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ABSTRACT

Given a montmorillonitic clay soil at high porosity and saturated by monovalent counterions, we inves-
tigate the particle level responses of the clay to different external loadings. As analytical solutions are
not possible for complex arrangements of particles, we employ computational micromechanical models
(based on the solution of the Poisson-Nernst-Planck equations) using the finite element method, to es-
timate counterion and electrical potential distributions for particles at various angles and distances from
one another. We then calculate the disjoining pressures using the Van’t Hoff relation and Maxwell stress
tensor. As the distance between the clay particles decreases and double-layers overlap, the concentra-
tion of counterions in the micropores among clay particles increases. This increase lowers the chemical
potential of the pore fluid and creates a chemical potential gradient in the solvent that generates the so-
called ‘disjoining’ or ‘osmotic’ pressure. Because of this disjoining pressure, particles do not need to
contact one another in order to carry an ‘effective stress’. This work may lead towards theoretical predic-
tions of the macroscopic load deformation response of montmorillonitic soils based on micromechanical
modelling of particles.

Key words: clay, Maxwell tensor, Poisson-Nernst-Planck equation, pore-scale, swelling, van’t Hoff law.

INTRODUCTION

The fundamental mechanisms by which soils change volume largely depend on particle size. On one

hand, volume change in coarse-grained soils is governed first by deformation at particle contacts, then
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by rotational displacement and packing of the grains, or by bending and rearrangement of flaky particles

(e.g., mica) (Terzaghi 1943). On the other hand, fine-grained soils, particularly clays, experience volume

change that is also dependant on the composition of pore fluid (Bolt 1956, Mitchell and Soga 2005).

Further, there is no need to direct contact among clay particles under low confining pressures, as required

for coarse-grained soils (i.e. in clays, an effective stress does not necessarily imply particle contact, as it

does in coarse grained soils).

These observations have been captured in a variety of mathematical models. In this work, we restrict

our analyses to diluted montmorillonite clay particles (i.e., solid phase) – water (i.e., solvent) – and a

monovalent salt (i.e., electrolytes) system, and investigate the particle-scale responses of this system to

externally applied loadings for a variety of particle configurations.

Shrinkage and swelling of clays is a matter of study in a wide range of engineering disciplines, and

though generally not in the consciousness of the general public, they have a tremendous impact on society

(Murad and Moyne 2002): in civil engineering, with structural damage to buildings due to differential

soil volume change (particularly important where montmorillonite is present); in petroleum engineering,

with regards to borehole stability in expansive shales (usually the cap of oil and gas reservoirs) partic-

ularly when using water-based drilling muds, which change the pore fluid composition near the bore-

hole walls; and in geoenvironmental engineering, when using clay liners as containment for contaminants

(i.e., ions and other substances) or sealants of radioactive materials.

GOVERNING EQUATIONS

This section summarizes the governing equations for ion concentration and electric potential distributions

around clay platelets. Based on these equations we then compute attractive and repulsive forces for par-

ticular particle configurations. Formulation of force balance allows then the determination of the swelling

pressure in clays.

ION CONCENTRATION AND VOLTAGE DISTRIBUTIONS

As no analytic solution to the disjoining pressure is possible for realistic arrangements of particles, we em-

ploy relatively sophisticated micromechanical analyses based on the numerical solutions of the microscale

Poisson-Nernst-Planck equations to determine electrical potential ψ and ion concentration c distributions

in the porespace, assuming complete saturation of the soil (Cussler 1997, Smith et al. 2004):





ji = −D0i

(
∇ci +

zi F

RT
ci∇ψ

)

−∇ ∙
(
ε0ε f ∇ψ

)
= F

∑N
i=1 zi ci

(1)

where the sub-index i refers to the i th ion (i.e., Na+ and Cl−), ji is the molar flux density, D0i is the self-

diffusion coefficient (i.e., the diffusion coefficient of the i th ion in pure water), ci is the ion concentration,

zi is the ionic valence, F = 96, 485.3 C ∙ mol−1 is the Faraday constant, R = 8.3144 J ∙ mol−1∙ K−1

is the universal gas constant, and T is the absolute temperature. In the Poisson equation, ε0 = 8.854 ×

10−12 F ∙ m−1 is the permittivity of free space, and ε f is the relative permittivity or dielectric constant of

the pore fluid (e.g., ε f ∼ 78 for water). It is assumed that the charge on particle surfaces is constant, i.e.,
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σ = const. The electrostatic boundary conditions applied to a charged particle surface can be expressed

as (Stratton 1941, p. 36):

(
D f − Ds

)
∙ n f = σ on the particle surfaces

Dα = −ε0εα∇ψα
(2)

where D f and Ds are the electric displacement in the pore fluid phase ( f ) and solid particle phase (s)

respectively, and α is either s or f .

