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Abstract: The sugarcane borer, Diatraea saccharalis is one of the hosts more used for parasitoid pupal 
multiplication in Brazil. The parasitoids pupal of Trichospilus diatraeae and Palmistichus elaeisis are 
generalist natural enemies with potential to suppress populations of diverse families of lepidopteran pests. 
The success in the utilization of these natural enemies in the field is directly related to the capacity of search 
of the host, this capacity might be affected by the presence of the pathogens. In this context, the aim of 
this essay was to detect the presence of intracellular parasites of Phylum Microsporidia. These pathogens 
may cause morphological and behavioral alterations. The presence of infection was verified by microscopy 
and was confirmed by amplification of region small subunit (SSU) of ribosomal RNA using universal 
primers for microsporidia of Nosema sp. The purified PCR products were submitted to sequencing, and the 
sequences that had been obtained were edited and aligned with the sequences in a Genbank database. In 
this way, it was possible to verify the presence of intracellular parasites in T. diatraeae, P. elaeisis and D. 
saccharalis pertaining to Clade Nosema/Vairimorpha. However, this is the first one report about detection 
of the microsporidia in the parasitoids T. diatraeae and P. elaeisis.
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INTRODUCTION

The parasitoids Trichospilus diatraeae (Cherian & 
Margabandhu) and Palmistichus elaeisis (Delvare 
& LaSalle) (Hymenoptera: Eulophidae) are natural 
enemies that can suppress populations of several 
families of lepidopteran pests of agricultural crops 
(Paron and Berti-Filho 2000) and forests (Pereira 

et al. 2011). In order, these natural enemies are 
generalists and effectives in suppressing populations 
of pest insects, therefore, they have the potential to 
be used in biological control programs (Rodrigues 
et al. 2013, Paron and Berti-Filho 2000).

The effective use of natural enemies in 
inundative releases depends of the selection of a 
physiologically suitable alternative host for mass 
production (Vinson and Iwantch 1980). The host 
must have high nutritional quality and be produced 
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easily, efficiently and economically (Parra et al. 
2002). The sugarcane borer, Diatraea saccharalis 
(Fabricius) (Lepidoptera: Crambidae) its stands out 
as a nutritionally appropriate host for parasitoid 
multiplication (Rodrigues et al. 2013). However, 
the quality control of the mass production of 
parasitoids, T. diatraeae and P. elaeisis must always 
be verified, because the presence of pathogens in 
the hosts can interfere in the development of the 
parasitoids and consecutively in the action of pest 
control in the field.

The occurrence of microsporids in the 
populations of D. saccharalis (Simões et al. 2015) 
may become a problem in the mass production of 
T. diatraeae and P. elaeisis. These microsporids 
are obligate intracellular parasitic fungi (Corradi 
and Keeling 2009). The spores are metabolically 
inactive and, when ingested, germinate in the lumen 
of the insect’s midgut, injecting the infectious 
apparatus, composed of a polar tube that penetrates 
the cell membrane and allows the sporoplasm to 
be transferred to the host (Bigliardi and Sacchi 
2001). In the host cell, the microsporids explore 
the organism to multiply, using organelles and 
metabolite products as substrate to complete the 
cycle (Dean et al. 2016). After the multiplication, 
new resistance spores are formed and released 
through cell lysis and excreted in insect feces 
(Gisder et al. 2011).

The parasites exploit and frequently manipulate 
the host inducing morphological and behavioral 
changes to increase transmission success (Kurze 
et al. 2016a). Infected populations commonly 
show increased time to complete the larval and 
pupal stages (Simões et al. 2012, Kermani et al. 
2014), reduction in longevity of adults (Simões 
et al. 2012), decrease in the rate of emergence 
and fertility (Kermani et al. 2014), behavioral 
modifications in host search (Simões et al. 2012, 
Kermani et al. 2014), abnormal adult abdomen size 
(Simões et al. 2015), stress (Kurze et al. 2016b). 
The disease caused by these pathogens, in addition 

to affecting biological aspects of insects, has 
become an economic problem (Aroee et al. 2017), 
for example in bee hives causes reduction of honey 
production (Higes et al. 2008) and colony collapse 
disorder (Huang et al. 2007).

