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GLUCOSE UTILISATION DURING STATUS EPILEPTICUS
IN AN EPILEPSY MODEL INDUCED BY PILOCARPINE

A qualitative study

Fulvio Alexandre Scorza’, Ricardo Mario Arida?, Margareth Rose Priel,
Lineu Calderazzo* Esper Abrao Cavalheiro®

ABSTRACT - Status epilepticus (SE) is a medical emergency and it is associated to brain damage. 2-deoxy-[*C]
glucose (2-DG) procedure has been used to measure the alterations in the functional activity of the brain
induced by various pharmacological and toxicological agents. The aim of this study was to determine which
changes occur in the seizure anatomic substrates during the SE induced by pilocarpine (PILO) using ['*C]-2
deoxyglucose functional mapping technique. Wistar male adult rats were submitted to SE PILO-induced for
6h and received ['“C] 2-deoxyglucose injection via jugular vein 45 min before the 6™ hour of SE. The control
animals were submitted to all procedures but received saline and not pilocarpine. Brain sections were prepared
and exposed X-ray film about seven days. The optical density of each region was obtained using a solid state
digital analyser. The analysis revealed that 'C-2DG utilisation was pronounced in the SE rats on the areas
corresponding to the hippocampal formation (+50.6%), caudate-putamen (+30.6%), frontoparietal cortex
(+32.2%), amygdala (+31.7%), entorrinal cortex (+28.2%), thalamic nucleus (+93.5%), pre-tectal area
(+50.1%) and substantia nigra (+50.3%) when compared to control. Our results suggest that the different
activation levels of the distinct structures may be particularly important for understanding triggering and
spreading mechanisms underlying epileptic activity during status epilepticus.
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Utilizagao de glicose durante o estado de mal epiléptico no modelo de epilepsia induzido pela pilocarpina:
um estudo qualitativo

RESUMO - O estado de mal epiléptico (SE) € uma emergéncia médica e estd associado a lesdo cerebral. O
procedimento da ['“C] desoxiglicose tem sido utilizado para avaliar as alteracdes da atividade funcional cerebral
induzidas por agentes farmacolégicos e toxicolégicos. O objetivo deste estudo foi verificar as alteracdes
metabolicas do cérebro de ratos durante o SE induzido pela pilocarpina, para tanto, utilizamos a técnica de
mapeamento funcional da [*C] desoxiglicose. Ratos machos da raga Wistar foram submetidos ao SE induzido
pela pilocarpina durante periodo de 6 horas; 45 minutos antes de se completar 6 horas de SE, tais animais
receberam uma injecdo de ['“C] desoxiglicose por via venosa (veia jugular). Os animais pertencentes ao grupo
controle foram submetidos aos mesmos procedimentos, no entanto, receberam solucao salina e ndo pilocarpina.
As fatias cerebrais foram preparadas e expostas em filme de raioX por um periodo de sete dias. A andlise da
densidade dptica de cada regido foi obtida por analisador digital de estado sélido. Tal andlise revelou aumento
no consumo de glicose durante o SE nas seguintes regides: formagdo hipocampal (+50,6%), nicleo caudado-
putamen (+30,6%), cortex frontoparietal (+32,2%), amigdala (+31,7%), cdrtex entorrinal (+28,2%), complexo
talamico (+93,5%), area pré-tectal (+50,1%) e substdncia negra (+50,3%), quando comparadas com os
animais pertencentes ao grupo controle. Nossos resultados sugerem que a ativagdo dessas estruturas deve ser
particularmente importante nos mecanismos de desencadeamento e alastramento da atividade epiléptica
durante o estado de mal epiléptico.
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Status epilepticus (SE) has been defined as recur-
rent epileptic seizures without full recovery of con-
sciousness before the next seizure beginning, or con-
tinuous clinical and/or electrical seizure activity last-
ing for more than 30 minutes whether or not con-
sciousness is impaired'. The fundamental pathophysi-
ology of SE involves a failure of mechanisms that
normally abort an isolated seizure. This failure can
arise from abnormally persistent, excessive excita-
tion or ineffective recruitment of inhibition. The rela-
tive contribution of these factors is poorly under-
stood. The temporal and spatial determinants of SE
are also relatively unknown; experimental studies
suggest that there is induction of reverberating sei-
zure activity between, for example, hippocampal and
parahippocampal structures and that seizures pro-
gress through a sequence of a distinct electrogra-
phic changes?3.

