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Abstract:We give an explicit formula for singular surfaces of revolution with prescribed unbounded mean

curvature. Using this mean curvature, we give conditions for certain types of singularities of those surfaces.

Periodicity of that surface is also discussed.
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INTRODUCTION

In this note, we study surfaces of revolutionwith singular points. Let I⊂R be an open interval, and γ : I→R2

a C∞-map. We set γ(t) = (x(t),y(t)) (y > 0), and parametrize the surface of revolution M of γ by

s(t,θ) =
(
x(t),y(t)cosθ,y(t) sinθ

)
. (0.1)

The curve γ is called the profile curve or the generating curve of s.We denote byH(t) themean curvature

of s(t,θ). Given aC∞ functionH(t) on I, it is given by Kenmotsu (Kenmotsu 1980) that an explicit generating

curve (x(t),y(t)) satisfying the surface of revolution s(t,θ) has the mean curvature H(t) on the set of its

regular points, and t is an arc-length parameter of (x(t),y(t)). Moreover, the periodicity of s is also studied

by Kenmotsu (Kenmotsu 2003).

On the other hand, in recent decades, there are several articles concerning the differential geometry of

singular curves and surfaces, namely, curves and surfaces with singular points. Among them, we cite Bruce

and West 1998, Fukui and Hasegawa 2012, Fukunaga and Takahashi 2014, Honda et al. 2019, Izumiya et

al. 2016, Martins et al. 2016, Naokawa et al. 2016, Oset Sinha and Tari 2018, Saji et al. 2009, Shiba and

Umehara 2012, (A. Honda et al., unpublished data). If the generating curve γ is regular, then the mean

curvature H is differentiable on I, but if γ has a singularity, then H may diverge (Saji et al. 2009, Martins et
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al. 2016). Given a C∞ function H defined on I \ P, where P is a discrete set, we give an explicit generating

curve γ = (x,y) such that the mean curvature of the surface of revolution of γ coincides with the function

H on the set of regular points. We also give conditions for the generic singularities of γ and discuss the

periodicity of the surface.

1 - CONSTRUCTION OF SINGULAR SURFACES OF REVOLUTION

Let I ⊂ R be an open interval, and let γ : I → R2 be a C∞ map. We set γ(t) = (x(t),y(t)), and assume y(t) > 0
for any t ∈ I. We assume that there exists a C∞ map ϕ : I → R such that γ′(t) and (cosϕ(t), sinϕ(t)) are
linearly dependent for all t ∈ I. Then we have a function l : I → R such that

γ
′(t) = l(t)e(t), e(t) = (cosϕ(t), sinϕ(t)).

This condition is equivalent to γ being a frontal (see Section 2 for detail). We choose the following unit

normal vector of the surface of revolution M of γ

ν(t,θ) =
(

sinϕ(t),–cosϕ(t)cosθ,–cosϕ(t) sinθ
)
. (1.1)

One can compute the mean curvature H on M\{s(t,θ) | l(t) = 0}, namely the set of regular points of M, using

ν in (1.1). We find that:

H(t) =
1
2

(
cosϕ(t)

y(t)
–

ϕ ′(t)
l(t)

)
,

where ′ = d/dt.

Lemma 1.1. The function Hl can be extended to a C∞ function on I.

Proof. It follows from the above expression of H and the assumption y > 0.

By the above expression, ϕ ′ relates the boundedness of the mean curvature. See Martins et al. 2016,

Proposition 3.8 for detailed boundedness of the mean curvature for the case of cuspidal edges. Since |γ′| = |l|,
the function l is the same as the half-arclength parameter (Shiba and Umehara 2012) near a point t0 satisfying
γ
′(t0) = 0, γ′′(t0) 6= 0 up to a constant.We remark that the case y = 0 is already considered in Kenmotsu 1980.

Conversely, suppose given a C∞ function H: I \P → R, where P is a discrete set, and a function l : I → R
such thatHl is aC∞ function on I and l–1(0) = P.We ask if there is a surface of revolutionMwith a generating

curve γ(t) = (x(t),y(t)) such that

(x′(t),y′(t)) = l(t)(cosϕ(t), sinϕ(t)) (1.2)

and mean curvature H with respect to (1.1). By Lemma 1.1, x,y satisfy the differential equation

2H(t)l(t)y(t) – l(t)cosϕ(t) + y(t)ϕ ′(t) = 0. (1.3)

Following Kenmotsu 1980, we have the following theorem.

