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Abstract: In this paper, we revisit theWilson-Hilferty distribution and presented itsmathematical properties

such as the r-th moments and reliability properties. The parameters estimators are discussed using objective

reference Bayesian analysis for both complete and censored data where the resulting marginal posterior

intervals have accurate frequentist coverage. A simulation study is presented to compare the performance

of the proposed estimators with the frequentist approach where it is observed a clear advantage for the

Bayesian method. Finally, the proposed methodology is illustrated on three real datasets.
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1 - INTRODUCTION

In this paper, we revisit the Wilson-Hilferty (WH) distribution, showing that this distribution is appropriate

for modeling data with increasing and bathtub hazard rates. This model takes the name of a fundamental

statistical technique given byWilson and Hilferty (1931), the so-calledWilson-Hilferty transformation. This

procedure gives a normal approximation to the cube root of a chi-squared variable, and it is essential for

a wide range of scientific processes. Ishikawa et al. (2014) considered such transformation to improve the

accuracy of likelihood analysis in the cases where only a small number of modes are available in power

spectrum measurements. Zemzami and Benaabidate (2016) considered the WH transformation to reduces

the effect of local variations in artificial neural networks. Here, we are not introducing a new distribution

but providing common mathematical functions and inferential procedures related to this vital model to be

used in different frameworks.

MSC 2010 subject classifications: 62F15, 62F10.

Correspondence to: Pedro Luiz Ramos

E-mail: pedrolramos@usp.br

ORCid: https://orcid.org/0000-0002-5387-2457

MATHEMATICAL SCIENCES An Acad Bras Cienc (2019) 91(3)



PEDRO L. RAMOS et al. IMPROVED ESTIMATORS FOR THEWILSON-HILFERTY DISTRIBUTION

For the WH distribution a critical reparametrization is presented. This approach returns a simple

probability density function (PDF) where its parameters are orthogonal in the sense discussed by Cox and

Reid (1987). Besides, we considered the presence of randomly censored data, since it has received particular

attention in medical experiments and industrial lifetime testing. To the best of our knowledge, there is no

evidence of the use of the WH distribution to describe time-to-event data and reliability applications so

far. Therefore, these results are useful contributions to be used by reliability engineers and practitioners of

statistical analysis of lifetime data in general.

Due to the limited number of data that are usually observed in reliability application, we consider an

objective Bayesian analysis to achieve inference that does not depend on asymptotic results such as the

frequentist inference. In this case, a Bayesian approach using an overall reference prior is presented. It is

proved that such prior is also a matching prior, i.e., the resulting marginal posterior intervals have accurate

frequentist coverage (Tibshirani 1989). Moreover, the resulting posterior is proper and has interesting

properties, such as one-to-one invariance, consistent marginalization, and consistent sampling properties.

Moreover, we also propose efficient closed-form maximum a posteriori probability (MAP) estimators

for both parameters in the case of complete data, which is essential for practical purposes, since they can

be applied for real-time computing estimators in embedded technology. An intensive simulation study is

presented to show the usefulness of the Bayesian approach. Finally, a Bayes prediction of the future failure

time is presented based on observed order statistics. These results are applied in three lifetime data to

demonstrate how the WH distribution can be applied in real situations.

The remainder of this study is organized as follows. Section 2 presents some mathematical properties

of the WH distribution. In Section 3, we present the parameter estimates for the model based on Maximum

Likelihood Estimator (MLE) for complete and censored data. Section 4 presents the Bayesian estimators

for the distribution. Section 5 is devoted to present simulation studies to compare the performance of the

estimators. The predictive modeling for theWH distribution is discussed in Section 6. In Section 7, we prove

the relevance of the distribution by considering three real lifetime datasets. Finally, Section 8 summarizes

the present study.

2 - WILSON-HILFERTY DISTRIBUTION

Let T be a non-negative random variable with WH distribution, then its PDF is

f(t|θ) =
3
Γ(α)

(
α

λ

)
α

t3α–1 exp
(

–
α

λ
t3
)

, (1)

where α > 0 and λ > 0 are shape and scale parameters, respectively, and θ = (α,λ), hereafter, we will assume
that θ represents these parameters. This model is a particular case of a three-parameter generalized gamma

(GG) distribution proposed by Stacy (1962) (replacing 3 by p > 0 in equation (1)) that unifies the WH

distributionwith other important models such as,Weibull distribution, gamma, Nakagami, and the lognormal

distribution, to list a few.

The cumulative function of T is given by

F(t|θ) =
1
Γ(α)
γ

(
α,
α

λ
t3
)

,

where γ(y,x) =
∫ x

0 wy–1e–wdw is known as the lower incomplete gamma function.
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The raw moments of the model are given as

E(Tr|θ) =
Γ(α+ r/3)
Γ(α)

(
λ

α

)r/3
, for r ∈ N, (2)

which can also be obtained using a reparametrization in the r-moment of the GG distribution given in

Khodabin and Ahmadabadi (2010). Hence, the mean and variance of (1) are, respectively, given by

E(T|θ) =
Γ(α+ 1/3)
Γ(α)

(
λ

α

) 1
3
and (3)

Var(T|θ) = λ

(
1 –
(
Γ(α+ 1/2)
Γ(α)

)2
)

. (4)

2.1 - QUANTITATIVE METHODS FOR THE RELIABILITY

Throughout this subsection, we present some crucial measures in many areas of science, mainly in reliability

engineering. Such quantitative measures for the reliability are: Reliability Function, Failure Rate Function

and Mean Residual Life.