SWELLING PRESSURE ESTIMATION

The swelling pressure in this system is estimated from the balance between osmotic and Maxwell pres-

sures of electrostatic nature. For long-range interactions, the electrostatic forces are the ones dominating

shrinkage and swelling behaviour (Murad and Moyne 2002). In a constant volume cell, this behaviour will

imply in decreasing and increasing swelling pressures, respectively. For short-range interactions, attractive

van der Walls forces need also to be considered in the force balance equations in addition to osmotic and

Maxwell pressures (Anandarajah 1997, Santamarina et al. 2001). In the following, we restrict ourselves to

long-range interaction between clay particles and, hence, neglect van der Walls forces.

The electrically charged clay particles (with surface charge σ ) induce higher counter-ion concen-

trations in the micropores between particles, particularly as double layers overlap. This increase in ion

concentration lowers the chemical potential of the pore fluid and creates a chemical potential gradient

that causes pore fluid to want to flow into the micropores, forcing apart the clay particles through the os-

motic pressure 5. For ideal solutions1, van’t Hoff’s Law relates the osmotic pressure 5 to the electrolyte

concentrations ci :

5(x1)−5(x2) = RT

(
N∑

i=1

ci (x1)−
N∑

i=1

ci (x2)

)

(3)

where x1 and x2 are position vectors employed for formulation of force balance over an arbitrary volume

element also denoted as ‘tensor box’ (see Fig. 1).

The Maxwell stress tensor is used to estimate pressure contributions of electrostatic nature:

T e(x1)− T e(x2) =
[(

1

2
ε0ε f E ∙ E

)
I − ε0ε f EE

]
∙ n (4)

where E = −∇ψ is the electric field vector and n is the unit vector normal to the boundaries of the tensor

box, and I is the identity matrix. Using these definitions we can formulate force equilibrium at the tensor

box which allows determining the swelling (or disjoining) pressure as the difference between equations (3)

and (4) (Grodzinsky 2000, McCormack et al. 1995, Murad and Moyne 2002, Phillips 1999).

T sw = 5− T e = [5(x1)−5(x2)] −
[
T e(x1)− T e(x2)

]
(5)

1 Solutions in which the activity coefficients are equal to one.
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Fig. 1 – Schematic representation of electric potential distribution (solid line) and stresses
acting on a ‘tensor box’ (dotted line) with left and right edges at x1 and x2 positions respectively.

NUMERICAL RESULTS – DISCUSSIONS

The governing equations previously summarized are solved numerically using the finite element methods

in a customized script written in the Comsol Package (COMSOL-AB 2007). The numerical models basi-

cally compromise pore fluid domains (sodium chloride solutions) that surround (rigid) 2D clay platelets.

The boundary conditions are set such that symmetries are accounted for, and reference electrical poten-

tial and background concentration are prescribed in the far field to make the problem well-posed. Mesh

refinements are required in the areas surrounding the particles and close to symmetry regions to achieve

consistent convergence. A parametric study on optimal number of elements was performed to achieve such

goals (not shown here).

VALIDATION: INFINITE PARALLEL PLATELETS

To validate the numerical finite element results obtained for ionic concentration and electrical potential

distributions given by equations (1), we compare these numerical results with closed-form solutions:

1) a non-interacting double layer (i.e., single double layer) and 2) interacting double layers (i.e., elec-

tric potential between two close flat clay platelets).

