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ABSTRACT
Cranial crests show considerable variation within the Pterosauria, a group of flying reptiles that developed 
powered flight. This includes the Wukongopteridae, a clade of non-pterodactyloids, where the presence or 
absence of such head structures, allied with variation in the pelvic canal, have been regarded as evidence 
for sexual dimorphism. Here we discuss the cranial crest variation within wukongopterids and briefly 
report on a new specimen (IVPP V 17957). We also show that there is no significant variation in the 
anatomy of the pelvis of crested and crestless specimens. We further revisit the discussion regarding the 
function of cranial structures in pterosaurs and argue that they cannot be dismissed a priori as a valuable 
tool for species recognition.
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INTRODUCTION

Cranial crests are present in nearly all pterosaur 
groups, from species found in Triassic deposits 
(e.g., Dalla Vecchia 2014) to the last taxa recorded 
from Late Cretaceous strata (e.g., Kellner and 
Langston 1996). The various cranial crests have 
been widely used for taxonomic purposes (e.g., 
Wellnhofer 1991, Kellner 2003, Andres et al. 
2014) and there are several bones involved in 
those structures, such as the premaxillae, frontals, 
parietals, supraoccipital (e.g., Young 1964, Campos 
and Kellner 1985, Kellner and Campos 2002a, 

Wang and Zhou 2003, Wang et al. 2012, 2014a), 
and the dentaries (e.g., Wellnhofer 1987, Kellner et 
al. 2013, Wang et al. 2014b). Cranial crests are more 
frequent in pterodactyloid pterosaurs, but some are 
found also in non-pterodactyloids (Czerkas and Ji 
2002, Dalla Vecchia 2009, Stecher 2008).

Most recently several specimens of the non-
pterodactyloid clade Wukongopteridae were 
discovered in Middle to Late Jurassic Tiaojishan 
Formation in China (Zhou and Wang 2010, Sullivan 
et al. 2014). These specimens have called attention 
due to the particular array of primitive and derived 
features that placed them as closely related to the 
derived Pterodactyloidea, although their actual 
phylogenetical position is still disputed (Wang et 
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al. 2009, 2010, Lü et al. 2010, Andres et al. 2014). 
There is also some discussion about their diversity, 
with some authors considering them monospecific 
(Lü et al. 2010, 2011a) while others regard them as 
more diverse (Wang et al. 2010, Lü et al. 2011b). 

Among the anatomical features used to 
establish the wukongopterid diversity is the 
premaxillary crest. In some specimens, the crest 
is absent (Wang et al. 2010, Lü et al. 2011a) while 
in others it varies in shape and extension (Wang 
et al. 2010, Lü et al. 2011b, Cheng et al. 2016). 
More recently, a specimen with an associated egg, 
that lacked a crest, was reported (Lü et al. 2011a), 
raising the possibility that the presence and absence 
of such structure might indicate sexual dimorphism 
in pterosaurs.

The main purpose of this paper is to review 
and discuss the differences of the cranial crests 
found in the Wukongopteridae and revisit the 
debate concerning these head structures. We also 
briefly report on a new wukongopterid specimen 
(IVPP V 17957) that shows a premaxillary crest 
different from all others within this group.

Institutional Abbreviations: HGM-Henan 
Geological Museum, Zhengzhou, Henan Province, 
China; IVPP-Institute of Vertebrate Paleontology 
and Paleoanthropology, Chinese Academy of 
Sciences, Beijing, China; YH-Yizhou Museum, 
Yixian, Liaoning Province, China; ZMNH-
Zhejiang Museum of Natural History, Hangzhou, 
Zhejiang Province, China

DESCRIPTION AND COMPARISONS

Up to now, eight specimens referable to the Wukon-
gopteridae have been published, all coming from 
the Middle to Upper Jurassic Tiaojishan Formation 
(northeast China). They have been considered to 
represent three genera, Wukongopterus, Darwin-
opterus, and Kunpengopterus (Wang et al. 2009, 
2010, 2015, Lü et al. 2010, 2011a, b), or remained 
indeterminate (Cheng et al. 2016). Two additional 

individuals were also referred to this clade. One 
is the holotype of Changchengopterus pani, that 
lacks a skull (Lü 2009) and has been considered a 
putative wukongopterid (Wang et al. 2009). How-
ever, this very small and apparently ontogenetic 
young animal has comparatively shorter cervical 
vertebrae compared to other wukongopterids and 
therefore its exact phylogenetical position remains 
to be established. The second specimen was de-
scribed by Zhou and Schoch (2011) and consists of 
a fairly complete skeleton lacking the skull. Based 
on the elongation of the cervical vertebrae, along 
with a long tail and developed fifth toe, it can con-
fidently be assigned to the Wukongopteridae. 