2.1.1 - Reliability function and hazard rate function

The reliability function of an observational unity is given by

R(t|θ) =
1
Γ(α)
Γ

(
α,
α

λ
t3
)

,

where Γ(y,x) =
∫

∞
x wy–1e–wdw is known as the upper incomplete gamma function. In general applications,

R(t) means the probability that an observation does not fail in the time interval (0, t].
When

dF(t)
dt = f(t) exists, the hazard function of a component is obtained by considering h(t|θ) =

f(t|θ)/R(t|θ). So, for the WH distribution, the hazard function is given by

h(t|θ) = 3
(
α

λ

)
α

t3α–1 exp
(

–
α

λ
t3
)
Γ

(
α,
α

λ
t3
)–1

. (5)

A considerable attribute of the function (5) is that it presents three distinct phases, i.e., decreases first,

then remains roughly constant and ultimately increases. This result is proved in Theorem 2.1.

Theorem 2.1. For theWH distribution the hazard function h(t|θ) is bathtub (increasing) shaped for 0 < α < 1
3

(α≥ 1
3 ), for all λ > 0.

Proof. Consider that

ω(t|θ) = –
d
dt

logf(t|θ) = –
(3α– 1)

t
–

3α t
λ

. (6)

Note that for α ≥ 1
3 and λ > 0, ω(t|θ) has a decreasing behavior, then from Lemma 2.1.2 presented in

Ramos et al. (2018), h(t|θ) is increasing. On the other hand, for 0 < α < 1
3 and λ > 0, we have that ω(t|θ) has

bathtub shape property with a global minimum at t∗ =
√
λ– λ3α . Hence, h(t|θ) is also bathtub shaped.
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The behavior of the hazard function (5) when t → 0 and t → ∞ is given, respectively, by

h(0|θ) =


∞, if α < 1

3√
3
λ

, if α = 1
3

0, if α > 1
3

and h(∞|θ) = ∞.

2.1.2 - Mean residual life function

The mean residual life (MRL) is an essential measure in reliability and survival analysis applications

and represents the expected additional lifetime given that a component has survived until time t, i.e.,
it summarizes the entire remaining life from components or systems. This measure gives substantial

information for maintenance strategies involving repair and replacement.

Proposition 2.2. The mean residual life function r(t|θ) of the WH distribution is given by

r(t|θ) =
1

R(t|θ)

∫
∞

t
yf(y|θ))dy – t

=
(
λ

α

) 1
3

Γ
(
α+ 1

3 , α
λ

t3
)

Γ
(
α, α
λ

t3
)
– t.

(7)

The behaviors of the MRL function in (7) when t → 0 and t → ∞ are, respectively

r(0|θ) =
(
λ

α

) 1
3

Γ
(
α+ 1

3

)
Γ (α)

and r(∞|θ) =
1

h(∞|θ)
= 0.

Theorem 2.3. The MRL function r(t|θ) of the WH distribution has either a unimodal or decreasing shape

when 0 < α < 1
3 , or α≥

1
3 , respectively, for all λ > 0.

Proof. If α≥ 1
3 and λ > 0, we have that h(t|θ) is increasing. In this case, using the Lemma II.4 presented by

Ramos et al. (2018), r(t|θ) is decreasing. Now, if λ > 0 and 0 < α < 1
3 , then h(t|θ) has a bathtub shape and since

h(0)r(0) > 1, from the same Lemma II.4 used above, we have that r(t|θ) has a unimodal shape property.

Figure1 presents different shapes of the hazard and the mean residual life function. The hazard function

is characterized by three distinct regions according to a bathtub curve of the hazard rate. The assessment

of the impact of each region it is essential to improve the reliability of the components and systems by

preventive maintenance or to eliminate early-life failures.

3 - CLASSICAL INFERENCE

3.1 - COMPLETE DATA

In this section, we use the maximum likelihood method to obtain the classical estimators of the unknown

parameters of theWH distribution which may be obtained by direct maximization of the likelihood function.
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Let T1, . . . ,Tn be a random sample such that Ti
iid∼ WH(λ,α), then, the likelihood function from (1) is given

by

L(θ|t) =
3n

Γ(α)n

(
α

λ

)nα
{

n

∏
i=1

t3α–1
i

}
exp

(
–
α

λ

n

∑
i=1

t3i

)
. (8)

The estimates are obtained by maximizing the likelihood function. From the expressions ∂

∂λ
logL(θ|t) =

0 and ∂

∂α
logL(θ|t) = 0, the likelihood equations are given by

n
(

1 + log
(
α

λ

))
– nψ(α) + 3

n

∑
i=1

log(ti) =
1
λ

n

∑
i=1

t3i (9)

and

–
nα
λ

+
α

λ3

n

∑
i=1

t3i = 0, (10)

where ψ(k) = ∂

∂k logΓ(k) = Γ
′(k)
Γ(k) is the digamma function. The MLE of λ̂ is given by

λ̂ =
1
n

n

∑
i=1

t3i . (11)

Figure 1 -Hazard and mean residual life function shapes forWH distribution considering different

values of α and λ.
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Substituting λ̂ in (9), the MLE of α̂ can be obtained by solving

ξ(α; t) = log

(
1
n

n

∑
i=1

t3i

)
–

3
n

n

∑
i=1

log(ti) – log(α) +ψ(α) . (12)

Theorem 3.1. Suppose that λ̂ = 1
n ∑

n
i=1 t3i is the MLE of λ. Hence, the root of ξ(α; t) = 0, α̂, is unique.

Proof. Since log(α) –ψ(α) is strictly monotone and continuous with range in (–∞,0), we have that for α > 0
there is a unique solution in

log(α) –ψ(α) = log

(
1
n

n

∑
i=1

t3i

)
–

1
n

n

∑
i=1

log(t3i ),

and the proof is completed.