The non-linear Poisson-Boltzmann equation correctly describes ion and voltage distribution around

charged clay particles for surface potentials ψ0 less than 100mV and monovalent salt concentrations less

than 100 mol ∙ m−3 (0.1M) (Phillips 1999, Sposito 1984). This equation is valid within those surface

potential and concentration limits, even under the following assumptions: 1) ions are considered point

charges, 2) uniform clay surface charge distribution, 3) one dimensional condition (i.e., the particle surface

is large relative to the double layer thickness), and 4) uniform effective pore fluid permittivity. In the

non-interaction double layer case, the analytical solution for the electrical potential ψ as a function of the

distance x normalized by the double layer thickness ϑ is (modified from Verwey et al. 1948):

ψ
( x

ϑ

)
=




2 ln






e

(
−zi Fψ0

2RT

)

∙ e
( x
ϑ

)

+ e
( x
ϑ

)

+ e

(
−zi Fψ0

2RT
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(
−zi Fψ0

2RT
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)

+ e
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ϑ

)

− e
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)
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
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


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 ∙

2RT

−zi F
(6)
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where the double layer thickness ϑ =
√(

RT ε0ε f
)/(

2F2z2c∞
)
, c∞ is the background electrolyte concen-

tration (which is the same for both ionic species in 1:1 electrolytes fulfilling electroneutrality), and ψ0 is

the surface potential.

In the case of two interacting double layers, that is, when two flat parallel clay platelets are close enough

(i.e., less than approximately 5 times the single double layer thicknesses for typical montmorillonite clay

surface charges), the closed-form solution to the mid-plane potential ψd can be found from the following

elliptic integral of the first kind (Anandarajah and Chen 1994, Verwey et al. 1948):

φm∫

φ0

1
√

2 cosh(φ)− 2 cosh(φm)
dφ =

d∫

0

−
x

ϑ
dx = −

d

ϑ
(7)

where for simplicity, a dimensionless potential φ is defined as φ = zFψ
/
(RT ), thus φ0 = zFψ0

/
(RT ) is

the dimensionless surface potential, φm is the mid-plane dimensionless potential, and d is the half-distance

between clay platelets. Equation (7) needs to be solved numerically or with the help of tables (e.g. Jahnke

and Emde 1945). Figure 2 shows some representative examples of the excellent agreement between our

numerical results and the ones from equations (6) and (7).

Fig. 2 – Example comparison between analytical and numerical solutions: for single (left) and for interacting (right) double layers

of two infinitely long parallel plates. Lengths are normalized by the double layer thickness ϑ , x represents distance from the

clay surface, d is the half-distance between two parallel clay platelets and ψ is the electrical potential (c∞ = 10 mol ∙ m−3 and

σ = −0.108 C ∙ m−2 are shown).

When the repulsive and attractive forces between infinitely long parallel clay platelets balance, equi-

librium is reached leading to an equilibrium separation distance 2d. Conversely, given a particular equi-

librium separation distance 2d , it is possible to find the corresponding swelling pressure T sw of external

(e.g. external applied load) or internal origin (e.g. van der Waals – although these are less relevant at the

long-range), in a way that it balances the repulsive forces, both electrical T e and osmotic 5 (Grodzinsky

2000). Consider the one-dimensional case (x-direction) of two infinitely long parallel platelets with inter-

acting double layers, and place a stress tensor box surrounding the left platelet (recall Fig. 1). If the left
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edge of the box is located at x1 = x → −∞, then T e
xx(x1) = 0 as Exx(x1) = 0; which is also the case if

the right edge of the box is situated at x2 = d due to symmetry. However, due to different concentrations

at x = ±∞ and x = d, the osmotic pressure at 5(d) also differs from the osmotic pressure in the bulk

solution 5(±∞). Therefore, the surface stress balance in the x-direction can be written as:

Tx = T sw + T e
xx −5 = T sw + T e

xx(d)− T e
xx(−∞)− [5(d)−5(−∞)] ≡ 0 (8)

The osmotic pressure terms in equation (8) for binary monovalent electrolytes can be shown to be a function

of the background electrolyte concentration c∞ and the voltage at the midpoint between clay platelets ψm

(Sposito 1984), recall equation (3):

5(d)−5(−∞) = RT
(
c∞ezFψm/RT + c∞e−zFψm/RT

)
− RT (2c∞) (9)