Recently, a new specimen (IVPP V 17957) was 
discovered from the same region and horizon as the 
holotypes of Wukongopterus, Kunpengopterus and 
Darwinopterus (Wang et al. 2009, 2010, Lü et al. 
2010, 2011b). IVPP V 17957 consists of a partial 
skeleton with incomplete skull that can be regarded 
as a wukongopterid pterosaur based on the follow-
ing characters: confluent nasoantorbital fenestra, 
quadrate inclined backwards, elongated cervical 
vertebrae, reduced cervical ribs, length of the wing 
metacarpal about half the length of the first wing 
phalange, elongated tail enclosed by rod-like bony 
extensions made by the zygapophyses. This new 
specimen shows a premaxillary crest that differs 
from previous wukongopterids and therefore is in-
cluded in the present paper. A full description of 
this material will be done elsewhere.

All wukongopterid specimens with complete 
skull can be divided into two main types, either 
having or lacking a premaxillary crest. The holotype 
of Kunpengopterus sinensis (IVPP V 16047) and 
ZMNH M8802/IVPP V 18043, an individual that 
was associated with eggs, lack an ossified cranial 
crest (Wang et al. 2010, 2015, Lü et al. 2011a, Figs. 
1a, 1b, 2a, 2d).

Regarding the crested wukongopterids, there 
is some variation. Cheng et al. (2016) described 
a specimen (IVPP V 17959) that presents a crest 
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starting anterior to the anterior margin of the 
nasoantorbital fenestra and that clearly does not 
reach the posterior region of the nasoantorbital 
fenestra what is confirmed by the lack of impression 

in the sediment matrix of this very compacted 
material (Figs. 1g, 1h, 2e).

The holotype of Darwinopterus modularis 
(ZMNH M8782) preserves an incomplete 

Figure 1 - The variation of cranial crest within the Wukongopteridae. Kunpengopterus sinensis (IVPP V 16047), (a) complete skull 
and (b) close-up of the area in the white frame of a, showing the flat crestless skull roof; holotype of Darwinopterus linglongtaensis 
(IVPP V 16049), (c) complete skull and (d) close-up of the area in the white frame of c; new specimen (IVPP V 17957), (e) complete 
skull (inverted), and (f) close-up of the area in the white frame of e; IVPP V 17959 (g) complete skull (inverted), and (h) close-up of 
the area in the white frame of g, with arrow 1 pointing at the low premaxillary crest and arrow 2 pointing at the crestless middle portion 
of the premaxilla; Darwinopterus robustodens (holotype, HGM 41HIII-0309A) (i) complete skull based on Lü et al. 2011b), and (j) 
close-up of the area in the white frame of i. Scale bar: 50mm in a, c, e, g, i; 10mm in b, d, f, h, j (see the colors in the online version).
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premaxillary crest that lacks the portion above the 
anterior margin of the nasoantorbital fenestra (Lü 
et al. 2010, Fig. 2g). According to the illustration 
provided in the original description (Lü et al. 2010), 
the crest becomes taller at the anterior part of the 
preserved portion and extends posteriorly above 
the orbit. The crest presents sub-vertical fiber-like 
structures and bears a serrated dorsal margin, that 
could indicate a soft tissue extension.