The MLEs are asymptotically normally distributed with a bivariate normal distribution given by

(α̂MLE, λ̂MLE) ∼ N2[(α,λ), I–1(α,λ))] for n → ∞,

where I(α,λ) is the Fisher information matrix

I(α,λ) = n


(
αψ

′(α) – 1
)

α
0

0
α

λ2

 , (13)

and ψ′(k) = ∂

∂kψ(k) is the trigamma function. These results are useful to construct asymptotic confidence

intervals for the parameters of the WH distribution.

3.2 - CENSORED DATA

A fundamental problem that one meets with lifetime data is that available data are a mixture of complete

and incomplete observations due to many reasons. The case most easily encountered of incompleteness is

random censoring (for more details see Lawless 2011). In this type of censoring there are the follow random

variables, the lifetimeTi related to ith individual and the censoring timeCi, such that data observed are (ti,δi),
where ti = min(Ti,Ci) and the censoring indicator δi = I(Ti ≤ Ci), resulting 1 if the lifetime is observed and
0 otherwise. This type of censoring has as special cases the type I and II censoring mechanisms. We assume

that the random censoring times Cis are independent of Tis. In this case, the likelihood function for θ is

given by L(θ,t) = ∏
n
i=1 f(ti|θ)δiR(ti|θ)1–δi .

Letting the failure times T1, · · · ,Tn be a random sample of WH distribution, the likelihood function

considering data with random censoring is given by

L(α,λ|t,δ) =
3d

Γ(α)n

(
α

λ

)dα
exp

(
–
α

λ

n

∑
i=1
δit

3
i

)
×

n

∏
i=1

{
t–(3α+1)δi
i Γ

(
α,
α

λ
t3i
)1–δi

}
,

(14)
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where d = ∑
n
i=1 δi. The logarithm of the likelihood function (14) is given by

l(α,λ|t,δ) = dlog(3) + dα log
(
α

λ

)
+ (3α– 1)

n

∑
i=1
δi log(ti) – n log(Γ(α))

+
n

∑
i=1

(1 –δi) log
(
Γ

(
α,
α

λ
t3i
))

–
α

λ

n

∑
i=1
δit3i ,

(15)

From ∂ l(α,λ|t,δ)/∂α = 0 and ∂ l(α,λ|t,δ)/∂λ = 0, the likelihood equations are given as follows

dlog
(
α

λ

)
+ d + 3

n

∑
i=1
δi log(ti) +

n

∑
i=1

(1 – δi)Ψ1(α,λt3i )

– nψ(α) =
1
λ

n

∑
i=1
δit

3
i

(16)

n

∑
i=1

(1 – δi)Ψ2(α,λt3i ) +
n

∑
i=1

δiα

λ3t3i
–

dα
λ

= 0, (17)

where Ψ1(a,b) =
∂

∂a
logΓ

(
a,

a
b

)
and Ψ2(a,b) =

∂

∂b
logΓ

(
a,

a
b

)
can be computed numerically. Numerical

methods are required to find the solution of these non-linear equations.

4 - BAYESIAN INFERENCE

In this section, we considered a Bayesian approach to obtain the parameter estimators of theWHdistribution.

Our interest is to find accurate estimates and prediction (condition/performance in the future). These

problems are often challenging to deal with when using classical inference methods. In particular, our setting

presents many interest quantities, and we are simultaneously interested in all the parameters of the model

and several functions of them.

One may consider the Jeffreys prior, which is obtained by taking the square root from the determinant

of the Fisher information matrix in (13), i.e.,

πJ(λ,α) ∝

√
αψ′(α) – 1
λ

. (18)

On the other hand, the Jeffreys prior may not be a good choice in the multiparametric case Bernardo

(2005). Moreover, as it will be discussed further, this prior is not a matching prior for both parameters,

i.e., the marginal posterior intervals have not accurate frequentist coverage in a sense discussed by

Tibshirani (1989). Another well-known class of non-informative priors is then considered, the so-called

reference priors Bernardo (1979). The main idea for obtaining such prior is to maximize the expected

Kullback-Leibler divergence between the posterior distribution and the prior distribution. The obtained

reference prior provides posterior distributions with interesting properties such as invariance, consistency

under marginalization and consistent sampling properties.

In cases where the Fisher information matrix has orthogonal parameters, the following Lemma (see

Berger et al. 2015) can be used to easily obtain a one-at-a-time reference prior for any chosen parameter

of interest and any ordering of the nuisance parameters in the derivation (hereafter referred to as overall

reference prior).
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Lemma 4.1. Berger et al. (2015). Considering the unknown parameters θ = (θ1,θ2) and the posterior

distribution p(θ1,θ2|t) which is asymptotically normally distributed with dispersion matrix S(θ1,θ2) =
I–1(θ1,θ2). If I(θ1,θ2) is of the form

I(θ1,θ2) = diag(f1(θ1)g1(θ2), f2(θ2)g2(θ1)),

where fi(·) and gi(·) are positive functions of θi for i = 1,2, then the overall reference prior is given by

πR(θ1,θ2) =
√

f1(θ1)f2(θ2) .

Consider the posterior distribution with dispersion matrix S(α,λ) = I–1(α,λ) is given by

p(θ|t) ∝
1
Γ(α)n

(
α

λ

)nα
{

n

∏
i=1

t3αi

}
exp

(
–
α

λ

n

∑
i=1

t3i

)
.

Since t3i , i = 1, . . . ,n are constant terms supose that yi = t3i . Then, we have that

p(θ|t) ∝
1
Γ(α)n

(
α

λ

)nα
{

n

∏
i=1

yαi

}
exp

(
–
α

λ

n

∑
i=1

yi

)
.

The posterior above has the same form of the posterior distribution of the gamma model reparametrized

by its mean. Crain and Morgan (1975) proved that for the exponential family the posterior distribution tends

asymptotically to the multivariate normal. Since our model is included in this case, Lemma 4.1 can be used

to derive the overall referente prior.