However, it is extremely difficult to 
morphologically distinguish between microsporids 
species by light microscopy because the spores are 
very similar. Then, the recognition of the species 
using molecular markers might be very helpful in 
the diagnosis and identification of microsporids. 
Thus, it is necessary to use molecular diagnostic 
tools by the PCR technique, which provides a more 
accurate result for the detection of microsporidial 
infection, because it allows detection of the parasite 
even at very low levels of infection (Ansari et al. 
2017).

In view of the importance of T. diatraeae 
and P. elaeisis in biological control programs 
applied to several pests of agricultural and forestry 
importance, the objective of this work was to verify 
the presence of microsporids belonging to the Clado 
Nosema/Vairimorpha in parasitoids T. diatraeae 
and P. elaeisis and the host D. saccharalis.

MATERIALS AND METHODS

HOST AND PARASITOID REARING

Larvae and pupal of the host D. saccharalis were 
obtained from mass rearing of biofactory. The 
parasitoids T. diatraeae and P. elaeisis and the host 
D. saccharalis were kept in stock at the Laboratório 
de Controle Biológico de Pragas Florestais 
(LCBPF) da Faculdade de Ciências Agronômicas 
da Universidade Estadual Paulista (FCA / UNESP). 
The identification of the parasitoids was confirmed 
by the taxonomist Dr. Valmir A. Costa, the specimen 
vouchers of the parasitoids were deposited in the 
Entomophagous Insects Collection “Oscar Monte”, 
from the Biological Institute, based in Campinas, 
State of São Paulo, Brazil. The identification of 
the host was confirmed by Dr. Roberto Antonio 
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Zucchi, the specimen vouchers were deposited 
in the Coleção Entomológica do Departamento 
de Proteção de Plantas da Faculdade de Ciências 
Agronômicas da Universidade Estadual Paulista 
(FCA / UNESP), Botucatu, Estado de São Paulo, 
Brazil. Pupal of D. saccharalis were transferred to 
polyvinyl chloride (PVC) cages (20 cm diameter 
by 20 cm height), closed with fabric at the bottom 
and with voile tissue at the top. The interior of these 
cages was coated with sulphite paper as a substrate 
for oviposition. The collected eggs were sterilized 
with formaldehyde (0.5%) and copper sulphate 
(17%) and inoculated into glass tubes (2 cm x 8 
cm) containing artificial diet proposed by King and 
Hartley (1985). From 4 until 7 larvae were placed in 
each tube until reaching third instar. In this phase, 
the larvae were fed with 1 cm3 of artificial diet and 
placed in a plastic container (1.5 cm x 5 cm) until 
reaching the pupal stage (Fonseca et al. 2015). The 
parasitoids were reared in pupal of D. saccharalis 
aged 48 to 72 hours. Host pupal were offered to 
the parasitoids, which were packed in glass tubes 
(2.5 cm in diameter and 8.5 cm long), sealed with 
voile-type tissue and fed with pure honey, for 
parasitism up to 72 hours. The insects were kept in 
an air-conditioned chamber at 25 ± 2 ºC, relative 
humidity of 70 ± 10% and a 12-hour photophase 
until adult emergence that occurs around the 15th 
to the 18th day (Zaché et al. 2010).

PREPARATION OF SMEARS

Diatraea saccharalis larvae of third instar with 
an apparent symptom of microsporidia infection 
and adults of pupal parasitoids were used to make 
smears and identify spores of microsporids. The 
insects were killed by freezing and, later, a cross-
section with scalpel was carried out in the abdomen 
of the same. The extravasation of the intestinal 
contents was placed on a glass slide and a drop 
of saline (0.85% NaCl) added. Maceration of the 
larvae was performed on a microscopic slide and 

the excess body content of the insects was removed 
with forceps. The slides were fixed in methanol for 
ten minutes and then air dried. Spore staining was 
performed with 50% diluted Giemsa solution for 
30 minutes. The slides were washed in tap water 
to remove excess dye and air dried. The smears 
were visualized with a phase contrast microscope 
on the 1000x objective (Zeiss Primo Star) (Alves 
et al. 1998).