Compared to other wukongopterid skulls, 
Darwinopterus linglongtaensis (IVPP V 16049) 
preserves a rather large premaxillary crest (Figs. 
1c, 1d, 2b), that is smaller in respect of the one of 
Darwinopterus modularis (ZMNH M8782) and the 
one of Darwinopterus robustodens (HGM 41HIII-
0309A). It also shows a serrated dorsal margin, 
with the posterior portion partly preserved as an 
impression. The crest starts posterior to the anterior 
margin of the nasoantorbital fenestra and reaches 
the middle region of the orbit. Most of the dorsal 
margin of this structure is sub-parallel to the skull 
roof, but towards the anterior end it becomes taller 
forming a triangular structure in lateral view. The 
crest also shows fiber-like striations on the lateral 
surface that follow a sub-vertical pattern, becoming 
strongly curved anteriorly (Figs. 1d, 2b). 

The holotype of Darwinopterus robustodens 
(HGM 41HIII-0309A) preserves a nearly complete 
premaxillary crest with a serrated dorsal margin 
(Lü et al. 2011b, Figs. 1i, 1j, 2f). The crest starts 
anterior to the nasoantorbital fenestra and is about 
one third longer than the nasoantorbital fenestra. 
Based on the impression in the matrix, the crest 
extends posteriorly above the orbit, similar to the 
condition present in Darwinopterus linglongtaensis 
(Figs. 1c, 2b). As the former, also this specimen 
shows fiber-like structures on the lateral surface of 
the crest that get curved and more marked towards 
the anterior end (Figs. 1j, 2f). 

The new specimen (IVPP V 17957) shows 
a crest that is quite different from the previous 
ones. It starts posterior to the anterior margin of 

Figure 2 - Reconstruction of the various cranial crests of the 
Wukongopteridae. (a) Kunpengopterus sinensis (based on 
Wang et al. 2010); (b) Darwinopterus linglongtaensis (based 
on Wang et al. 2010); (c) new specimen (IVPP V 17957); (d) 
ZMNH M8802 (female, modified Lü et al. 2011a); (e) IVPP 
V 17959 (based on Cheng et al. 2016); (f) Darwinopterus 
robustodens (based on Lü et al. 2011b, (g) Darwinopterus 
modularis (holotype, based on Lü et al. 2010). Reconstruction 
of the crests in grey. Scale bar: 50mm.
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the nasoantorbital fenestra, albeit more anterior 
than Darwinopterus linglongtaensis and extends 
posteriorly. It is much lower than in other crested 
wukongopterids, except for IVPP V 17959 and 
based on the preserved portion, reached the orbits 
(Figs. 1e, 1f, 2c). The lateral surface of the crest 
is smooth, differing from all other wukongopterid 
crests, showing a straight dorsal margin. The 
anterior end of the crest lacks an extensive dorsal 
projection as the one found in Darwinopterus 
linglongtaensis and Darwinopterus robustodens 
(Figs. 1d, 1f, 1g, 2b, 2c, 2f). 

DISCUSSION

The function of “bizarre structures” (Padian and 
Horner 2011) and their variability in reptiles, 
including pterosaurs, has long been a concern 
among researchers (e.g., Arthaber 1922). Several 
authors have proposed a variety of functions for 
the pterosaurian cranial crests, ranging from 
aerodynamics (e.g., Kripp 1943, Bramwell and 
Whitfield 1974, Kellner and Campos 2002b) to 
thermoregulation (Kellner 1989, Kellner and 
Campos 2002a).

In a very influential paper, Bennett (1992) ar-
gued that the large collection of Pteranodon speci-
mens, a Late Cretaceous pterodactyloid from North 
America, could be divided into size classes sug-
gesting sexually dimorphism. According to him, 
small individuals with small cranial crests show a 
pelvis with a large pelvic canal while the reverse is 
true for larger individuals (i.e., large cranial crest 
- small pelvic canal). However, there is no direct 
association of the skulls and pelves that could back 
this hypothesis (e.g., Kellner and Tomida 2000). 
Furthermore, it has been suggested that, at least 
theoretically, the differences found by Bennett 
(1992) could be accounted for ontogeny and taxon-
omy (Tomkins et al. 2010). In fact, a re-evaluation 
of several specimens attributed to Pteranodon has 
shown that in some cases there are sufficient mor-
phological differences other than the shape and size 

of the cranial crest, supporting a larger taxonomic 
diversity within what can be called the Pterano-
don-complex (Kellner 2010).