Theorem 1.2. A general solution of the differential equation (1.3) with the condition (1.2) is

y(t) = ((F(t) – c1)2 + (G(t) – c2)2)1/2, (1.4)

x′(t) =
F′(t)(G(t) – c2) – G′(t)(F(t) – c1)
((F(t) – c1)2 + (G(t) – c2)2)1/2

=
F′(t)(G(t) – c2) – G′(t)(F(t) – c1)

y(t)
, (1.5)
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where

F(t) =
∫ t

0
l(u)sinη(u)du, G(t) =

∫ t

0
l(u)cosη(u)du, η(u) =

∫ u

0
2H(v)l(v)dv. (1.6)

We take the initial values c1, c2 satisfying that (F(t) – c1)2 + (G(t) – c2)2 > 0 on t ∈ I.

Proof. We set z(t) = y(t) sinϕ(t) + iy(t)cosϕ(t), with i2 = –1 (cf. Kenmotsu 1980, p. 148). Then by (1.2),

z′ = y′ sinϕ + yϕ
′ cosϕ + i(y′ cosϕ – yϕ

′ sinϕ)

= lsin2
ϕ + yϕ

′ cosϕ + i(lsinϕ cosϕ – yϕ
′ sinϕ).

On the other hand, by (1.3),

2iHlz = –(lcosϕ – yϕ
′)cosϕ + i(lcosϕ – yϕ

′) sinϕ .

Thus (1.3) can be written as

z′(t) – 2iH(t)l(t)z(t) – l(t) = 0,

and a general solution of this equation is

z(t) = (F(t) – c1) sinη(t) + (G(t) – c2)cosη(t)

+ i
(
(G(t) – c2) sinη(t) – (F(t) – c1)cosη(t)

)
,

where c1, c2 ∈ R, and F,G,η are the functions as in (1.6). Using the fact that y(t)2 = |z(t)|2 and x′(t) =
l(t)cosϕ(t) = l(t)(z(t) – z̄(t))/(2iy(t)), we get the assertion.

We remark that in the formula (1.4), by

y′ = lsin(η+α), α = arcsin
G(t) – c2√

(F(t) – c1)2 + (G(t) – c2)2
,

we see that ϕ = η+ α+ 2πn, where n is an integer. It should be mentioned that on the set of regular points

on M, there is a result of Kenmotsu 1980, (see also Kenmotsu 1979), and cusp points can be considered

by taking the limits of regular parts. However, in Section 2, we exhibit a class of singularities of γ, which

cannot be investigated by considering limits of regular points. Furthermore, the formulae (1.4), (1.5) include

singular points in the interior points of the domain. Thus they can extend the treatment of singular surfaces

of revolution. We remark that there is a formula which represents immersed surfaces (see Kenmotsu 1979,

Theorem 4) by means of prescribed mean curvature and unit normal vector.

2 - SINGULARITIES OF GENERATING CURVES

In this section, we consider the relation between singularities of generating curves and of the surfaces of

revolution. Let U be an open domain of Rm, and let f : U → Rn be a C∞ map (m ≤ n). A point p ∈ U
is a singular point of f if rankdfp < m. A singular point p of γ : I → R2 is called an ordinary cusp or a

3/2-cusp if the map-germ γ at p isA -equivalent to t 7→ (t2, t3) at 0. (Twomap-germs f1, f2 : (Rm,0)→ (Rn,0)
are A -equivalent if there exist diffeomorphisms S: (Rm,0) → (Rm,0) and T: (Rn,0) → (Rn,0) such that

f2 ◦S = T◦ f1.) Similarly, a singular point p of γ is called a j/i-cusp, (i, j) = (2,5), (3,4), (3,5), if the map-germ

γ at p is A -equivalent to t 7→ (ti, tj) at 0. It is known that the singularities of a map-germ (R,0) → (R2,0)
which are determined by their 5-jets with respect to A -equivalence are only the above cusps. Recognition

criteria for these singularities are known, see for example Bruce and Gaffney (1982).
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Fact 2.1. (Recognition criteria) A singularity of γ : (R,p) → (R2,0) is

• a 3/2-cusp if and only if det(γ′′,γ′′′) 6= 0 at p.

• a 5/2-cusp if and only if γ′′ 6= 0, γ′′′ = kγ′′, (namely, det(γ′′,γ′′′) = 0) and det(γ′′,3γ(5) – 10kγ(4)) 6= 0
at p.