The overall reference prior for the WH distribution is given by

πR (α,λ) ∝
1
λ

√
αψ′(α) – 1
α

. (19)

An interesting aspect of this overall reference prior is that such prior satisfies the solutions of both
partial differential equations

∂

∂λ

 ι12π

ι22
(
ι11 – ι212/ι22

) 1
2

–
∂

∂α

 π(
ι11 – ι212/ι22

) 1
2

 = 0

∂

∂α

 ι12π

ι11
(
ι22 – ι212/ι11

) 1
2

–
∂

∂λ

 π(
ι22 – ι212/ι11

) 1
2

 = 0

where ιij(θ), i, j = 1,2, are the elements of the Fisher information matrix given in (13). This implies that the
credible interval for θi, i = 1,2 has a coverage error O(n–1) in the frequentist sense, i.e.,

P
[
θi ≤ θ1–a

i (π;X)|θ–j

]
= 1 – a – O(n–1),

where θ1–a
i (π;X)|θ–j refers to the (1 – a)th quantile of the posterior distribution of θi. It is important to point

out that the Jeffreys prior only satisfies the second partial differential, therefore, such prior is not a matching

prior for both parameters, which is undesirable.
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4.1 - COMPLETE DATA

The joint posterior distribution for α and λ, produced by the overall reference prior is proportional to the

product of the likelihood function (8) and the prior distribution (19), resulting in

p(α,λ|t) ∝

√
αψ′(α) – 1

α
1
2 λΓ(α)n

(
α

λ

)nα
{

n

∏
i=1

t3α–1
i

}
exp

(
–
α

λ

n

∑
i=1

t3i

)
. (20)

The normalizing constant is given by

d(t) =
∫
A

√
αψ′(α) – 1

α
1
2 λΓ(α)n

(
α

λ

)nα
{

n

∏
i=1

t3α–1
i

}
exp

(
–
α

λ

n

∑
i=1

t3i

)
dθ,

and A = {(0,∞)× (0,∞)} is the parameter space for θ. The posterior distribution (20) will be proper if and

only if d(t) < ∞.

Theorem 4.2. The posterior distribution (20) is proper if and only if n ≥ 1.

Proof. Since

√
αψ′(α)–1

α

1
2 λΓ(α)n

(
α

λ

)nα{
∏

n
i=1 t3α–1

i

}
exp
(

–α
λ

∑
n
i=1 t3i

)
≥ 0, by Tonelli theorem (see Folland 1999)

we have

d(t) =
∫
A

√
αψ′(α) – 1

α
1
2 λΓ(α)n

(
α

λ

)nα
{

n

∏
i=1

t3α–1
i

}
exp

(
–
α

λ

n

∑
i=1

t3i

)
dθ

=
∞∫

0

∞∫
0

√
αψ′(α) – 1

α
1
2 λΓ(α)n

(
α

λ

)nα
{

n

∏
i=1

t3α–1
i

}
exp

(
–
α

λ

n

∑
i=1

t3i

)
dλdα

=
∞∫

0

√
αψ′(α) – 1

α
1
2

Γ(nα)
Γ(α)n

(
∏

n
i=1 ti

)3α(
∑

n
i=1 t3i

)nα dα

=s1(t) + s2(t)

where

s1(t) =
1∫

0

√
αψ′(α) – 1

α
1
2

Γ(nα)
Γ(α)n

(
∏

n
i=1 ti

)3α(
∑

n
i=1 t3i

)nα dα

and

s2(t) =
∞∫

1

√
αψ′(α) – 1

α
1
2

Γ(nα)
Γ(α)n

(
∏

n
i=1 ti

)3α(
∑

n
i=1 t3i

)nα dα.

Ramos et al. (2018) already proved in the context of the Nakagami-m distribution that

lim
α→0+

√
αψ′(α) – 1

α
– 1

2
= 1, lim

α→∞

√
αψ′(α) – 1

α
– 1

2
=

1√
2

and

Γ(nα)
Γ(α)n ∝ α

n–1 for α ∈ (0,c] and
Γ(nα)
Γ(α)n ∝ nnα

α
n–1
2
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for α ∈ [c,∞) and for any c > 0. Therefore, we have that

s1(t) =
1∫

0

√
αψ′(α) – 1

α
1
2

Γ(nα)
Γ(α)n

(
∏

n
i=1 ti

)3α(
∑

n
i=1 t3i

)nα dα

∝

1∫
0

α
– 1

2

α
1
2
α

n–1
(
∏

n
i=1 ti

)3α(
∑

n
i=1 t3i

)nα dα

=
1∫

0

α
n–2e–q(t)nαdα < ∞

and

s2(t) =
∞∫

1

√
αψ′(α) – 1

α
1
2

Γ(nα)
Γ(α)n

(
∏

n
i=1 ti

)3α(
∑

n
i=1 t3i

)nα dα

∝

∞∫
1

α
– 1

2

α
1
2

nnα
α

n–1
2

(
∏

n
i=1 ti

)3α(
∑

n
i=1 t3i

)nα dα

=
∞∫

1

α
n–3
2 e–p(t)nα < ∞,

where p(t) = log

 1
n ∑

n
i=1 t3i

n
√

∏
n
i=1 t3i

 > 0 and q(t) = log

 ∑
n
i=1 t3i

n
√

∏
n
i=1 t3i

 > 0 by the inequality of the arithmetic and

geometric means. Finally, we obtain d(t) = s1(t) + s2(t) < ∞.

The marginal posterior distribution for α is given by

p(α|t) ∝

√
αψ′(α) – 1
α

Γ(nα)
Γ(α)n

(
∏

n
i=1 ti

)3α(
∑

n
i=1 t3i

)nα . (21)

The conditional posterior distribution for λ is given by

p(λ|α, t) ∼ IG

(
nα,α

n

∑
i=1

t3i

)
, (22)

where IG(·, ·) denotes the inverse gamma distribution with PDF f(y|a,b) = bay–a–1exp
(

–by–1
)

/Γ(a) and
shape parameter a and scale parameter b.