In any case, it should be noted that since both 
morphs of Pteranodon, which supposedly represent 
males and females, bear crests (Bennett 1992, Hone 
et al. 2012), it is not the presence but the expression 
in terms of sizes and shapes of these structures that 
might be regarded as sexually dimorphic. This last 
notion was recently supported by the exceptional 
discovery of the tapejarin tapejarid Caiuajara 
dobruskii in the southern part of Brazil, represented 
by dozens of individuals of different ontogenetic 
stages and potentially different sexes. It could be 
determined that right from a very early ontogenetic 
stage, this pterosaur bore a cranial crest (Manzig et 
al. 2014).

In order to explain the cranial crests or other 
over developed structures as sexually selected 
traits demands considerable sexual dimorphism 
(Padian and Horner 2011), but this has never been 
adequately established in pterosaurs. Despite the 
heated debate on this topic (e.g., Hone et al. 2012, 
Knell et al. 2013a, b, Padian and Horner 2013) the 
fact is that sexual dimorphism (and several other 
biological questions) are difficult to be tested 
without a large number of individuals that belong 
to the same or closely related populations (Kellner 
et al. 2013), what has only rarely been the case for 
pterosaurs (Grellet-Tinner et al. 2014, Manzig et al. 
2014, Wang et al. 2014a).

Regarding these flying reptiles, an interesting 
discovery shed some light on the question of 
the cranial crests being sexually dimorphic. In a 
Cretaceous deposit from northwestern China, 
dozens of individuals of the pterodactyloid 
pterosaur Hamipterus tianshanensis of different 
ontogenetic stages were found (albeit not covering 
the same range as in the Caiuajara material). Since 
this Chinese material is associated with eggs, it 
is expected that males and females are present in 
this collection. Hamipterus tianshanensis bears a 
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premaxillary crest that, in similar sized individuals, 
showed consistently two distinct morphotypes: one 
with larger and more robust crests, and the second 
with smaller and more delicate crests. These 
morphotypes were tentatively regarded as males 
and females, respectively (Wang et al. 2014a). 
Although the Chinese specimens collected so far are 
disarticulated and pelvic elements that might allow 
a more detailed assessment of crest-independent 
sexual dimorphism characters (Padian and Horner 
2011) are rare, this occurrence constitute, to our 
knowledge, the best argument favoring sexual 
dimorphism expressed by cranial crests. Granted, it 
should be noted that in this taxon, the sizes of these 
structures are not particularly large as compared 
to other pterosaurs such as Thalassodromeus, 
Pteranodon, and Geosternbergia (Bennett 1992, 
Kellner and Campos 2002a, Kellner 2010). Once 
again, this is another example where the expression 
of the crest and not its presence shows potential for 
sexual dimorphism.

The hypothesis put forward by Lü et al. (2011a) 
and that was subsequently used as example for sex-
ual selection in the fossil record (Knell et al. 2013a) 
defends that the wukongopterid Darwinopterus is 
sexually dimorphic, with males having a premaxil-
lary crest that is absent in females. Their argument 
resides in two main points: the direct association of 
a specimen attributed (even if not explicitly) to the 
species Darwinopterus modularis, and the com-
parisons of the pelves of four individuals, two of 
which were regarded as males and two as females 
(Lü et al. 2011a suppl. material). 

There is no question that the main specimen 
(ZMNH M8802/IVPP V 18043) is crestless (Fig. 
2d) and was associated with not only one, but 
two eggs, one still inside the body of the animal 
(Wang et al. 2015) and therefore can be confidently 
regarded as a female. However, there are other 
aspects of the study of Lü et al. (2011a) which are 
more problematic. The skull of the second supposed 
female (YH-2000) is badly preserved (see Lü et al. 

2010: fig. 2f), lacking most of the dorsal portion, 
impeding the determination if a crest is present or 
not. In their original description, Lü et al. (2011a) 
implied that the wukongopterid specimen ZMNH 
M8802/IVPP V 18043 represented the species 
Darwinopterus modularis, failing to acknowledge 
the existence of other members of this clade (Wang 
et al. 2009, 2010). Oddly, in the same year, Lü 
et al. (2011b) reinterpreted one of the original 
males (HGM 41HIII-0309A; Lü et al. 2011a) 
as a new species, Darwinopterus robustodens 
(still not acknowledging previous studies on the 
Wukongopteridae).