GENOMIC DNA EXTRACTION AND PCR

Samples of D. saccharalis, T. diatraeae and P. 
elaeisis with confirmed identification were obtained 
from stock for evaluation of the presence of spores of 
Nosema spp., Palmistichus elaeisis and T. diatraeae 
adults and third instar larvae of D. saccharalis were 
stored in the freezer at -20 °C. After thawing, a 
caterpillar was randomly selected for genomic DNA 
extraction and standardization of the polymerase 
reaction in chain (PCR). The caterpillar was 
macerated and later the larger parts of the insect’s 
body were removed 80 μl of 10% Chelex solution 
and 8 μl of 20 mg / mL proteinase K were added to 
the body contents in microtube and homogenized. 
Then the microtube containing the sample was 
placed in a thermal block at 95 °C for 20 minutes 
to release the DNA from the cells. Chelex protects 
DNA from the effects of heating used to release DNA 
from cells by sequestering divalent heavy metal ions 
from enzymes that could damage the structure of the 
molecule (Walsh 1991). The same procedure was 
used to extract parasitoids, however, a pool of 50 
macerated and homogenized individuals was used 
with 80 μl of 10% Chelex solution and 8 μl of 20 mg 
/ mL proteinase K in microtube and then placed in a 
thermal block at 95° C for 20 minutes. The protocol 
for DNA extraction was performed using Chelex 
100® resin (Coombs et al. 1999). Then, a mini-spin 
centrifugation was performed and the supernatants 
were collected for PCR.
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The small subunit (SSU) region of 
ribosomal RNA was amplified using universal 
primers for microspores of Nosema sp., 
(F) CACCAGGTTGATTCTGCT and (R) 
GTTACCCGTCACTGCCTTG, expected size 
of 222bp (Klee et al. 2006). The PCR reaction 
was prepared containing 12.5 μl of Gotaq Hot 
Start (Promega), with the reagents required for 
the reaction: 5 U / μl Taq, 100 μM of each dNTP 
and 25 mM MgCl2, 5 μl of Nuclease Free Water 
(Promega), 1.25 μl of each primer [10 mM] and 
5 μl of genomic DNA, totaling 25 μl per reaction. 
The polymerase chain reaction (PCR) was carried 
out in thermal cycler (Infinigen, model TC-96CG) 
with initial denaturation for 4 minutes at 95 °C, 
followed by 45 cycles with denaturation at 95 °C 
for 1 minute, followed by the annealing phase a 48 
°C for 1 minute and extension at 72 °C for 1 minute 
and with a final polishing step for 4 minutes at 72 
°C (Tay et al. 2005). The amplification products 
were visualized by 1% agarose gel electrophoresis, 
using a 100 bp marker (Norgen). The agarose gel 
was visualized and photographed in ultraviolet 
light transilluminator (Major Science).

SEQUENCING

Purifications of the PCR products were performed 
using the Norgen PCR Purification Kit (Qiagen, 
Cat # 14400), following the manufacturer’s 
recommendations. Sequencing by Sanger DNA 
automatic sequencer (Model: ABI 3500 - Applied 
Biosystems) was performed at the Institute of 
Biotechnology (IBTEC - UNESP). The nucleotide 
sequences of SSU rRNA for the microsporide 
isolates obtained from D. saccharalis and the pupal 
parasitoids were analyzed using the Geneious v. 
9.1.5 and compared to the database (GenBank, 
http://www.ncbi.nlm.nih.gov) for the identification 
of genetic similarity.

The alignment was performed using the 
Geneious v. 9.1.5, with the sequences obtained 

in this study added from other sequences of 
microsporidia obtained in GenBank. Phylogenetic 
analysis was done using the program MrBayes 
3.2.2 (Huelsenbeck and Ronquist 2001). Bayesian 
analysis was performed for 30 million generations 
with sampling every 1000 generations. Each 
analysis consisted of four independent runs, each 
using four coupled Markov chains. The convergence 
of the race was monitored by finding the plateau in 
the probability score (standard deviation of divided 
frequencies <0.0015). The first 25% of each run 
was discarded for the estimation of a consensus 
topology and later probability for each node.

RESULTS AND DISCUSSION

INFECTION BY THE MICROSPORIDIUM OF CLADO 
NOSEMA/VAIRIMORPHA IN PUPAL PARASITOIDS

Microspores infect vertebrates and invertebrates, 
including insects, fish and mammals (Weiss 2001, 
Morsy et al. 2013, Liu et al. 2015). The presence of 
these pathogens has been widely discussed due to 
the increase of infection in several hosts (Emsen et 
al. 2016), a fact resulting from the biological and 
behavioral changes caused by the parasite (Simões 
et al. 2012, Kermani et al. 2014, Kurze et al. 2016b).