4.2 - MAXIMUMA POSTERIORI PROBABILITY (MAP) ESTIMATORS

Firstly, we considered the Bayesian approach to derive efficient closed-form estimators for parameters of

the generalized gamma distribution when one of the parameters is known. Let W follows a GG distribution

with α,λ and φ parameters, then, the likelihood function is given by

L(θ | w) =
φ

n

Γ(α)n

(
α

λ

)nα
{

n

∏
i=1

wφα–1
i

}
exp

(
–
α

λ

n

∑
i=1

wφi

)
. (23)
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Although different objective priors could be considered such as Jeffreys’ prior or reference priors

(Ramos et al. 2017) to perform inference with this generalized model, they depend on polygamma functions

which do not allow us to obtain closed-form estimators. On the other hand, they considered the following

objective prior

π (θ) ∝
1

λc1αc2φc3
, (24)

where ci ≥ 0, i = 1,2,3 are known hyperparameters. From the likelihood function (23) and the prior

distribution (24), the joint posterior distribution for θ is given by,

p(θ|w) =
1

d(w)
φ

n–c3

αc2λc1Γ(α)n

(
α

λ

)nα
{

n

∏
i=1

wφαi

}
exp

(
–
α

λ

n

∑
i=1

wφi

)
, (25)

where d(w) is a normalized constant with parameter space A = {(0,∞)× (0,∞)× (ε,M)}, 0 < ε < 3 is a small
constant and M > 3 is a large constant. We select (ε,M) for the interval of φ as the interest is in the situation
where φ = 3. Hence, any interval (ε,M) that contains φ = 3 is adequate for our purposes.

To achieve the maximum a posteriori probability estimator of θ we consider θ̂MAP =
argmax
θ

log(π(θ|ω)). Hence, we have that the MAP estimate of λ is given by

λ̂ =
α̂∑

n
i=1 wφ̂i

nα̂+ c1
· (26)

As can be noted, (26) will be equal to the MLE (11) if and only if c1 = 0, i.e, λ is unbiased when φ = 3.
Hence we consider only that c1 = 0. Moreover, if c1 = 0, then (25) is a proper posterior distribution, i.e.,

d(w) < ∞ (see Louzada et al. 2018). The MAP estimate of α is given by

α̂ =
(n – c3)(

1
λ̂

∑
n
i=1 wφ̂i log

(
wφ̂i
)

+ ∑
n
i=1 log

(
wφ̂i
)) , (27)

and the MAP estimate for φ is obtained by solving the non-linear equation

log(α̂) –ψ(α̂) = log
(
λ̂
)

–
1
n

n

∑
i=1

log(wφ̂i ) +
c2
nα̂

.

For the WH distribution (φ = 3), the MAP estimator for λ is λ̂MAP = 1
n ∑

n
i=1 t3i and the estimate of α is

obtained from

α̂MAP =
(n – c3)1

n ∑
n
i=1 t3i(

1
n ∑

n
i=1 t3i ∑

n
i=1 log

(
t3i
)

– ∑
n
i=1 t3i log

(
t3i
)) · (28)

It is possible to show that the asymptotic variance σ̂2
α and σ̂

2
λ
of α̂MAP and λ̂MAP are given by

σ̂
2
α =

(n – c3)2

n3

(
α

2 +α3ψ
′
(α+ 1)

)
(29)

and

σ̂
2
λ

=
λ

2

nα
· (30)
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4.3 - CENSORED DATA

In the case of censored data, the joint posterior distribution for α and λ, produced by the overall reference

prior is given by

p(α,λ|t,δ) ∝

√
αψ′(α) – 1
α

3d

λΓ(α)n

(
α

λ

)dα n

∏
i=1

{
t–3αδi
i

}
×

×
n

∏
i=1

{
Γ

(
α,
α

λ
t3i
)1–δi

}
exp

(
–
α

λ

n

∑
i=1
δit

3
i

)
.

(31)

To sample from the joint posterior distribution using the Markov Chain Monte Carlo (MCMC) methods

it is necessary to consider the conditional distributions for the parameters. The conditional posterior

distribution of α is given by

p(α|λ, t,δ) ∝
1
Γ(α)n

√
αψ′(α) – 1
α

exp

(
–
α

λ

n

∑
i=1
δit

3
i

)
×

(
α

λ

)dα n

∏
i=1

{
t–3αδi
i Γ

(
α,
α

λ
t3i
)1–δi

}
.

The conditional posterior distribution of λ is given by

p(λ|α, t,δ) ∝

(
1
λ

)dα+1 n

∏
i=1
Γ

(
α,
α

λ
t3i
)1–δi

exp

(
–
α

λ

n

∑
i=1
δit

3
i

)
.

Since the marginal distributions do not belong to any known parametric family, theMetropolis-Hastings

algorithm was considered in order to generate samples from the marginal posterior. The Gamma distribution

was used as transition kernel q
(
θ

(j)
i |θ(∗)

i ,b
)

, i = 1,2, for sampling values of θi, where b is the parameter that

control the rate of acceptance of the algorithm. In our case, we choose b to be equal to one. However, other

higher values can also be considered. To increase the convergence of the MCMC method, we could use the

closed-form estimators as a good initial value for λ and α.

