  (25)

The dynamic programming equations are used 
to estimate the unknown probabilities p

i
, in which i 

= 1, 2, …, k, from sequential sampling because they 
provide an optimal decision at each point. The stopping 
criterion for the multinomial distribution is obtained 
from these equations, as shown below.

For this purpose, a point (x, m) = (x
1
, x

2
, …, x

k
, m) 

is considered. If c is the sampling cost of an observation, 
B(x, m) the risk of making an additional observation at a 
cost c (expected risk), and D(x, m) is the minimum risk 
or ideal risk, then the dynamic programming equations 
providing the partition for the stop and continuation 
points are (Jones, 1976; Jones and Madhi, 1988):

D(x, m) = min[S(x, m), B(x, m)],   (26)

B m c D m d D dii

k

ii

k
( , ) ,x x e xi= + + +( )  + +( ) −( )∗

=
∗

=∑ ∑1 1 1
1 1

,m ,  
  (27)

for each point in the integer space (k + 1), there are 
(k + 1) possible transitions, (x + e

i
, m + 1), with 

probability di
∗, where e

i
 is the line vector with one in 

the i-th position and zero in the other positions: e
i
 = 

(0, …, 1, 0, 0).
Since S(x, m) → 0 and B(x, m) → c as m → ∞, a large 

value of m = N* is obtained, so all points (x, N*) are 
stop points for x Nii

k
≤ ∗

=∑ 1
. The dynamic programming 

Eq. (26) and (27) can now be used successively for m ≤ 
N* to find the smallest integer m that satisfies (Jones, 
1976):

B m c D m d D dii

k

ii

k
( , ) ,x x e xi= + + +( )  + +( ) −( )∗

=
∗

=∑ ∑1 1 1
1 1

,m ,
 (28)
and this m is the maximum sample size.
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Therefore, to find the expression of the expected 
risk B(x, m) that establishes the stopping criterion for 
uniform priors, we have:

B m c D m d D di
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Using the fact that when S(x, m) < B(x, m), we 
decide to stop the analysis, and thus D(x, m +1) = S(x, 
m + 1) since the goal is to find the B(x, m) for which we 
have the stop rule. Then, D(x, m + 1) can be replaced 
by S(x, m + 1):
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1
2  (29)

Therefore, Eq. (29) is the expected risk when using 
uniform priors.

The stopping criterion is summarized by comparing 
the values of the immediate and expected risks for each 
observation. When S(x, m) < B(x, m), the sampling stops, 
and the parameters of interest are estimated. Otherwise, 
if S(x, m) > B(x, m), the sampling continues, making one 
more observation before another decision is made.

From the previous demonstrations and the paths 
given by Jones (1976), it was possible to establish general 
expressions for any other conjugate Dirichlet priors to be 
used, the demonstrations of which are presented below.

Using the general expression for any conjugate 
Dirichlet priors, without restriction to only uniform 
priors to find the immediate risk, the dispersion matrix 
of a posteriori distribution has the following elements:

Var X
x a x a x a

x a
i

i i i ii

k

i i

i ii

k
p( ) =

+( ) +( )



 − +( ){ }
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=

=

∑

∑
1
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22
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1x ai ii

k
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 +{ }=∑

, (30)

Cov X X
x a x a

x a x a
i j

i i j j

i ii

k

i ii

k
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Therefore,
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Let KS square matrices of dimensions I × I, we 
have: S(x, m) = trace (KS)
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For the case where i = j, we have 

K Kiji j

k

i j iii

k

i i i,
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Therefore, Eq. (32) is reduced to:
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Therefore, expression Eq. (33) is the general 
expression for the immediate risk for any conjugate 
Dirichlet prior, not just uniform priors.