In this study, oval-shaped spores, resistance 
structure of intracellular parasites of Clado 
Nosema/Vairimorpha were isolated from the 
intestinal contents of D. saccharalis larvae (Fig. 
1). In the slides of the body contents of parasitoids 
T. diatraeae and P. elaeisis, some parasite spores 
were visualized, but they did not quantified. This is 
possibly due to the lower degree of infection of the 
pathogen in the parasitoids (Bjørnson 2008) and/or 
the stage of development of the microspore in the 
host cell (Becnel et al. 2002).

Microscopy is a cheap and routine technique 
for the identification of microsporids, however, it 
can be laborious and requires knowledge to detect 
the spores. In addition, the pathogen may be present 
in only a few individuals when the prevalence 
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is low, a fact that makes it difficult to diagnose 
the infection (Bjørnson 2008). Although it is 
considered reliable for detection, it is not sufficient 
for a precise identification of these parasites, since 
the morphological structures of some pathogens 
are very similar, resulting in a high risk of errors in 
diagnosis (Ansari et al. 2017).

The PCR reaction revealed by amplification 
of ribosomal RNA from microsporids that the host 
populations of D. saccharalis and parasitoids T. 
diatraeae and P. elaeisis are infected by intracellular 
parasites. The SSR rRNA sequence has been 
widely used as a molecular marker to estimate 
phylogenetic relationships between microsporidia 
by having highly conserved gene. However, this 
gene can not be used to distinguish closely related 
species (Canning et al. 1999, Tsai et al. 2003).

The results suggest that the isolates are closely 
related to the species of Vairimorpha sp., with 
which it shares 100% identity of the SSU rRNA 
gene (222 bp) of these sequences in Nucleotide 
BLAST, and the species of the genus Vairimorpha 
forms a clade with Nosema spp. and Rugispora 
istanbulensis (Fig. 2). However, the genera Nosema 
and Vairimorpha can not be separated into different 

clades using molecular analyzes (Tsai et al. 2003, 
Ku et al. 2007).

The occurrence of microsporids in the 
populations of D. saccharalis and parasitoids T. 
diatraeae and P. elaeisis may become a problem 
in mass production and in biological control 
programs. Pathogens of this group can remain 
latent without causing visible symptoms in hosts 
(Bjørnson 2008). This can be perpetuated for 
several generations through the possibility of 
vertical transmission, when infection is transmitted 
from parents to offspring and horizontal when it 
occurs through contact between individuals, which 
may be favored by the confinement environment 
of mass productions (Dubuffet et al. 2013). Recent 
studies have shown a significant effect of the 
breeding laboratories’ ambient temperature on the 
intensity of the endoparasites Nosema spp. in bees. 
Spores find temperatures reasonably regulated 
during their life stages inside the host, but when 
exposed to the outside temperature, they exhibit 
a differential sensitivity to temperatures during 
the transmission to new hosts (Gisder et al. 2017, 
Retschnig et al. 2017).

Parasitoids massively multiplied, are 
usually contaminated when the larvae feed on 
the hemolymph or infected tissues, resulting in a 
variety of changes (Simões et al. 2012). Depending 
on the degree of infection in populations of natural 
enemies, changes in the duration of the juvenile 
phase, reduced survival, altered flight behavior 
and host search may occur. These symptoms were 
reported in C. flavipes (Simões et al. 2012), Cotesia 
vertalis (Haliday) (Hymenoptera: Braconidae) 
(Kermani et al. 2014), Macrocentrus grandii 
Goidanich (Hymenoptera: Braconidae) (Andreadis 
1982), Phytoseiulus persimilis (Acari: Phytoseiidae) 
(Bjørnson and Keddie 1999) and Chrysoperla 
carnea (Stephens) (Neuroptera: Chrysopidae) 
(Bjørnson et al. 2013). Thus, it is characterized the 
need for detailed investigation of the interaction 
between infection by this microsporid in hosts D. 

Figure 1 - Image of the smear stained with Giemsa. Spores 
of the Clado Nosema/Vairimorpha isolated from the intestinal 
contents of D. saccharalis viewed under a phase contrast 
microscope (1000x). Scale bar = 25 μm.
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saccharalis and pupal parasitoids, T. diatraeae and 
P. elaeisis, to verify the quality and improve the 
understanding of the real impact of this parasite in 
biology and in the search behavior of the host in 
the field.

CONCLUSION

We conclude that according to the morphological 
characteristics of the spores and molecular genetics, 
the presence of Clado Nosema/Vairimorpha 
microsporids in the pupal parasitoids T. diatraeae and 
P. elaeisis and in the host D. saccharalis was verified.
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