The Metropolis-Hastings algorithm operates as follows:

1. Start with an initial value α(1),λ(1) and set the iteration counter j = 1;

2. Generate a random value α(∗) from the proposal Gamma(α(j),b) with PDF given by f(y | a,b) =
ba

Γ(a)ya–1exp–by and random values u1 and u2 from an independent uniform in (0,1);

3. Evaluate the acceptance probability

η1

(
α

(j),α(∗)
)

= min

(
1,

p
(
α

(∗)|λ(j), t,δ
)

p
(
α(j)|λ(j), t,δ

) q
(
α

(j) | α(∗),b
)

q
(
α(∗)|α(j),b

) ) ;

4. If η1

(
α

(j),α(∗)
)
≥ u1, then α

(j+1) = α(∗). Otherwise, α(j+1) = α(j);

5. Generate a random value λ(∗) from the proposal Gamma(λ(j),b) and a random value u from an

independent uniform in (0,1);

An Acad Bras Cienc (2019) 91(3) e20190002 12 | 23



PEDRO L. RAMOS et al. IMPROVED ESTIMATORS FOR THEWILSON-HILFERTY DISTRIBUTION

6. Evaluate the acceptance probability

η2

(
λ

(j),λ(∗)
)

= min

(
1,

p
(
λ

(∗)|α(j+1), t,δ
)

p
(
λ(j)|α(j+1), t,δ

) q
(
λ

(j)|λ(∗),b
)

q
(
λ(∗)|λ(j),b

)) ;

7. If η2

(
λ

(j),λ(∗)
)
≥ u2, then λ

(j+1) = λ(∗). Otherwise, λ(j+1) = λ(j);

8. Change the counter from j to j + 1 and return to step 2 until convergence is reached.

5 - NUMERICALANALYSIS

In this section, the proposed estimation methods are investigated via Monte Carlo simulation in order to

compare their efficiency. We used two of the most commonly used measures to assess the performance of

the estimators, namely, the mean relative error (MRE) and the root-mean-square error (RMSE), given by

MREθi
= 1

N ∑
N
j=1
θ̂i,j
θi

and RMSEθi
= 1

N ∑
N
j=1

√
(θ̂i,j –θi)2, for i = 1,2, respectively, where N is the number of

estimates and θ̂i,j, , j = 1, . . . ,N is the estimates obtained through the MLE and MAP estimators. The MRE

and the RMSE of the λ are the same for the different estimation procedures.

Taking into account this approach, the most efficient estimators are those ones yielding MREs closer

to one with smaller RMSEs. It is also computed the 95% coverage probability (CP95%) of the credibility

intervals (CI) obtained from the Bayesian estimators and the confidence intervals from the classical approach

for α and λ. Under this approach, the estimators with best coverage probabilities will show the frequencies

of intervals that cover the true values of θ closer to the nominal level. The samples of size n were generated

by assuming T ∼ WH(λ,α). The results were computed by using the software R. Overall, the main aim

of this section is to compared the Bayes estimators with the classical approach in order to verify if our

proposed estimators return more accurate results. This approach has been considered for other models such

as Gamma (Louzada et al. 2019), Weibull (Teimouri et al. 2013), Kumaraswamy (Dey et al. 2018) and the

GG distribution (Ramos et al. 2017), to list a few.

5.1 - COMPLETE DATA

Recall that it was presented a class of MAP estimators for α that depends on c3. Therefore, before going on

with the simulation study, it is necessary to find a value for c3 in which the MRE is closer to one. Figure

2 presents the MREs for αMAP considering different values of c3, for θ = (3,4) and θ = (10,4) and n = 20 .

We observed that a good choice is c3 = 2.9. Therefore, we considered such value in (28), where n ≥ 3. Since
both estimators obtained from the reference posterior and the closed-form Bayes estimators came from

the Bayesian approach, they will be referred to as Bayes and CBayes estimators, respectively. To achieve

the MLEs, numerical techniques must be used to solve the non-linear equation (12), the uniroot function

available in R was considered to find the estimate, and as provided theoretically, we find a unique solution

in all situations.

Figure 3 shows the MREs, RMSEs and CPs for the estimates of α and λ obtained by using the Monte

Carlo (MC) method where α = (4,0.5), λ = 2 and n = (15,20, . . . ,100). The horizontal lines in the figures

correspond to the minimum MREs and RMSEs, equal to one and zero, respectively. Notice that for λ we

have the same estimator using the three different estimators for complete data. In this case, both MRE and
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Figure 2 -MREs for α considering c3 = (2,2.1, · · · ,4), α = 3, λ = 4 and n = 20 (left panel) α = 10, λ = 4 and n = 20 (right

panel) for N = 100,000 simulated samples.

RMSE are similar. On the other hand, the confidence and credibility intervals are computed differently for

each method. We observe that the estimates of the parameters are asymptotically unbiased, i.e., the MREs

tend to one when n increases and the RMSEs decrease to zero. However, the Bayes estimators, obtained from

the reference posterior, outperform the other estimation procedures and present extremely efficient estimates

for both parameters even for small sample sizes. It worth mentioning that if one needs fast computation,

the CBayes returned similar estimates when compared to the Bayes estimators, obtained by considering

reference priors.

5.2 - CENSORED DATA

In this section, we considered the Bayes estimators in the presence of randomly censored data. The censored

data were generated as follows. We first generated two random samples of size n, where X ∼ WH(α,λ) and
W∼U(0, tc), with tc as fixed value. Then, from the obtained samples, we took Tj = min

(
Xj,Wj

)
, j = 1, . . . ,n,

and defined δj = 0 if Tj = Xj or δj = 1 if Tj = Wj.

Note that tc has to be selected in order to obtain the desired proportion of censoring. In order to obtain
approximately 0.3 and 0.5 proportions of censored data, i.e., 30% and 50% of censorship we considered

tc = 9.3 and tc = 4.8, respectively. The simulation study is performed by considering θ = (2,4), N = 100,000
and n = (20,25, . . ., 100). To achieve the MLEs considering censored data the maxLik package to maximize

the log-likelihood function (15). Different initial values were considered which returned the same estimates.

