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ABSTRACT

Several neurotransmitter systems have been related to developmental processes during the past decade.

In this review, we discuss the evidence that the nicotinic acetylcholine receptors could have an additional

function during development that may be unrelated to their role in cholinergic neurotransmission in the

vertebrate brain. Both temporal expression data andin vitro andin vivo studies with nicotinic agonists and

antagonists have provided direct support for a role of nicotinic receptors in neural developmental processes

such as neurite outgrowth and differentiation. A similar picture has emerged for other neurotransmitter and

receptor systems as well, which generates a new view of neural processes during both development and

mature life.
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INTRODUCTION

Considerable progress has been obtained in under-

standing the processes that control the devel-

opment of the nervous system. Notable advances

have been mainly generated by molecular biologi-

cal approaches, which revealed several key aspects

of neural development, including the determination

of cell identities, target reaching, and synaptogene-

sis (Francis and Landis 1999, Hatten 1999). Many

genes and molecules have been related to specific de-

velopmental processes. Among the recently stud-

ied developmentally-related molecules are those

that control the specification and differentiation of

nervous system subdivisions, such as thehomeobox,

engrailed, wnt andpax gene products (Joyner 1996,
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Maconochie et al. 1996), those that regulate neurite

outgrowth and axon targeting, such as gangliosides,

ephrins, semaphorins, and SNARE proteins (Flana-

gan andVanderhaegen 1998, Mueller 1999, O´Leary

and Wilkinson 1999, Hepp and Langley 2001, Men-

dez-Otero and Santiago 2001), and those that regu-

late neuron survival and plasticity, such as the neu-

rotrophins (Reichardt and Fariñas 1997, Shatz 1997,

Huang and Reichardt 2001).

During the past decade another group of

molecules has been clearly related to developmental

regulation, namely the neurotransmitters and their

receptors. This previously unsuspected role of the

neurotransmitter systems has been revealed by ex-

periments usingin vitro preparations of several neu-

ronal tissues and showed that neurotransmitters such

as serotonin, dopamine, glutamate and acetylcholine

were able to promote or block neurite outgrowth, de-
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pending on the neuronal group and the neurotrans-

mitter involved (for review see Lipton and Kater

1989). For example, an inhibition of growth cone

motility in cultured retinal neurons was observed af-

ter dopamine treatment and this effect was thought

to depend on the D1-type dopamine receptor (Lank-

ford et al. 1988). At about the same time, the N-

methyl-D-aspartate-type glutamate receptors have

been unequivocally linked to the precise pattern-

ing of connections during nervous system develop-

ment (Constantine-Paton et al. 1990, Shatz 1990,

Simon et al. 1992). These plasticity events, namely

neurite sprouting, establishment of neuronal con-

nections, and exclusion of connections, profoundly

affect the general organization of the developing

and the mature nervous system. There is now con-

sensus that those neurotransmitter systems, together

with the gamma-amino-butyric acid (Billinton et al.

2001) and the nitrinergic (Contestabile 2000) sys-

tems, are all involved in some aspect of neural de-

velopment, in addition to their well-known role in

neurotransmission. In this review we focus on the

possible involvement of nicotinic acetylcholine re-

ceptors (nAChRs) in developmental processes such

as neurite outgrowth and differentiation.

THE NICOTINIC RECEPTORS

The nAChRs are members of the neurotransmitter-

gated superfamily of ion channels and are all formed

by combinations of five subunits organized around a

central ion channel. The structure of nAChRs have

actually provided the model for understanding of the

organization of neurotransmitter-gated ion channel

receptors (Lindstrom 1998). In the nervous system,

twelve distinct nAChR subunits have been cloned

and identified asα (α2-α10) andβ (β2-β4) subunits,

which may constitute heteromeric or homomeric re-

ceptors. The distinct combinations of nAChR sub-

units produce receptors with different physiological

properties and bothα andβ subunits seem to con-

tribute to the functional diversity of the nAChRs.