It is likely that numerous mechanisms are invol-
ved, depending on the underlying cause. Our best
insights come from cases in which SE was caused by
an exogenous toxin. The most notable example in-
volved the ingestion in 1987 of mussels contami-
nated with domoic acid, an analogue of glutamate*.
Some patients had prolonged and profound SE°. This
occurrence suggests that excessive activation of ex-
citatory amino acid receptors can cause prolonged
seizures and suggests that excitatory amino acids
have a causative role in SE®. SE can also be caused
by penicillin and related compounds that antagonise
the effects of y-aminobutyric acid (GABA)2. Engel
(1995) suggests that the failure of inhibition may be
due in some cases to a shift in the functional prop-
erties of the GABAa receptor that occurs, as seizures
become prolonged’.

SE lasting approximately 30 to 45 minutes can

cause cerebral injury, specially in limbic structures
such as the hippocampus, and seizure activity itselfis
sufficient to damage the central nervous system
(CNS)®°. This damage is partially a consequence of glu-
tamate-mediated excitotoxity and does not appear
to be due primarily to an excessive metabolic demand
imposed by repetitive neuronal firing. The superim-
position of systemic stresses such as hyperthermia,
hypoxia or hypotension exacerbates the degree of
neuronal injury in animal models of SE, a finding
consistent with empirical observations in humans'®™.

Alterations in the functional activity of the brain
induced by various pharmacological and toxicologi-
cal agents can be measured by the 2-deoxy-[*C] glu-
cose (2-DG) procedure developed by Sokoloff et al.
in 1977. The autoradiographic technique has been
used to trace regional glucose utilisation by the brain
tissue in normal conscious state under physiological
and pathological experimental conditions.

The measurement of brain metabolism during
seizures and interictal periods has been used to iden-
tify the CNS structures responsible for the genera-
tion, propagation and control of the epileptic activ-
ity'2. Local cerebral glucose utilisation has been shown
to change dramatically during SE'*', and marked
regional hypermetabolism has been shown to cor-
relate with the development of neuronal damage in
various models of seizures in adult rodents and pri-
mates'>". In the amygdaloid kindling, a normal deo-
xyglucose uptake without any behavioural seizure
activity (e.g. in the initial stage of the kindling pro-
cess) was described'®. However, rats with generalised
motor seizures (final stage of kindling) exhibited an
increase in deoxyglucose uptake by the substantia
nigra, rostral globus pallidus and neocortex's. Elec-
trical stimuli to amygdala induces both an enhanced

Table 1. Basal levels of cerebral energy metabolism of the status epilepticus of adult wistar rats.

Control Animals
(n=10)

Brain Region

Status Epilepticus Animals Variation (%)

(n=10)

Caudate-Putamen 163.8 = 2.8
Frontoparietal Cortex 166.3 £ 2.4
Thalamic Nucleus 102.6 = 2.9
Pre-Tectal Area 137.3 = 3.2
Substantia Nigra 132.2 = 3.0
Hippocampal Formation 140.7 = 5.1
Amygdala 133.8 = 2.8
Entorhinal Cortex 139.6 = 3.7

*2147 £ 5.9 31.07
*220.0 = 3.6 32.29
*198.6 £ 2.4 93.56
*206.2 £ 3.9 50.10
*198.8 £ 2.6 50.30
*¥212.6 £ 3.7 50.60
*176.3 £ 3.3 31.70
*179.1% 3.6 28.20

Values are expressed as optical density (0.D). * P< 0.001, statistically significant difference from control (Unpaired

Student T test).
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deoxyglucose uptake and co-localised seizure activ-
ity that initially spreads from the stimulated site to a
restricted circuitry and later involves the whole sys-
tem'’. Several alterations in the local deoxyglucose
uptake induced by kainic acid, bicuculine and
metrazol-induced seizures were described in rats's.
On the other hand, in patients with temporal lobe
epilepsy, the EEG, neuropathological and positron
emission tomography (PET) studies have all empha-
sised the primary involvement of the anterior hip-
pocampal formation and the amygdaloid complexin
the pathogenesis of most complex partial seizures.