Thus, the swelling pressure as defined in equation (8) is:

T sw = 2RT c∞

{
cosh

[
(zFψm)

(RT )

]
− 1

}
(10)

which indicates an entirely ‘osmotic swelling pressure’. If the left and right edges of the tensor box were

located infinitely close to the clay platelet surfaces, an identical expression would be found but, in this case,

the swelling pressure would appear as an entirely ‘electrical repulsive pressure’. In general, if the tensor

box edges were located at arbitrary positions x’s, the general result would still be the same as equation (10),

suggesting that the variations in osmotic pressure are balanced by variations in the electric forces acting in

the same planes on the fluid between the clay particles (Bolt 1956).

Equation (10) is in fact the closed form solution of the non-linear Poisson-Boltzmann equation (PB)

for infinitely long parallel charged particles (Van Olphen 1977). We first use this solution to validate the

numerical results for equations (3) and (4). This is done by comparing the solution provided by equation

(10) with the numerical result of the following equation (10):

T sw =
[
5(x1)−5(x2)

]
−

[
T e(x1)− T e(x2)

]
(11)

Figure 3(a) exemplifies the agreement obtained between the swelling pressure computed using the an-

alytical solution (eq. (10)) and the numerical solutions (eq. (11)), as a function of the half-distance d

between two clay platelets (see Fig. 3(a)-inset). The background electrolyte concentration in this exam-

ple is 10 mol ∙ m−3, and the clay surface charge is −0.108 C ∙ m−2. The solution is valid for separation

between particles greater than a few nanometres. This limitation reflects: (1) the theoretical limitations

of the approach: most of the evidence support that the nonlinear PB equation is accurate for surface poten-

tial less than 100 mV and salt concentrations less than 100 mol ∙ m−3 (since the ions are considered as point

charges, disregarding that their finite size is more important at very short distances from the clay surfaces)

(Van Olphen 1977); (2) given the high non-linearity of concentration and potential profiles near the clay

wall, the number of nodes necessary to accurately resolve them makes it impractical. Additionally, we

check for consistency of the numerical solutions for different choice of tensor ‘boxes’ (see Fig. 3(b)-inset)

and background electrolyte concentrations and surface charges (Fig. 3(b)).
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Fig. 3 – Model validation: (a) Analytical and numerical swelling pressure for the 1D case (b) Comparison between numerical and

theoretically computed swelling pressures for different background electrolyte concentrations and surface charges; the error bars

correspond to different tensor boxes (inset).

In fact, the divergence theorem shows that force (per unit area) can be calculated by integrating over

any surface containing a particle, not just on the particle surface itself or at the midpoint between parti-

cles (Phillips 1999). We cover the typical range values for montmorillonitic clays (i.e. σ = −0.108 C ∙

m−2 to −0.266 C ∙ m−2).

FINITE SIZE PARALLEL PLATELETS

In the previous section, we validated our numerical models for a range of values of interest, and that

are within the limits of applicability of the non-linear Poisson-Boltzmann equation, a particular case of

the microscale PNP equations. In this section, we use our numerical models to explore cases in which

analytical solutions do not exist.

Consider the following cases: stacked finite size parallel platelets (Fig. 4-left) and ‘shifted’ finite size

parallel clay platelets in a ‘stretcher bond’ pattern (Fig. 4-right). All the platelets are 1 nm thick and 100 nm

long, the size of typical montmorillonitic clays (Santamarina et al. 2001). The interplay among background

electrolyte concentration, surface charge density and swelling pressure (through interacting double layers)

will determine the equilibrium separation between particles.

We compute the balancing vertical swelling pressure T sw for given vertical and horizontal separa-

tions between clay particles. Different spacings can be interpreted as macroscopic swelling and shrinkage

behaviours. The domains of the respective numerical models are represented in Figure 4 by the dotted

lines and only compromise pore fluid (sodium chloride solutions) that surround (rigid) 2D clay platelets.

The boundary conditions are: symmetry (Boundaries (1) in Fig. 4), prescribed background concentra-

tions and voltages (Boundaries (2) in Fig. 4) located in the far field where no influence of double layer is

noticeable and surface charge density on the clay platelets boundaries.
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Fig. 4 – Particle arrangements: (a) Parallel particle arrangement and (b) Shifted particle arrangement. The dotted lines indicate

the schematic representations of the computational domains for numerical models with symmetry (1) and prescribed (2) boundary

conditions.