To find the expression of the expected risk B(x, m) 
that establishes the stopping criterion for any Dirichlet 
prior:
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Using the fact that when S(x, m) < B(x, m), we 
decide to stop the analysis and thus D(x, m + 1) = S(x, 
m + 1) since the goal is to find B(x, m) for which we 
have the stop rule, D(x, m + 1) can be replaced by S(x, 
m + 1):
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Therefore, the general expression of the expected 
risk for any conjugate Dirichlet priors, not just uniform 
priors, is given by (34):

B m c S m
a m

a m
( , ) , .x x= + ( ) +

+ +








0

0 1
 (34)

A hypothetical example is presented to better 
explain the procedure. A partial data set from batch one 
of seeds, where the first column indicates the seeds, 
and the other columns are the possible classifications. 
Where one indicates that the seed has that characteristic 
and zero otherwise. For example, when analyzed, it 
was concluded that seed one had no damage; thus, it 
was filled in by one in the column without damage and 
this was done successively for the 200 seeds for the 100 
lots analyzed (Table 1).

• Step 1: Determine the priors and cost:

Uniform priors: a
1
 = 1, a

2
 = 1, and a

3
 = 1 and 

Cost: 0.00001 = 10–5 

Assuming a multinomial with three classes, in 
which each observation belongs to one of the classes, 
we have:

• Step 2: Obtain the first observation.
 
With the observation in the second class: x

1
 = 0, 

x
2
 = 1, x

3
 = 0. 

• Step 3: Estimate the proportion (mean of the posterior 
distribution):

d
x

m k
d d di

i∗ ∗ ∗ ∗=
+( )

+ +( )
⇒ = =

+( )
+ +( )

= = =
+( )

+
1

1

0 1

1 2 1
1
4

0 25
1 1

11 3 2. .
22 1

2
4

0 50
+( )

= = . .

• Step 4: Calculate the immediate risk:

S m
m k

K d K d d K d dii i
i

k

ii i i ij i j
i j

k

i

k

x,
,

( ) =
+ +

− −




∗

=

∗ ∗ ∗ ∗

==
∑ ∑∑1

2 1 11





 = =

10
80

0 125. .

• Step 5: Calculate the expected risk:

B m c S m
m k
m k

x x, , . .( ) = + ( ) + +
+ +







 =

1
2

0 10001

• The expected risk without using the expression, for 
a better explanation of the recursive procedure, is as 
follows:

B m c D m d D m di
i

k

i
i

k

x x e xi, , , .( ) = + + +( )  + +( ) −










∗

=

∗

=
∑ ∑1 1 1

1 1

For the first observation, the following occurs: (0, 
1, 0, 1).

For the second observation: (1, 1, 0, 2), (0, 2, 0, 2), 
(0, 1, 1, 2). Then:

B(x, m) = 0.00001 + [D(1, 1, 0, 2) d1
∗ + D(0, 2, 0, 2)d2

∗] + 
D(0, 1, 1, 2)[1 – (d1

∗ + d2
∗)].

• As the goal is to find the B for which the procedure 
should stop, then D = S:

B(x, m) = 0.00001 + [S(1, 1, 0, 2) d1
∗ + S(0, 2, 0, 2)d2

∗] + 
S(0, 1, 1, 2)[1 – (d1

∗ + d2
∗)].

• Therefore, S:

S S1 1 0 2
16
150

0 2 0 2
14
150

, , , , , , ,( ) = ( ) = and S 0 1 1 2
16
150

, , , .( ) =  

• Therefore,

B mx, . . . . . .( ) = + + + =0 00001
16
150

0 25
14
150

0 50
16
150

0 25 0 10001

• Step 6: Compare immediate and expected risk:

Because 0.125 > 0.10001 → Continue 

• Make a new observation:

The prior is the previous estimate: a
1
 = 0.25; a

2
 

= 0.50; and a
3
 = 0.25.

Table 1 – Data set example.
Seeds Without damage Density variations Other types of damage
1 0 1 0
2 0 1 0
3 1 0 0
4 0 0 1

…

…

…

…

199 1 0 0
200 1 0 0
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The observation belongs to the second class: x
1
 

= 0; x
2
 = 2; x

3
 = 0. 