We have examined the question about the 
sizes of the pelvis in more debt. Although Lü et 
al. (2011a) advocated the presence of two males 
and females, actually regarding the dimensions of 
the pelvis, there are only two specimens where this 
portion of the skeleton can be examined in more 
detail, one of each gender: ZMNH M8782 the 
holotype of Darwinopterus modularis, regarded 
as a male, and ZMNH M8802/IVPP V 18043, the 
indisputable female. According to Lü et al. (2011a), 
both pelves show quite similar dimensions, but 
the crested specimen (ZMNH M8782) is about 
13% larger (based on the length of the humeri), a 
difference which, according to our estimates, might 
have been even greater (see Table I). Therefore, 
according to these authors, the pelvis of ZMNH 
M8782 is proportionally smaller than the one of the 
female (ZMNH M8802/IVPP V 18043).

We have measured the pelvis of the specimen 
IVPP V 16049 (holotype of Darwinopterus 
linglongtaensis, Wang et al. 2010; Table II), 
that bears a developed premaxillary crest and 
has reached about 68% the size of the holotype 
of Darwinopterus modularis (ZMNH M8782; 
Table I). If Lü et al. (2011a) are correct, IVPP 
V 16049 should represent a male individual. We 
have followed the procedures outlined by them 
regarding the measurements of the pelvis (see Lü 
et al. 2011a: suppl. material), which differ from the 
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TABLE I 
Measurements of the length of skull, humerus and ulna of the Wukongopteridae, from the smallest to the largest 

individual based on wingspan (in mm).
Taxa sq-pm hu ul/ra maxws Reference

Darwinopterus linglongtaensis
(IVPP V 16049)

119.2 40.4 58.0 708.2 Wang et al. 2010 and this paper (Table III) 

Wukongopterus lii 
(IVPP V 15113)

- ~38.7 ~62.1 ~734.0 Wang et al. 2010 and this paper (Table III)

Kunpengopterus sinensis 
(IVPP V 16047)

106.9 ~36.2 59.2 ~734.4 Wang et al. 2010 and this paper (Table III)

Darwinopterus modularis
(referred specimen, YH-2000)

est. 140 44 64 760.8  Lü et al. 2010 and this paper (Table III)

IVPP V 17957 est. 130.0 44.9 62.8 778.8 This paper (Table III)
IVPP V 17959 est. 145.0 est. 41.0 67.3 est. 782.2 Cheng et al. 2016 and this paper (Table III)
ZMNH M8802/IVPP V 18043 150 52 70 est. 879.8 Lü et al. 2011a
Darwinopterus robustodens 
(HGM 41HIII-0309A)

173.2 52.8 85.4 996.6 This paper (Table III)

Darwinopterus modularis
(holotype, ZMNH M8782)

185 59 87 est. 1074.9 Lü et al. 2010

-, not preserved; est, estimated value. Abbreviations: hu, humerus; maxws, maximized wingspan; sq-pm, squamosal to the tip of 
premaxilla; ul, ulna. The maximized wingspan (maxws=cor+hu+ul/ra+car+mcIV+ph1d4+ph2d4+ph3d4+ph4d4, Kellner et al. 
2013; abbreviations and measurements see Table III) of Kunpengopterus sinensis, Darwinopterus linglongtaensis, Wukongopterus 
lii, YH-2000, and Darwinopterus robustodens is based on complete forelimb elements plus the coracoid, while that of IVPP 
V 17959, ZMNH M8802/IVPP V 18043, and the holotype of Darwinopterus modularis is estimated by the ratio between the 
preserved elements and maximized wingspan compared to complete specimens.