Figure 5(a) shows the computed swelling pressure as a function of half-distance (e.g. the half of the

vertical separation or ‘distance’ between platelets) for different edge-to-edge separations (e.g. horizontal

separations; Refer to figure inset).

Fig. 5 – Swelling pressure in stacked parallel platelets fabrics (c∞ = 1 mol ∙ m−3σ = −0.266 C ∙ m−2): (a) as a function

of half-distance between platelets for edge-to-edge distances of 120, 40, 6 and 0 nm (infinitely long parallel platelets); (b) as a

function of edge-to-edge separation for 2.2, 2.3, 2.4, 2.5, 3, 3.5, 4, 5, and 10 through 50 nm half-distances.

The figure also shows the limiting case of nil edge-to-edge separation, that is, the previously discussed

case of infinitely long parallel platelets. The latter case is indeed the upper bound swelling pressure of

this stacked fabric configuration. This bound has been corroborated via Monte Carlo molecular dynamic

simulations (Phillips 1999, Sposito 1984) and the exponential decay trends with platelet separation have

been also observed experimentally (Bolt 1956, Low 1979, Sposito 1984).

Figure 5(b) depicts more detailed information, with swelling pressure as a function of edge-to-edge

separations. As the separation between particles increases, the computed swelling pressure decreases. This

change is more sensible for face-to-face separations where the influence in the overlapping double layers

is larger, that is, when the vertical ‘half-distance’ between platelets decrease (refer to figure inset).
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Figure 6(a) shows the computed swelling pressures in the shifted fabric, for edge-to-edge separations

of 40, 20, 10, 6 and → 0 nm (e.g. infinite parallel). A trend similar to Figure 5(a) is observed; however,

the comparison of the stacked parallel fabric with the shifted parallel fabric shows that the swelling pres-

sure is larger for the stacked configuration, and that the difference of the increment of swelling pressure

increases as the edge-to-edge separation increases. That increment ranges from 15 to 30% at a small hor-

izontal separation (for the cases that we show here), and up to 70% for larger edge to edge separations,

again due to increasing overlapping double layers. (Note to readers: the figure-inserts are just indicative

of the geometric configuration of particles being considered).

Fig. 6 – (a) Swelling pressure in shifted parallel finite size platelets fabrics (c∞ = 1 mol ∙ m−3σ = −0.266C ∙ m−2) for edge

to edge separations of 40, 20, 10, 6 and → 0 nm (or infinitely long parallel platelets). (b) ratio of horizontal to vertical swelling

pressure, Ko, estimated for stacked (solid symbols) and shifted (open symbols) fabrics, for 6 nm (circles) and 10 nm (rhombi)

edge to edge separations.

To conclude the discussion of these results, we also compute the horizontal balancing force per unit

area for both fabrics for the horizontal swelling pressure. In doing so, the tensor box must be placed

surrounding the clay particle, making sure that it does not intersect the particle. We can now estimate the

horizontal-to-vertical pressure ratios. This ratio represents the well-known ‘coefficient of lateral pressure

at rest’ or K0, as at larger face-to-face separations the van der Waals forces become much smaller. In mont-

morillonitic clays, K0 ranges typically between 0.45 and 1.1, therefore the region between dotted lines in

Figure 6(b) represents the only realistic configurations for these fabrics under the analyzed conditions (c∞ =

1 mol ∙ m−3σ = −0.266 C ∙ m−2, edge-to-edge separations of 6 and 10 nm), other states may be reached

upon shear deformation. Estimations of K0 provide a powerful and relatively simple tool to predict fabrics

that are realistic at rest. For example, a face-to-face separation of 20 nm (e.g. 10 nm half-distance) and

edge-to-edge separation of 10 nm would probably not be found in nature in a clayey soil deposit under ‘at

rest’ conditions since the estimated coefficient of lateral pressure at rest K0 for this geometrical configuration

does not fall within realistic K0 ranges of clay deposits.
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FINITE SIZE PERPENDICULAR PLATELETS