The systemic administration of a potent muscar-
inic agonist pilocarpine (PILO) in rats promotes a
sequential behavioural and electrographic changes
that can be divided into three distinct periods: (a)
an acute period that built up progressively into lim-
bic SE and that lasts 24h, (b) a silent period with a
progressive normalisation of EEG and behaviour
which varies from 4 to 44 days, and (c) a chronic
period with spontaneous recurrent seizures (SRSs).
These spontaneous seizures recur 3-5 times per week
per animal and its main features resemble those of
human complex partial seizures. Therefore, the pilo-
carpine model of epilepsy provides unique experi-
mental conditions for studying the human disorder?.

The purpose of the present study was to determine
with the '“C-2 deoxyglucose functional mapping
technique which changes occurs in the seizure anato-
mic substrates during the SE induced by pilocarpine.

METHOD

Adult male Wistar rats (n=40), weighting 280-300g
were housed under standard controlled conditions (7:00
A.M./7:00 P.M. light/dark cycle; 20-22°°C; 45-55% humid-
ity) with food and water ad libitum. The animals were
separated in two groups: a) 6h SE (n=10) and b) Control
group (n=10). All the animals were anaesthetised with a
pentobarbital/chloral mixture. A polyethylene catheter (PE-
10, Clay Adams) was permanently implanted into one ex-
ternal jugular vein. To minimise the stress and facilitate
the injection of '*C-2DG, the catheter was fixed over the
skull and often flushed with heparinized saline after the
surgical procedure. After 3h recovery from anesthesia, SE
was induced by pilocarpine injection?.

14C-2DG (50-55 uCi/mol; Sigma) was prepared in etha-
nol, evaporated under N, stream and ressupended in
normal saline. *C-2DG (200 ug/kg) was administrated by
rapid intravenous infusion. The animals were killed 45
minutes after the '*C-2DG infusion by decapitation and
the brains were rapidly removed, frozen in cooled methyl-
butane (-40°C), and stored at -70°C.

For autoradiographical analysis, 20 um thick coronal
brain sections were prepared in cryostat (Jung CM 1800-
Leica) at -20°C. Brain sections were mounted on cover slips

and dried immediately at 55°C on a hot plate. Autoradio-
grams were then prepared and exposed to a Kodak SB-5
X-ray film (Sigma Chemical Company) for about seven days.
Then, the film was processed in a developer solution
(Kodak, GB). Cerebral glucose utilisation rate by different
structures was evaluated through the analysis of radioac-
tive labelling on the autoradiograms. The optical density
of each region were obtained using a solid state digital
analyser consisting of a charge-coupled device scanner and
a computer (NIH Image version 1.57, Scanner-Epson ES
10000).

Analysis of glucose uptake were determined in the
mainly regions involved in the pathophysiology of this
epilepsy model, hippocampal formation, caudate-puta-
men, frontoparietal cortex, amygdala, hypothalamus,
entorhinal cortex, thalamic nucleus, endopiriform nucleus,
primary olfactory cortex, pre-tectal area, substantia nigra.

Differences in deoxyglucose uptake between pilo-
carpine-treated and control animals were statistically evalu-
ated with the Student’s T-test for p < 0.05.

RESULTS

Pilocarpine administration induced both ictal and
interictal epileptic activity in hippocampal and corti-
cal electrographic recordings which was correlated
with the sequence of behavioural alterations, as pre-
viously described?'. In summary, 2-10 minutes after
pilocarpine injection, a predominant theta rhythm
could be observed in the hippocampal recording
accompanied by slow-voltage fast activity in the cor-
tex. Subsequent high-voltage fast activity and iso-
lated spikes were seen in the hippocampus, which
spread rapidly to the cortex leading to the synchro-
nisation of both recordings. This kind of activity evol-
ved to a pattern of isolated electrographic seizures,
which culminated in SE.