Figure4 shows the MREs, RMSEs and the coverage probabilities from the estimates of α and λ obtained by

using the MC method where α = 4, λ = 2.
The results indicate that the MLE of α has a systematic bias, as shown in Figure 4. On the other hand,

from the Bayes estimators, we have observed more accurate results. The coverage probabilities are also

close to the nominal levels as the MLE. Therefore, the Bayes estimators are also recommended to perform

inference for the parameters of the WH distribution in the presence of censoring.

6 - PREDICTIONANALYSIS

Inmany application, wemay be interested in identifying the time to the next event (failure). In these contexts,

predicting future observations plays an important role, especially, when costs are linked with the events.

In order to provide a predictive analysis of future events, we consider the Bayesian prediction with WH

distribution using observed order statistics.
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Figure 3 - MREs, RMSEs and CPs for α and λ considering α = 4,λ = 2 (upper panel) and α = 0.5,λ = 2 (lower

panel) for N = 100,000 simulated samples and n = (15,20, . . . ,100).
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Figure 4 -MREs, RMSEs and CPs for α and λ considering α = 4,λ = 2 for N = 100,000 simulated samples, 30% (upper

panel) and 50% (lower panel) of censoring and n = (20,25, . . . ,100).
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Several authors have performed prediction analysis from the Bayesian point of view (see, for instance,

Pradhan and Kundu (2011), Kundu and Raqab (2012),Asgharzadeh et al. (2015)) for other distributions and

the predictive distribution of future failure times and its respective credibility intervals.

We denote the order statistics of T1, · · · ,Tm by T(1) < . . . < T(m). Let T(m+1) < . . . < T(n) be the

unobserved future sample and t(m) denote the m-th order statistic. From the Markov property of the

conditional order statistics, we have

fTm+k(y|t) = fTm+k|Tm(y|t)

=
(n – m)!f(y) (F(y) – F(tm))k–1 (1 – F(y))n–m–k

(k – 1)!(n – m – k)!(1 – F(tm))n–m ,
(32)

for y > t(m). After some algebra we have

fTm+k(y|t) =
3(n – m)!

(k – 1)!(n – m – k)!
y3α–1

(
α

λ

)
α

exp
(
α

λ
y3
)

×

(
γ

(
α, α
λ

y3
)

–γ
(
α, α
λ

t3m
))k–1(

Γ

(
α, α
λ

y3
))n–m–k(

Γ

(
α, α
λ

t3(m)

))n–m .
(33)

The posterior predictive density of T(m+k) given t is given by

pTm+k
(y|t) =

∫
∞

0

∫
∞

0
fTm+k(y|t)p(λ,α|t,δ)dλdα,

where p(λ,α|t,δ) is given in (31). Consequently, the predictive density of T(m+k) according to y > t(m) is

given by

f∗Tm+k
(y|t) =

∫
∞

0

∫
∞

0
fTm+k|Tm(y|t)p(λ,α|t,δ)dλdα. (34)

We also should note here that one striking result of the Bayesian predictive approach is the advantage

in constructing a credibility interval for T(m+k) using the MCMC techniques.

7 - REAL-DATAAPPLICATIONS

We examined the adjust of the proposed model on three real datasets to emphasize its flexibility and compare

its performance with other distributions. A closer inspection of the following figures shows that the WH

distribution exhibits best fit for each dataset when compared to commonly used distributions. In order to

discriminate the best fit, we considered some key performance measures, namely, the Akaike information

criterion (AIC) given by AIC = –2l(θ̂;x) + 2p, the Corrected Akaike information criterion (AICc) given

by AICc = AIC + [2p(p + 1)]/n – p – 1, and the Bayesian information criterion (BIC) given by BIC = plnn –
2l(θ̂;x), where p is the dimension of θ and θ̂ is the estimate of the parameters and l(θ̂;x) is the logarithm of

the likelihood function given in (8) and (14).

7.1 - LIFE TEST IN ELECTRICALAPPLIANCES

Table I presents a well-known dataset available in Lawless (2011), the number of 1000s of cycles to failure

for a group of 60 electrical appliances in a life test, whose data are uncensored.
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TABLE I

Failure times in 60 electrical appliances.

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142

0.381 0.464 0.479 0.556 0.574 0.839 0.917 0.969

1.088 1.091 1.174 1.270 1.275 1.355 1.397 1.477

1.702 1.893 1.932 2.001 2.161 2.292 2.326 2.337

2.811 2.886 2.993 3.122 3.248 3.715 3.790 3.857

4.106 4.116 4.315 4.510 4.580 5.267 5.299 5.583

0.165 0.210 0.991 1.064 1.578 1.649 2.628 2.785

3.912 4.100 6.065 9.701

TABLE II

Results of AIC, AICc and BIC criteria for all fitted distributions

considering the dataset related to the failure time of 60 electrical

appliances.

Criteria WH Weibull Gamma Lognormal Logistic

AIC 215.26 218.23 218.02 237.13 248.95

AICc 215.47 218.44 218.23 237.34 249.16

BIC 219.45 222.42 222.21 241.32 253.14

The results summarized in Table II show that the WH distribution is the best model since resulted in

the lowest values of the different discrimination methods.

In order to discriminate the best fit, we considered the AIC, AICc, and BIC available in Table II. For

the three criteria, we observed that the proposed model has smaller values, indicating a better fit for theWH

distribution.

Table III provides the summary statistics: the MAP estimates, standard-deviations (SD) and 95%

credibility intervals (CI) for α, λ and y∗ (future failure time). We can obtain the MAP estimates of the

parameters λ and α from (26) and (28), respectively. In order to predict the future failures of an item, as

described in Section 6, we considered the posterior predictive density of Tm+k from (34).

TABLE III

MAPs, SDs and 95% CIs for α, λ and y∗ related to the
WH distribution.