At least two branches of nAChRs may be de-

fined based mainly on their affinity for the snake

venomα-bungarotoxin (α-Bgt), which are theα-

Bgt-sensitive andα-Bgt-insensitive nAChRs. The

major brain subtype with high affinity for nicotine

seems to be theα4β2 nAChR (Flores et al. 1992),

which is α-Bgt-insensitive. The major ganglionic

subtype isα3β4 and the major subtype with high

affinity for α-Bgt found in brain and ganglia is com-

posed of homomeric arrangements ofα7 (Del Toro

et al. 1994). Theα-Bgt-sensitive nAChRs, es-

pecially theα7-containing subtype, have been the

target of intense investigation as they show high

calcium permeability (Vijayaraghavan et al. 1992,

Séguéla et al. 1993, Rathouz et al. 1996). Calcium

entering the neuron throughα7 channels could then

act as a second messenger in several cellular pro-

cesses, such as the regulation of neurite outgrowth

and therefore of developmental and plasticity pro-

cesses (Quik 1995).

The expression of nAChR subunit genes

in Xenopus oocytes provided a great deal of infor-

mation about the organization and function of those

receptors, but it was necessary to verify if functional

combinations obtainedin vitro resembled the sub-

types expressed in the nervous system. Ligands,

antibodies and RNA probes have all been employed

for the localization and quantification of the neu-

ronal nAChRs. For example, the localization of the

nAChRs have been investigated in vertebrate brains

with ligands (Clarke et al. 1985, Sorenson and Chi-

appinelli 1992), immunohistochemistry to detect the

nAChR proteins (Sargent et al. 1989, Hamassaki-

Britto et al. 1991, Britto et al. 1992a,b, Torrão et

al. 1997) andin situ hybridization to detect the cor-

responding mRNAs (Goldman et al. 1986, 1987,

Boulter et al. 1987, Duvoisin et al. 1989, Wada et

al. 1989, 1990, Morris et al. 1990, Dineley-Miller

and Patrick 1992, Séguéla et al. 1993, Lohmann et

al. 2000).

All these studies converged to reveal that the

nAChRs are widely distributed throughout the ma-

ture nervous system. The next obvious step was to

analyze the expression of different nAChR subunits

during development of the nervous system.
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nAChR EXPRESSION DURING DEVELOPMENT

Several studies have shown an early expression of

nAChRs and of the cholinergic system enzymes,

acetylcholinesterase (AChE) and choline acetyl-

transferase (ChAT) in the central and peripheral ner-

vous system of vertebrates (see Role and Berg 1996,

Torrão et al. 2000). These studies employed either

in situ hybridization, immunohistochemistry, im-

munoblotting, and binding assays, and all these tech-

niques have revealed that the subunits which form

the nAChRs are expressed very precociously. More-

over, the observation of different temporal patterns

of nAChR expression was another strong indication

of the presumptive participation of nAChRs in de-

velopmental processes (Daubas et al. 1990, Matter

et al. 1990, Zoli et al. 1995, Conroy and Berg 1998,

Hellstrom-Lindahl et al. 1998, Kaneko et al. 1998,

Torrão et al. 2000). The study by Conroy and Berg

(1998) shows, for example, an increased expression

of α5, α8, andβ2 nAChR subunits between em-

bryonic day 8 [E8] and E17/18 in the chick brain.

Similar patterns are observed in the rat brain (Zoli

et al. 1995). Transient expression is another pattern

observed for several nAChR subunits. This pattern

was detected in our laboratory for several subunits in

the chick cerebellum (Fig. 1). Theα2, α5, α7, α8,

andβ2 nAChR subunits all begin to be expressed

relatively late (at E12), show a peak of expression

at E16, and are expressed at very low levels or not

expressed at all in the postnatal chick (Kaneko et

al. 1998, Torrão et al. 2000). Very early expression

of nAChRs has also been documented in the chick

retina, where some types of nAChR appear at least

two days before choline acetyltransferase is detected

and about four days before the onset of synaptoge-

nesis (Hamassaki-Britto et al. 1994).