- The ratio of the immediate and expected risk 
is calculated iteratively until the immediate risk is 
lower than the expected risk.

• Estimate the proportion: d
a x
a mi

i i∗ =
+
+0

.

• Immediate risk: 

S m
K x a x a K x a x aiii

k

i i i ii

k

ij i i j ji j
x,

,( ) =
+( ) +( )( ) − +( ) +( )= = =∑ ∑1 1 11

1

2

1
1

k

i ii

k

i ii

k
x a x a

∑
∑ ∑+( )



 +( )



 += =

.

• Expected risk: 

B m c S m
a m

a m
x x, , .( ) = + ( ) +

+ +








0

0 1

Application to maize seed damage

First, the priors were constructed to apply the 
Bayesian sequential estimation technique to the 
maize seed dataset. The prior of the literature was 
based on elicitation, where the hyperparameters 
were obtained from the mean and variance values 
extracted from the article by Javorski and Cicero 
(2017), replacing in the expression:

E X
a
ai

i( ) .=
0

  (35)

A uniform prior is a particular case of Dirichlet 
distribution; therefore, a priori parameters, denoted by 
hyperparameters, were a

1
 = 1, a

2
 = 1, a

3
 = 1, with all 

possible parameter values equally probable. The values 
of a priori means (0.3333), variances (0.0556), and 
covariance (– 0.0278) calculated from the expressions 
are given in Eq. (6).

Table 2 shows the values of the hyperparameters 
found for the Dirichlet prior based on the article by 
Javorski and Cicero (2017), with their respective a priori 
means, variances, and covariances:

A cost of 10–5 was selected according to Bach 
(2015) because it has an order of magnitude similar to the 
order of magnitude of the loss function (p – d)TK(p – d); 
thus ensuring that the risk function is not dominated 
exclusively by cost. As the loss is the square of a 
difference between the actual and estimated proportion 
values, which are included in the interval [0, 1], the 
results are always close to zero and, therefore, the cost 
should also be close to zero. However, the cost is not 
restricted to these conditions and, in other applications, 
the use of the correlation matrix can be recommended.

Thus, all necessary calculations were performed for 
each of the 100 lots using a pivot table built in Microsoft 
Excel®. A uniform prior was used to begin the Bayesian 
sequential estimation process; thus, the risks were 
calculated based on the expressions given in Eq. (18) and 
(22), according to Jones (1976). From the second seed 
evaluated, the previous estimates were used as priors 
to update the information. Thus, the priors followed a 
Dirichlet distribution and the risks were calculated from 
the expressions Eq. (33) and (34) developed.

As there are 100 lots, it is not feasible to present 
all estimates; however, some results of the Bayesian 
sequential estimates for the uniform prior are shown in 
Table 3.

The results with the prior from the literature are 
shown in Table 4.

Dimension 3 simplex was constructed for to 
better understand the priors (Figure 2).

A frequency distribution of the sample sizes of 
the lots considering a uniform prior and literature-
based prior was obtained (Table 5).

Table 2 – Hyperparameters and values of the mean, variance, 
and covariance of the prior from the literature.

Classes  a
i

Mean Variance Covariance 

Without damage 0.45000 0.9000 0.0600 – 0.0507
Density variations 0.04225 0.0845 0.0516 – 0.0093
Other types 0.00775 0.0155 0.0102 – 0.0009

Table 3 – Bayesian sequential estimates of the proportions according to three classifications: p1
 : seeds without damage; p2

: density 
variations; and p3

: other types of damage, using the uniform prior.