θ MAP SD CI95%(θ)

α 0.2132 0.0306 (0.1593; 0.2772)

λ 43.7261 15.7220 (28.3993; 87.6349)

y∗ 9.9075 0.6349 (9.7185; 12.1094)
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As can be seen from Table I, the last failure was observed at 9.701 cycles. Then, the last line of Table

III shows the prediction of the 61st failure will be at y∗ = 9.908 cycles with 95% predictive interval given

by (9.7185; 12.1094).

7.2 - FAILURE TIME DATA OF ELECTRICAL COMPONENTS

The following datasets motive the application of WH distribution in the presence of censored data. The first

dataset concerns electrical failures in the components from agricultural machines. The follow-up time was

a harvesting season. In this period, the electrical components have failed 29 times collected in 2017. The

data are shown in Table IV.

TABLE IV

Dataset related to the agricultural machines with failure in electrical

components (+ indicates censoring).

1 1 1 2 2 2 2 4 6 8 8

9 11 12 15 21 21 21 21 23 24 27

29 31 36 39 41 45 46 47+ 47+

In order to discriminate the best fit, we used the AIC, AICc, and BIC (see Table V). In all of them, the

proposed model has smaller values, indicating a better fit.

TABLE V

Results of AIC, AICc and BIC criteria for all fitted distributions

considering the dataset related to the agricultural machine’s components

electrical problems.

Criteria WH Weibull Gamma Lognormal Logistic

AIC 236.57 238.01 237.80 241.34 255.41

AICc 237.03 238.47 238.26 241.80 255.87

BIC 239.31 240.74 240.53 244.00 258.14

Table VI provides the summary statistics: the MAP estimates, SDs and 95% CIs for α, λ and y∗ (future
failure time). As can be seen from the Table IV the last failure was observed on the 46th day. Then from

the last line of Table VI we can see the prediction of the 47th failure that will be at 50.13 days, with a 95%

predictive interval given by (47.27; 78.25).

Turning now to another type of failure, Table VII presents the time up to corrective maintenance of the

agricultural machine. In this case, correctly predicting the next maintenance is of main interest in order to

reduce costs.

From the results presented in Table VIII we observe from the AIC, AICc and BIC that the WH

distribution returned better fit for the dataset.

Table IX shows the MAPs, standard deviations, and 95% credible intervals for the parameters of

the WH distribution. From Table VII the last failure was observed at 13 days. Applying the proposed
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TABLE VI

MAPs, SDs and 95% CIs for α, λ and y∗ related to the
WH distribution.

θ MAP SD CI95%(θ)

α 0.2239 0.0480 ( 0.1521; 0.3435)

λ 27733.5 7654.4 (12949.92; 42160.68)

y∗ 50.1313 8.3780 (47.2707; 78.2493)

TABLE VII

Dataset related to the agricultural machine’s corrective maintenance

(+ indicates censoring).

1 1 1 1 1 1 1 2 2 3 3 3

3 3 4 4 4 4 4 4 4 5 5 5

5 5 5 5 5 5 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7

7 7 8 8 8 8 8 8 8 8 8 8

8 9 9 9 9 9 11 11 11 11 11 11

11 11 13 13+ 13+

methodology, the prediction of the 31st maintenance will be at 13.37 days with 95% predictive interval

given by (13.03;16.83).

Figure 5 presents the reliability function fitted by different distributions and the Kaplan-Meier curve

for the three data sets. In all cases, the WH distribution provides an improved fit for the datasets.

Therefore, the practical importance of the WH distribution is observed for these datasets, since it

provides a better fitting in comparison with other essential distributions, allowing to conduct prevision for

the next failures.

8 - CONCLUSIONS

In this paper, we revisit the WH distribution and presented mathematical properties of this important

distribution, which can be used in situationswhere the data present bathtub or increasing hazard rate. Initially,

the parameter estimators and their asymptotic intervals were explored using the maximum likelihood

theory under complete and censored data. Further, we considered an objective Bayesian analysis with an

overall reference prior in order to obtain improved estimators, which outperform the ones obtained via

maximum likelihood. It is proved that the reference posterior distribution is proper when n ≥ 1 and the

resulting marginal posterior intervals have accurate frequentist coverage. Moreover, we have introduced

MAP estimators for the parameters of WH distribution that have closed-form expressions. A simulation

study revealed the superiority of the Bayes estimators.
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TABLE VIII

Results of AIC, AICc and BIC criteria for all fitted distributions

considering the dataset related to the agricultural machine’s revision.

Criteria WH Weibull Gamma Lognormal Logistic

AIC 441.29 442.52 451.37 469.56 442.29

AICc 441.43 442.66 451.51 469.70 442.43

BIC 446.26 447.50 456.34 474.53 447.27

TABLE IX

MAPs, Standard deviations and 95% credible intervals for α, λ and

y∗ related to agricultural machine’s revision dataset.

θ MAP SD CI95%(θ)

α 0.6309 0.0793 (0.4892; 0.7949)

λ 423.5057 60.1510 (332.7807; 564.9964)

y∗ 13.3713 1.0384 (13.0293; 16.8254)

A Bayes prediction of the future failure time was also presented based on observed order statistics. The

proposed methodology was applied to three data sets associated with failure time. Many possible extensions

of this current work can be considered. This distribution is a promising distribution to be used in studies

involving recurrent event data. In this case, we can consider a rate model from a nonhomogeneous Poisson

process, where the parametric baseline rate function is aWH rate function. Further, classical point prediction

could be studied for this model, for example, maximum likelihood prediction, best-unbiased predictor,

conditional median prediction along with prediction interval using Pivotal method and highest conditional

density (HCD) method. Our approach should be investigated further in this context.
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Figure 5 - Reliability function adjusted by different distributions superimposed to the empirical reliability function.

Right-hand panel: Estimated hazard function.
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