TABLE II 
Measurements (in mm) and ratio of the pelvis and humerus of Darwinopterus modularis, Darwinopterus linglongtaensis, 

and one female wukongopterid.
hu sl pl pd pw pl/pd pw/pd pl/pw sl/pd

supposed male 
Darwinopterus modularis  
(holotype, ZMNH M8782)

59.0 est. 22.0 37.5 20.0 19.5 1.86 0.98 1.92 1.10 Lü et al. 2011a 
and this paper

supposed female 
“Darwinopterus modularis” 
(ZMNH M8802 or IVPP V 18403)

52.0 est. 19.0 36.0 19.5 20.0 1.85 1.03 1.80 0.97 Lü et al. 2011a 
and this paper

Darwinopterus linglongtaensis 
(holotype, IVPP V 16049) 40.4 16.3 30.2 20.6 ~18.0 1.47 0.87 1.68 0.79 This paper

ZMNH M8782 /  
ZMNH M8802 or IVPP V 18403 1.13 1.16 1.04 1.03 0.98 Lü et al. 2011a 

and this paper
ZMNH M8782 / IVPP V 16049 1.46 1.35 1.24 0.97 1.08 This paper
ZMNH M8802 or IVPP V 18403  
/ IVPP V 16049 1.29 1.17 1.19 0.95 1.11 This paper

~, estimate based on the third sacral vertebra; est, estimated value based on pictures. Abbreviations: hu, humerus; pd, pelvis depth 
from dorsal margin of the ilium to the ventral margin of the puboischiadic plate at level of the acetabulum; pl, pelvis length from 
anterior tip of preacetabular process of ilium to posterior tip of postacetabular process of ilium; pw, pelvis width between the 
acetabula; sl, length of sacral vertebrae.
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TABLE III 
Measurements of IVPP V 17957 and other published wukongopterid specimens (in mm).
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lower jaw 103.2 157 115 102.4 151.3 89.5 est 125 est 130 106.8
man.sys 19.5 ~23.6 - - 34 est 30 25.5

sca 34.1(r) 
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41 - 42.2(r) 
42.7(l)

ti 52.8(r) - 54 49.8(r) 
49.6(l)

 
61.4(l)

 
54.5(l)

61 - -

mt3 ~17.2(r) 
16.8(l)

23 17 17.0(r) 21.5(r) 
20.6(l)

21.8(r) 
20.7(l)

20 - -

mt4 ~14.5(r) 
15.0(l)

14.2(r) 
14.2(l)

18.5(r) 
17.6(l)

17.9(r) 16 15.1 -

pph1d5 13.9(r) 
13.7(l)

12.8(r) 
12.1(l)

18.1(r) 
18.0(l)

11.2(r) 18.5 - -

ptd >7.3(r) - 26  
28.9(l)

 
34.0(l)

 
~25.8(l)

25  
24.9(l)

est 31(r)

Wang et al. 
2010 and 
this paper

Lü et al. 
2010

Lü et al. 
2010 and 
this paper

Wang et al. 
2010 and 
this paper

This paper Wang et al. 
2010 and 
this paper

Lü et al. 
2011a 
and this 
paper

Cheng et al. 
2016 and 
this paper

This paper

-, not preserved; *, corrected in this paper based on pictures; est, estimated value. Abbreviations: car, carpus; cor, coracoid; fe, 
femur; hu, humerus; l, left; man.sys, mandibular symphysis; mcIV, metacarple IV; mt3-4, metatarsle 3-4; naof, nasoantorbital 
fenestra; ph1-4d4, first to fourth phalanx of manual digit IV; pph1d5, first phalanx of pedal digit V; ptd, pteroid; r, right; ra, radius; 
ros, rostrum; sca, scapula; sq-pm, tip of premaxilla to posterior end of squamosal; ti, tibia; ul, ulna.
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procedures adopted by Bennett (1992). Comparing 
the size and proportions of the pelvic elements 
of these wukongopterid specimens, however, we 
could establish that the pelvis of IVPP V 16049 is 
proportionally larger and deeper than the one of 
the holotype of Darwinopterus modularis (ZMNH 
M8782; Table II). Moreover, when we compare the 
measurements of the indisputable female (ZMNH 
M8802/IVPP V 18043), the proportions of that 
pelvis is not much different from the holotype of 
Darwinopterus modularis (ZMNH M8782; Table 
II), meaning that it could not have had a wider 
pelvic canal (contra Lü et al. 2011a). Actually, if all 
three specimens represent the same species, IVPP V 
16049, which bears a crest, has the deepest pelvis, 
implying in a proportionally larger pelvic canal 
(Table II), and according to previous studies on 
this subject (Bennett 1992, Lü et al. 2011a), would 
have to be interpreted as a female. And if so, just 
for the sake of argumentation, it would be unusual 
to consider these two specimens (ZMNH M8802/
IVPP V 18043 and IVPP V 16049) as representing 
the same species.