Lots m
seq

Types of damage

p1
 :Without damage p2

:Density variations p3
:Other types of damage

 m
1 p seq1 

(%)  
m

2 p seq2 
(%)  

m
3 p seq3 

(%)
1 155 134 86.45 13 8.39 8 5.16
2 6 6 99.98 0 0.01 0 0.01
3 6 6 99.98 0 0.01 0 0.01
4 141 125 88.65 15 10.64 1 0.71

…

… … …
…

… … …

98 6 6 99.98 0 0.01 0 0.01
99 193 149 77.20 29 15.03 15 7.77
100 170 141 82.94 21 12.35 8 4.71
Mean (%) 87.34 8.70 3.97
Standard deviation (%) 8.70 6.79 3.86
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Many lots stopped with few seeds, and then, the 
process stabilized and stopped in a region where the 
estimates were better, but still with a smaller sample size. 
This shows the need to perform truncation (Table 5).

Figure 2 – Uniform prior simplex (left) and the literature prior 
simplex (right). 

Table 6 – Descriptive statistics of the sample sizes with the 
different priors adopted for All lots and Selected lots (lots that 
did not stop quickly).

Prior Lots Min Mean Median Standard deviation

Uniform
All 6 125.67 155 72.42

Selected 72 165.56 169 23.79

Literature
All 5 106.15 145 80.21

Selected 72 165.56 169 24.13

Table 4 – Bayesian sequential estimates of the proportions according to three classifications: p1
: seeds without damage; p2

: density variations; 
p3
: other types of damage, with the literature-based prior.

Lots m
seq

Types of damage

p1
 :Without damage p2

:Density variations p3
:Other types of damage

 m
1 p seq1 

(%) m
2 p seq2 

(%)  
m

3 p seq3 
(%)

1 5 5 99.99 13 0.005 0 0.005
2 5 5 99.99 0 0.005 0 0.005
3 5 5 99.99 0 0.005 0 0.005
4 141 125 88.65 15 10.64 1 0.71

…

… … …
…

… … …

98 5 5 99.99 0 0.005 0 0.005
99 5 5 99.99 0 0.005 0 0.005
100 170 141 82.94 21 12.35 8 4.71
Mean (%) 89.33 7.43 3.24
Standard deviation (%) 9.27 7.09 3.84

Table 5 – Frequency distribution of the sample sizes of the lots 
considering a uniform prior and literature-based prior.

Sample size
Uniform prior Literature prior

f
i

fr
i

 F
i
 % f

i
fr

i
F

i
%

0 ˫ 40 25 0.25 25 37 0.37 37

40 ˫ 80 1 0.01 26 1 0.01 38

80 ˫ 120 1 0.01 27 1 0.01 39

120 ˫ 160 28 0.28 55 22 0.22 61

160 ˫ 200 45 0.45 100 39 0.39 100
Total 100 1.00 100 1.00

The X-ray test performed by the conventional 
method with 200 seeds resulted in average estimates 
of seeds without damage of 83.82 %, with a standard 
deviation of 5.18 %, 11.38 % with variations in density 
and a standard deviation of 5.07 %, and 4.80 % with other 
types of damage, and a standard deviation of 3.49 %. 
Thus, compared with the Bayesian sequential approach, 
it can be concluded that the estimates were closer when a 
uniform a priori was used.

Descriptive statistics were obtained for the sample 
sizes of all lots and the lots that did not stop quickly 
(selected lots) (Table 6).

Discussion

For some lots, the sampling was interrupted very quickly 
because there was a very discrepant class in relation 
to the others, in this case, the class of seeds without 
damage. The number of cases in which this happened 
was larger for the literature-based prior.

In the other lots, there was a considerable 
reduction in seeds evaluated for the estimation of the 
proportion, which indicates how the Bayesian sequential 
method for the multinomial distribution, considering 
the three classes extensively, reduced the sampling time 
necessary to judge a lot in comparison to the traditional 
method with 200 seeds.