• a 4/3-cusp if and only if γ′′ = 0 and det(γ′′′,γ(4)) 6= 0 at p.

• a 5/3-cusp if and only if γ′′ = 0, det(γ′′′,γ(4)) = 0 and det(γ′′′,γ(5)) 6= 0 at p.

Amap-germ γ at p is called frontal if there exists a map n: (R,p)→ (R2,0) satisfying |n| = 1 and γ′ ·n = 0
for all t near p. A frontal is a front at p if the pair (γ,n) is an immersion into R2 ×S1 at p, where S1 is the

unit circle in R2. If γ at p is a 3/2-cusp or a 4/3-cusp then it is a front, and if γ at p is a 5/2-cusp or a 5/3-cusp
then it is a frontal but not a front. By definition, γ′(p) = 0 if and only if l(p) = 0. We have the following:

Proposition 2.2. The curve γ = (x,y) given by (1.4), (1.5) is a frontal at any point t ∈ I. Moreover, if l(p) = 0,
then γ at p is a front if and only if η′(p) 6= 0.

Proof. Since y′ = (F′(F – c1) + G′(G – c2))y–1, we have

γ
′ =

F′

y

G – c2

F – c1

+
G′

y

–(F – c1)

G – c2

 =
lcosη

y
U +

lsinη
y

 0 1

–1 0

U =
l

y
R–ηU, (2.1)

where

γ
′ =

x′

y′

, U =

–(F – c1)

G – c2

 and R–η =

cos(–η) –sin(–η)

sin(–η) cos(–η)

.

We set n = R–η+π/2U/|U|. Then |n| = 1 and n is perpendicular to γ′. Thus γ is a frontal. Let us assume l(p) = 0.
Then γ at p is a front if and only if n′(p) 6= 0. This is equivalent to saying that R–η+π/2U and (R–η+π/2U)′

are linearly independent. Since l(p) = 0, it holds that (R–η+π/2U)′(p) = (R–η+π/2)′(p)U(p), and (R–η+π/2)′ =
–η′R–η+π, we see that n′(p) 6= 0 is equivalent to η′(p) 6= 0. This proves the assertion.

Moreover, we have the following:

Proposition 2.3. Let γ = (x,y) be given by (1.4) and (1.5), and suppose l(p) = 0. Then γ at p is

(1) a 3/2-cusp if and only if l′η′ 6= 0 holds at p,

(2) a 5/2-cusp if and only if l′ 6= 0, η′ = 0 and l′′η′′ – l′η′′′ 6= 0 hold at p,

(3) a 4/3-cusp if and only if l′ = 0 and η′l′′ 6= 0 hold at p,

(4) a 5/3-cusp if and only if l′ = η′ = 0 and η′′l′′ 6= 0 hold at p.

Proof. By (2.1), we have

γ
′′ = l′

(
y–1

)
R–ηU + l

(
y–1

)′
R–ηU + l

(
y–1

)
(R–η)′U + l

(
y–1

)
R–ηU′ (2.2)
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and since l(p) = 0, so y′(p) = 0 and U′(p) = 0 hold. Then we have γ′′(p) = l′(p)y(p)–1R–η(p)U(p). Thus
γ
′′(p) 6= 0 if and only if l′(p) 6= 0. We assume that l′(p) 6= 0. Then by (2.2),

γ
′′′ =l′′

(
y–1

)
R–ηU + l

(
y–1

)′′
R–ηU + l

(
y–1

)
(R–η)′′U + l

(
y–1

)
R–ηU′′ (2.3)

+ 2l′
(

y–1
)′

R–ηU + 2l′
(

y–1
)

(R–η)′U + 2l′
(

y–1
)

R–ηU′

+ 2l
(

y–1
)′

(R–η)′U + 2l
(

y–1
)′

R–ηU′ + 2l
(

y–1
)

(R–η)′U′,

and since l(p) = y′(p) = 0, U′(p) = 0, and (R–η)′ = –η′R–η+π/2,

γ
′′′ =

(
l′′R–ηU + 2l′(R–η)′U

)
y–1 =

(
l′′R–ηU + 2l′(–η′)R–η+π/2U

)
y–1

holds at p. Hence det(γ′′,γ′′′)(p) 6= 0 if and only if η′(p) 6= 0, and this proves (1). We assume η′(p) = 0. Then
we see k in Fact 2.1, (2) (namely, γ′′′(p) = kγ′′(p)) is k = l′′(p)/l′(p).