Based on the available wukongopterid skulls 
(including the new specimen - IVPP V 17957), 
there are at least three conditions regarding 
premaxillary crests: absent (Figs. 1a, 1b, 2a, 2d), 
present and limited posteriorly to the anterior end 
of the nasoantorbital fenestra (Figs. 1c-f, 2b, 2c), 
and extended anterior to the nasoantorbital fenestra 
(Figs. 1i, 1j, 2f, 2g). A fourth condition can also be 
advocated based on the specimen IVPP V 17959, 
where the cranial crest is very reduced (Figs. 1g, 1h, 
2e). One could try to argue that, if not taxonomic, 
this variation could reflect different ontogenetic 
stages, with young individuals (Fig. 2a) being 
crestless, that would at a certain ontogenetic stage 
develop a crest above the nasoantorbital fenestra 
(Fig. 2b) and expand this crest anteriorly in older 
(and larger) individuals (Figs. 2f, 2g). However, 
the crestless and smallest individual (based on the 
length of humerus, IVPP V 16047, Fig. 2a, Table I) 

has a larger (more than 3.6%) maximum wingspan 
than the second smallest individual (based on the 
length of humerus, IVPP V 16049, Fig. 2b, Table I). 
Even though considering the wingspan as individual 
differences, it still seems difficult that the appearance 
of the crest would be a sudden event in such close 
sized animals. In the best example of an ontogenetic 
series within pterosaurs that is represented by 
Caiuajara (admittedly very distantly related to the 
Wukongopteridae), there seems a continuum in the 
appearance and development of the cranial crest, 
present in this taxon at a very young ontogenetic 
stage (Manzig et al. 2014). Furthermore, there 
are other important morphological differences 
that separate Kunpengopterus sinensis (IVPP V 
16047) and Darwinopterus linglongtaensis (IVPP 
V 16049) (see Wang et al. 2010).

Still pursuing the potential ontogenetic 
argument, the shapes and the sizes of the crests 
also do not seem to follow an ontogenetic pattern 
(compare Figs. 2b with 2c and 2f). Secondly, the 
shapes and the external surfaces of the crests (i.e., 
smooth or fibrous) also vary to a great degree 
independent of the sizes of the individuals (compare 
Figs. 1d with 1f and 1g).

CONCLUSION

The function of cranial crests in pterosaurs will be 
a matter of contempt until more material becomes 
available. Although the comparisons of the pelvic 
elements of wukongopterids is interesting, one 
cannot overemphasize the reduced number of 
specimens on which this and other studies are based. 
Variations introduced by taphonomy, allied with 
morphological differences as a result of ontogeny 
and other factors cannot be adequately assessed 
with three or so individuals. Notwithstanding these 
shortcomings, the explanation of the evolutionary 
function of cranial crests as sexual dimorphism 
(including mutual sexual selection, Hone et al. 
2012) should not be used as the default option. 
As has been pointed out before (e.g., Kellner and 
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Campos 2002a, 2002b), it seems quite unlikely 
that once a pterosaur developed a cranial crest (as 
perhaps the so called “bizarre structures” in other 
reptiles), this structure could not have performed 
a variety of functions. Despite the limitation of the 
available data, it seems difficult not to acknowledge 
that these quite distinct anatomical features have 
played a major role in species recognition, as has 
been put forward for other reptiles (e.g., Padian and 
Horner 2011). This has been shown to be true at 
least for some material of the Pteranodon-complex 
and seems also to have been the case for the 
Wukongopteridae. Perhaps more detailed studies 
of deposits with large amount of specimens that 
might have been part of the same or closely related 
populations like the occurrences of Caiuajara 
dobruskii and Hamipterus tianshanensis (and 
others that might come to light) have the potential 
to provide a step further into the discussion of 
several paleobiological questions concerning 
flying reptiles, including sexual dimorphism and 
ontogeny (Kellner 2015). Meanwhile the variation 
in shapes and sizes of cranial crests that are found 
in pterosaurs, associated with other morphological 
features, should not be understated as being a 
powerful tool for understanding their diversity.
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