Finally, we analyze the case of edge-to-face fabrics. Only the average pressure between two particles is

explored. We consider an unrealistic low surface charge (for montmorillonite) of −0.010 C ∙ m−2 and a

more sensible value of −0.108 C ∙ m−2. Figure 7 summarizes the results for an edge-to-face repeated con-

figuration. As far as we are aware, we show for the first time the average constant vertical swelling pressure

under this flocculated particle arrangement. This figure suggests that the swelling pressure increases as the

surface charge of clay particles increases as a result of stronger electrical interactions. The absolute value

of the estimated pressures are much lower than the corresponding parallel case, just hinted in Figure 3(b),

as a result of smaller effective interacting surfaces (double layers).

As with the previous simulations, caution must be taken in the accuracy of the electrical potential

gradient estimation. Higher order shape functions and finer meshing overcomes this problem, but increases

the computation demand.

Fig. 7 – Swelling pressure in edge-to-face configurations (c∞ = 10 mol ∙ m−3σ = −0.010 C ∙ m−2 and −0.108 C ∙ m−2).

CONCLUSIONS

The following conclusions are drawn from this work:

• Particle-scale modelling using coupled microscale Poisson-Nernst-Planck system of equations to de-

termine concentration and electrical potential distributions, together with the van’t Hoff relation and

Maxwell stress tensor, allows estimating swelling pressures, and could be also used to estimate poten-

tial energy for a variety of periodic fabrics, numerically. However, this analysis is limited to diluted

montmorillonite (clay) – water (solvent) – monovalent sodium chloride (electrolytes) systems (though

this could be extended to more complex salt solutions using molecular dynamics tools).

• High accuracy in the determination of electrical potential gradients is needed, which can be achieved

with higher order shape functions in the finite element formulations and finer meshing. Nevertheless,

computational demand increases substantially.

An Acad Bras Cienc (2010) 82 (1)



“main” — 2010/1/21 — 13:18 — page 23 — #11

MICRO-CHEMO-MECHANICAL PRESSURES IN CLAYS 23

• Swelling pressure decreases as edge-to-edge and edge-to-face separations increases. The increment

is larger as face-to-face separations increases, due to larger influence in overlapping diffusive double

layers. The possibility of estimating vertical and horizontal swelling pressures and their ratio (K0) has

been explored and, for some particle spacings, the computational model did yield at-rest earth pressure

coefficients that are observed in practice.

Future work will include a more detailed quantitative study of the influence of background electrolyte con-

centration and the application of this methodology to more realistic flocculated and disperse clay particle

arrangements. Extension of this methodology to 3D pore-scale geometries is possible; however, computa-

tional demand and definition of complex 3D ‘tensor boxes’ represent a major challenge.
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RESUMO

Dada uma argila montmorilonítica de alta porosidade e saturada por counteríons monovalentes, investigamos as res-

postas da argila ao nível de partículas para diferentes cargas externas. Como soluções analíticas não são possíveis

para arranjos complexos de partículas, empregamos modelos computacionais micro-mecânicos (baseados na solução

das equações de Poisson-Nernst-Planck), utilizando o método de elementos finitos, para estimar counteríons e dis-

tribuições de potencial elétrico para partículas em diversos ângulos e distâncias uma da outra. Nós então calculamos

as pressões de separação usando a relação de Van’t Hoff e a tensão de cisalhamento de Maxwell. À medida que

a distância entre as partículas de argila diminui e as duplas camadas se sobrepõem, a concentração de counteríons

nos microporos entre as partículas de argila aumenta. Este aumento reduz o potencial químico do fluido nos poros

e cria um gradiente de potencial químico no solvente, que gera a chamado pressão ‘osmótica’ ou de ‘separação’.

Devido a esta pressão de separação, as partículas não precisam de contato entre si, a fim de exercer uma ‘tensão

efetiva’. Este trabalho pode conduzir a previsões teóricas da resposta macroscópica a carga de deformação em solos

montmoriloníticos baseado na modelação micromecânica das partículas.

Palavras-chave: argila, modelo de Maxwell, equação de Poisson-Nernst-Planck, escala de poro, inchamento, relação

de van’t Hoff.
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