Now we calculate det(γ′′,3γ(5) – 10kγ(4))(p). Differentiating (2.2), with l(p) = y′(p) = η′(p) = 0 and

U′(p) = 0, we get

γ
(4) = 3l′

(
y–1R–ηU′′ + y–1(R–η)′′U + (y–1)′′R–ηU

)
+ y–1l′′′R–ηU,

kγ(4) = 3l′′
(

y–1R–ηU′′ + y–1(R–η)′′U + (y–1)′′R–ηU
)

+ y–1l′′′l′′R–ηU/l′,

γ
(5) = 4l′

(
y–1R–ηU′′′ + y–1(R–η)′′′U + (y–1)′′′R–ηU

)
+ 6l′′

(
y–1R–ηU′′ + y–1(R–η)′′U + (y–1)′′R–ηU

)
+ y–1l(4)R–ηU

at p. Thus

3γ(5) – 10kγ(4) = 12
(
l′
(
(R–η)′′′U + R–ηU′′′)– l′′

(
(R–η)′′U + R–ηU′′))y–1 +βR–ηU

holds at p, where β is a real number. It follows that det(γ′′,3γ(5) – 10kγ(4))(p) = 12l′(p)
(
l′′(p)η′′(p) –

l′(p)η′′′(p)
)
. This proves the assertion (2).

Next we assume γ′′(p) = 0, namely, l′(p) = 0. Then by (2.3),

γ
′′′ = l′′(y–1)R–ηU, γ

(4) = 3l′′(y–1)(R–η)′U +μR–ηU

for some scalar μ. Since (R–η)′ = –η′R–η+π/2, this proves (3).

We assume that η′(p) = 0. Differentiating (2.3),

γ
(5) = 6l′′

(
(R–η)′′U + R–ηU′′

)
y–1 + τR–ηU

at p, where τ is a real number. Since U′′ = l′ t(–sinη, cosη) + l
t(–sinη, cosη)′ = 0 at p, we have (4), where tv

stands for the transpose of the vector v.

Example 2.4. We set H = 1/t and l = t with c1 = c2 = 1/10. By Proposition 2.3, γ at t = 0 is a 3/2-cusp. The
generating curve is as in Figure 1.

Example 2.5. We consider the following examples.
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Figure 1 - The generating curve left and the surface of revolution of Example 2.4. The

horizontal line is the axis of rotation.

(1) H = 1 + t, l = t, c1 = c2 = 1/10. Then γ is a 5/2-cusp (Figure 2, (a1)).

(2) H = 1/t2, l = t2, c1 = c2 = 1/10. Then γ is a 4/3-cusp (Figure 2, (a2)).

(3) H = 1/t, l = t2, c1 = c2 = 1/10. Then γ is a 5/3-cusp (Figure 2, (a3)).

In Figure 2, the singular points of these curves are indicated by the arrows. The surfaces of revolution of

these examples are in Figure 2, botom, (b1), (b2) and (b3) respectively.

(a1)

(b1)

(a2)

(b2)

(a3)

(b3)

Figure 2 - Above: The generating curves of Example 2.5. The horizontal lines are the axes

of rotation. Below: The surfaces of revolution of Example 2.5.

We consider now the singularities of the surface of revolution with γ as in Proposition 2.3. A singular

point q of a map f : (R2,q) → (R3,0) is called a j/i-cuspidal edge if f at q is A -equivalent to fij : (u,v) 7→

An Acad Bras Cienc (2019) 91(3) e20170865 6 | 10
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(ui,uj,v) at 0. It holds that the map-germ s in (0.1) at (p,θ) is a j/i-cuspidal edge if and only if the generating
curve γ = (x(u),y(u)) at p is a j/i-cusp. We see this fact by

X◦ fij(u,v) = (ui,uj cosv,uj sinv) = s(u,v),

where γ(u) = (ui,uj) and X: (x,y,z) 7→ (x,ycosz,ysinz) is a diffeomorphism if y 6= 0.

3 - PERIODICITY

In this section, we study the condition for periodicity of surfaces when H and l are periodic. The case when

M is regular is studied by Kenmotsu 2003.We say that the generating curve (x,y) of the surface of revolution
given by (0.1) is periodicwith the period L if there exists T > 0 such that x(s+L) = x(s)+T and y(s+L) = y(s).