It is noticed that the mean proportion and the 
standard deviation for p

2
 (Density variations) and p

3
 

(other types of damages) are practically similar. At 
p

3
, the standard deviation is greater than the mean 

proportion. It is essential to highlight this result, as 
it reveals a characteristic that allows detecting the 
degree of flattening of the distribution, that is, the type 
of kurtosis. For p

1
, there is a leptokurtic distribution; 

however, for the others, it suggests a platycurtic format 
in a descriptive way. It should be noted that when 
considering p

1 
through the application proposed in this 

study, the estimate of this proportion is more accurate 
(Table 4).
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Thus, when removing the lots that stopped 
quickly, considering a priori uniform, 75 lots remained. 
The average estimates were 83.12 % with a standard 
deviation of 5.42 % for seeds without damage, 11.59 % 
and a standard deviation 5.26 % for seeds with density 
variations and 5.29 % and a standard deviation 3.59 % 
for seeds that showed other types.

Considering the literature priori, 63 lots remained, 
and the average estimates were 83.07 %, a standard 
deviation of 5.45 % for seeds without damage, 
11.79 %, and a standard deviation of 5.31 % for seeds 
with variations in density and 5.14 % and standard 
deviation 3.69 % for seeds with other types of damage. 
Evidence that truncation is necessary, as the estimates 
were very close to the conventional method, but with 
the advantage of decreasing the sample size.

It can be concluded that the average sample size 
to estimate the parameters of interest was 165 (Table 6).

Similar results were obtained by Brighenti et al. 
(2019) when estimating the viability of coffee seeds by 
the Bayesian sequential method, in which the average 
percentage of viability using the conventional frequentist 
method was 88 %, whereas the viability obtained with the 
Bayesian method with both priors was 89 %. However, on 
average, the Bayesian method required only 89 samples to 
reach this value, while the traditional estimation method 
needed as many as 200 samples.

De Moura et al. (2017) developed sequential 
sampling plans for Empoasca kraemeri (Ross & Moore) 
(Homoptera: Cicadellidae), a bean crop pest, and 
determined the levels of economic injury for common 
bean at different technological levels of cultivation. The 
results indicated that the sequential sampling plan and 
the standardized design produced similar decisions. 
However, in these decisions, there was a time saving of 
more than 60 % in relation to the standardized plan, 
showing that the sequential approach also optimized the 
process.

According to Ali (2019), the Bayesian methodology 
provides a natural solution for sequential sampling; 
thus, the Bayesian estimation with a sequential approach 
has been used in quality control, which justifies the 
application of this study in seed quality control. The 
control charts to monitor the process quality, proposed 
by Ali (2019) and Riaz and Ali (2015), are related to the 
results of this study.

Therefore, it is concluded that it is possible 
to determine the stopping criteria for the Bayesian 
sequential estimation procedure of the multinomial 
distribution parameters for conjugate Dirichlet priors 
using dynamic programming equations.

In addition, it is possible to apply the technique 
addressed in the quality control of maize seeds, obtaining 
consistent results, with a reduction in the sample size. 
Sample sizes were much smaller than the conventional 
approach applied in X-ray testing. 

The Bayesian sequential method has advantages 
over the traditional method. The Bayesian inference 

stems naturally from the probability theory by 
treating the parameters as random. This has many 
advantages, and it means that all inferential issues 
can be addressed as probability statements about the 
parameters, which derive directly from a posteriori 
distribution obtained for each lot and offer more 
information on the proportions of damages estimated 
in maize seeds.

This method can be applied in several areas to 
optimize a procedure and minimize costs and operational 
time. An expert may use the Bayesian sequential 
procedure to follow yearly crops or to establish the 
profile in the region. The Bayesian sequential procedure 
may compare and identify patterns and outliers to 
yearly crops in a region. The procedure in this study 
is not restricted to rating damages in maize seeds but 
it may be adjusted for any experiment in which the 
population’s variable of interest of has more than two 
response categories.

Therefore, the main advantage of the Bayesian 
sequential method is the reduction in the sample size, 
reducing the time and operational costs of a process. 
However, the disadvantage of this method is the 
complexity of the calculations involved. Thus, a proposal 
for future work is to implement this methodology in 
software with a more user-friendly interface and create 
applications for easy use, inserting only a few pieces 
of information while facilitating the decision-making 
process.
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