EFFECTS OF NICOTINIC AGONISTS AND
ANTAGONISTS UPON NEURAL DEVELOPMENT

IN VITRO

Functionalin vitro studies have been also conducted

to assess the role of nAChRs during development.

Primary cultures of neuron precursors or cultures

of stable cell lineages have been analyzed to ob-

serve the relationship between nAChR expression

and processes such as proliferation, cell survival

and neurite outgrowth. The addition of the nico-

tinic agonist nicotine in PC12 cells and ciliary gan-

glion cultures produced a decreased rate of growth

or even a retraction of neurites in both cases, which

is in agreement with the popular idea of a growth

inhibitory effect of nicotine in the developing cen-

tral nervous system. This effect was reverted by

application ofα-Bgt, which indicates that the effect

is mediated throughα-Bgt-binding nAChRs (Chan

and Quik 1993, Pugh and Berg 1994). Indeed, a

developmental role of the nAChRs has been mainly

suggested for theα-Bgt-binding nAChR subtypes.

These studies have suggested that neurite outgrowth

regulation could be a result of an activation of theα-

Bgt-binding nAChR subtypes, which characteristi-

cally show a high calcium permeability. In addition

to increasing the levels of intracellular calcium by

fluxing the ion directly through the receptor chan-

nel, the activation ofα-Bgt-binding nAChR sub-

types may activate voltage-gated calcium channels

in vivo and then increment the calcium influx. Inter-

estingly, a recent study has shown an opposite effect

of nicotine. In this study, the addition of the nicotinic

agonists to cultured olfactory bulb neurons produced

significant increases in neuritic length, an effect that

was abolished by treatment withα-Bgt, indicating

the involvement ofα7-containing nAChRs in this

process. This hypothesis was confirmed by bind-

ing assays with125I-α-Bgt (Coronas et al. 2000).

These conflicting results could be related to dif-

ferent calcium concentrations in those cell culture

preparations. It has been suggested that an optimal

level of intracellular calcium is necessary for neu-

ritic extension and outgrowth (Kater and Mills 1991)

and it seems that these levels differ between neurons

with spontaneous neurite outgrowth (PC12 cells and

ciliary ganglion cells) and neurons with little neu-

ritic extension under basal conditions (olfactory bulb

neurons).

In the context of the above considerations, it is
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Fig. 1 – Temporal evolution of immunoreactivity for nAChR subunits in Purkinje cells of the developing chick cerebellum. Note that

the expression of most subunits tested peak around E16. Theα3 subunit shows a peak of expression four days earlier.

also relevant that the treatment of primary cerebellar

neuroblasts of rats with nicotine increased prolifera-

tion and cell survival (Opanashuk et al. 2001). Also,

primary cell cultures from human fetal brain treated

with nicotine showed an up-regulation of nAChR

binding sites and increased expression of their tran-

scripts (Hellstrom-Lindahl et al. 2001).

EFFECTS OF NICOTINE UPON IN VIVO
NEURAL DEVELOPMENT

The effects of nicotine treatment upon the develop-

ing brain has also been assessed within vivo stud-

ies. Nicotine treatment during the second postnatal

week generated a disruption of the synaptic devel-

opment of the rat auditory cortex (Aramakis et al.

2000). Also, rats treated with nicotine during the

second postnatal week showed a persistent increase

in the number of nAChR binding sites in the adult

stage (Miao et al. 1998). These two studies indi-

cate that the second postnatal week is critical in the

developing rat brain and that nicotine treatment dur-

ing this period could induce permanent effects on

nAChRs. In addition, prenatal or embryonic nico-

tine exposure has been conducted to investigate its

effects upon fetal development. These studies have

investigated the morphological, functional, and be-

havioural changes that may be produced by early

exposure to nicotine (e.g. Pennington et al. 1994).

Some studies have also addressed the question of

nicotine-mediated effects upon the nAChR them-

selves and upon cholinoceptive neurons, which are

presumptively the targets of nicotine in the brain.