Theorem 3.1. Let H: R \ P → R and l : R → R be periodic C∞ functions with the same period L, with
P = l–1(0) a discrete set. Suppose that Hl can be extended to a C∞ function on R. Then the solution (x,y) in
(1.4), (1.5) is periodic if and only if

1 – cosη(L) 6= 0 and

cos
(

ϕ(0) +
η(L)

2

)∫ L

0
l(u)sinη(u)du = sin

(
ϕ(0) +

η(L)
2

)∫ L

0
l(u)cosη(u)du,

(3.1)

or

1 – cosη(L) = 0 and

∫ L

0
l(u)sinη(u)du =

∫ L

0
l(u)cosη(u)du = 0, (3.2)

where (x′(0),y′(0)) = l(0)(cosϕ(0), sinϕ(0)).

The proof is similar to that given by Kenmotsu 2003, Theorem 1, for the regular case.

Proof. We assume l(0) 6= 0 and (x′(0),y′(0)) = l(0)(cosϕ(0), sinϕ(0)). By (2.1) together with y(0) = y(L),
y′(0) = y′(L) x′(0) = x′(L) and l(0) = l(L), we get

–c2 = sinη(L)(F(L) – c1) + cosη(L)(G(L) – c2), (3.3)

c1 = sinη(L)(G(L) – c2) – cosη(L)(F(L) – c1). (3.4)

If 1 – cosη(L) 6= 0 then, (3.3) and (3.4) is equivalent to

c1 =
F(L) – F(L)cosη(L) + G(L)sinη(L)

2(1 – cosη(L))
, (3.5)

c2 =
G(L) – G(L)cosη(L) – F(L)sinη(L)

2(1 – cosη(L))
. (3.6)

On the other hand, by (1.4), (1.5), (cosϕ(0), sinϕ(0)) is parallel to (c1,–c2),

det

cosϕ(0) F(L) – F(L)cosη(L) + G(L)sinη(L)

sinϕ(0) –(G(L) – G(L)cosη(L) – F(L)sinη(L))

 = 0.

This is equivalent to (3.1). If 1 – cosη(L) = 0, (3.3) and (3.4) are equivalent to F(L) = G(L) = 0, and this

implies (3.2).

An Acad Bras Cienc (2019) 91(3) e20170865 7 | 10
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Conversely, we assume that periodic functions H and lwith period L satisfy the condition (3.1) or (3.2).

By definition of η, we have η(u + L) = η(u) +η(L). Then by definitions of F,G, we have

F(t + L) = F(L) + sinη(L)G(t) + cosη(L)F(t),

G(t + L) = G(L) + cosη(L)G(t) – sinη(L)F(t).

If 1 – cosη(L) 6= 0, a direct calculation shows that y given by (1.4) with (3.5), (3.6) satisfies y(t + L) = y(t),
and also x′ given by (1.5) with (3.5), (3.6) satisfies x′(t + L) = x′(t). If 1 – cosη(L) = 0, then η(L) = 0, and we
have F(L) = G(L) = 0. This shows the desired periodicities of x and y.

Remark 3.2. Kenmotsu gave the condition for the case when the generating curve is regular (Kenmotsu

2003, Theorem 1). If the generating curve is regular, the conditions (3.1) and (3.2) are the same as

Kenmotsu’s conditions. In fact, for regular case, since one can take t = 0 giving the minimum of y, we
can assume that ϕ(0) = 0. However, in our case, the generating curve may have singularities, the existence

of t0 such that ϕ(t0) = 0 fails in general.

Figure 3 - Generating curve and the surface of revolution of Example 3.3.

Figure 4 - Generating curve and the surface of

revolution of Example 3.4.

An Acad Bras Cienc (2019) 91(3) e20170865 8 | 10
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Example 3.3. We set H = 1/sin t and l = sin t with c1 = 1, c2 = 3/4. This satisfies the condition in Theorem
3.1, and the generating curve is periodic. The generating curve and the surface of revolution are drawn in

Figure 3. All the singularities of γ are 3/2-cusp.

Example 3.4. We set H = tant and l = cos t with c1 = c2 = 1/10. A numerical computation shows that H and

l do not satisfy the condition in Theorem 3.1, the generating curve is not periodic as shown in Figure 4. All

the singularities of γ are 3/2-cusp.

Example 3.5. We set H = 1/sin2 t and l = sin2 t with c1 = c2 = 1/10. This does not satisfy the condition in

Theorem 3.1, the generating curve is not periodic as shown in Figure 5.All the singularities of γ are 4/3-cusp,
and these are indicated by the arrows.

Figure 5 - Generating curve and the surface of revolution of

Example 3.5.
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