Prenatal nicotine exposure transiently increased the

levels ofα4,α7, andβ2 mRNA in hippocampus and

cortex of postnatal rat brain (Shacka and Robinson

1998). On the other hand, the chronic infusion of

nicotine in chick eggs did not change the density

of (-)-[3H]nicotine-binding sites in the developing

chick brain (Roll et al. 1993). We have found in

our laboratory that the infusion of nicotine in chick

eggs seems to produce a reduction of immunoreac-

tivity for the α2, α5, α8, andβ2 nAChR subunits

in perikarya and neuropil of specific regions of the

chick embryonic brain, with an apparent disruption

of the neuritic structure of neurons containing those

subunits. In contrast, the infusion ofα-Bgt during

specific stages of embryogenesis seemed to generate

an increase of immunoreactivity for theα8 nAChR

subunit. The dendritic arbors of the cholinocep-

tive neurons appeared to be more profusely rami-

fied or at least much more visible when the cells

were stained for the presence of that nAChR subunit

(Fig. 2). This result suggests that early during de-

velopment the nAChRs are responsive to nicotinic

agonists and antagonists, and the development of

nicotinic receptor-containing neurons may be regu-
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lated by blockade and activation of those nAChRs.

The increased neuritic immunoreactivity for theα8

nAChR subunit and the enriched dendritic arbor ob-

served afterα-Bgt infusion seem to agree with pre-

vious in vitro studies that have already implicated

theα-Bgt-sensitive nAChRs in morphogenetic pro-

cesses (Chan and Quik 1993, Pugh and Berg 1994,

Role and Berg 1996). The apparent facilitation of

neurite developmentin ovo could be the result of

an optimal calcium concentration obtained after the

presumptive blockade ofα8-containing receptors by

α-Bgt.

CONCLUDING REMARKS

The above data suggest that nAChRs, especially

those of theα-Bgt-type branch, may control the de-

velopment of neural structures in which they are ex-

pressed. A possible mechanism for such a control

could be the termination of axonal growth by presy-

naptic nAChRs that flux calcium. Acetylcholine re-

leased from growth cones might be responsible for

the activation of those nAChRs. In addition, these

receptors may influence the establishment of the

dendritic morphology, which is suggested by both

in vivo andin vitro experiments. Finally, it is note-

worthy that these same mechanisms may operate

during plastic remodeling in the adult brain (Dani et

al. 2001). Taken together, the data reviewed here

indicate that the cholinergic and other chemically-

specific brain systems participate in neural develop-

ment and plasticity, in addition to mediating neuro-

transmission in the adult brain.
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Fig. 2 – Effects ofin ovo injections of nicotine andα-Bgt upon

α8-like immunoreactivity in neurons of the chick lateral mesen-

cephalic reticular formation. Dendritic staining is much more

evident afterα-Bgt. Nicotine, on the other hand, appears to re-

duce neuropil staining forα8. Control eggs were injected with

either saline or distilled water. All embryos were treated from

E15 through E17 with daily injections, and were sacrificed on

E18. Scale bar: 25µm.
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RESUMO

Na última década vários sistemas de neurotransmissores

têm sido relacionados ao controle do desenvolvimento do

sistema nervoso. Nesta revisão, nós discutimos as evi-

dências de que os receptores nicotínicos da acetilcolina

podem apresentar uma função incomum durante o desen-

volvimento, que não deve estar relacionada com seu pa-

pel na neurotransmissão colinérgica no sistema nervoso de

vertebrados. Dados sobre expressão temporal e estudosin

vitro ein vivo com agonistas e antagonistas nicotínicos têm

proporcionado apoio direto para a hipótese de uma função

dos receptores nicotínicos no desenvolvimento neural, in-

cluindo processos como crescimento neurítico e diferen-

ciação. Um quadro similar tem sido obtido para outros

sistemas de neurotransmissores e receptores, o que tem

gerado uma nova visão dos processos neurais durante o

desenvolvimento e a vida adulta.

Palavras-chave: acetilcolina, desenvolvimento, neuro-

transmissores, nicotina, receptores nicotínicos.
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