At the same time, behavioural changes could be
observed. Immediately after pilocarpine administra-
tion, animals started to show akinesia, ataxic lurch-
ing and facial automatism. This behaviour progressed
to motor limbic seizures, which culminated in SE 20-
50 minutes pilocarpine injection.

On the other hand, the cerebral glucose-utilisa-
tion rate measured on labelled brain structures did
not differ significantly among control animals. Quali-
tatively, these results resembled those reported by
Sokoloff et al.’2. In contrast to the animals of con-
trol group, '*C-2DG utilisation was pronounced in
the SE rats on the areas corresponding to the hip-
pocampal formation (+50.6%), caudate-putamen
(+30.6%), frontoparietal cortex (+32.2%), amygdala
(+31.7%), entorrinal cortex (+28.2%), thalamic
nucleus (+93.5%), pre-tectal area (+50.1%) and
substantia nigra (+50.3%) (Figure).



Arq Neuropsiquiatr 2002;60(2-A) 201

Fig 1. Representative '*C-2DG autoradiographs. Sections have been selected at the coronal level of the

caudate-putamen (CP), frontoparietal cortex (FC), hippocampal formation (H), thalamic nucleus (T), substan-
tia nigra (SN), pre-tectal area (PT), amygdala (A) and entorhinal cortex (EC). A: '“C-2DG autoradiographs
prepared from a control animal. B: "*C-2DG autoradiographs prepared from a status epilepticus animal.

Note the activation of all the structures.

DISCUSSION

The present study evaluates cerebral metabolic
rate in rats during the acute period of the pilocarpine
model of epilepsy by “C-2DG autoradiography. The
observation of increased glucose utilisation by the
hippocampal formation, caudate-putamen, fronto-
parietal cortex, amygdala, entorhinal cortex, thalamic
nucleus, pre-tectal area and substantia nigra sug-
gests that these areas, contiguously and intensely

activated, have a strong tendency to act together as
a single functional entity.

In animals, investigations with '*C-2-deoxyglucose
autoradiographic technique'® have implicated the
involvement of the anterior hippocampal formation
and the amygdaloid complex in the pathogenesis of
most complex partial seizures in a variety of experi-
mental models of epilepsy'#'>18,

Studies of regional glucose metabolism in both
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focal epilepsy and generalised epilepsy have all indi-
cated marked differences in the involvement of dif-
ferent brain regions??. A study of SE induced by PTZ
(pentylenetetrazol) demonstrated that after 1, 5, 15,
20, 60, and 90 min of seizure activity (120-150 mg/
kg, intrarterially) marked increases occur in certain
areas. These included, hippocampus, most areas of
the cerebral cortex, the striatum and the reticular
formation of the brainstem. Furthermore, the pat-
tern of activation, once established, tended to per-
sist while the seizure lasted. The striking exception
was the substantia nigra. This nucleus showed ini-
tially a marked increase in glucose use after 1, 5 and
15 min of seizure activity and a marked lack of activ-
ity 90-min after seizure induction?2.

The anatomic substrates activated during seizure
activity differ from those activated during interictal
intervals?®. We have recently showed that increased
metabolic rate in the lateral posterior thalamic nu-
clei during the interictal period may be a result of
the activation of cerebral circuits controlling SRSs
initiation and/or generalisation.

The patterns of “C-2-deoxyglucose uptake asso-
ciated with the less severe forms of status activity
primarily involve parts of the amygdaloid complex
and the ventral hippocampal formation, while the
more severe, convulsive levels also involve wide-
spread structures throughout the ventral fore-
brain'-2425_ \White and Prince? have characterised the
neural substrates of both subconvulsive and convul-
sive forms of SE. The major finding is that persistent
focal seizure activity induced by the electrical stimu-
lation of the amygdala or the olfactory cortex leads
to the development of one of four discrete levels of
self-sustaining SE. Each of these is consistently asso-
ciated with the activation of distinct anatomical
structures?. They showed that the amygdalo-hippoc-
ampal area is the focus of the most restrictive form
of limbic status, type I. The other, regarding more
expansive forms of types Il and Il status, also in-
volve the amygdalo-hippocampal area, but engage
more widely distributed structures throughout the
ventral forebrain. The anatomical relationships
among these structures suggest that the basal nu-
cleus of amygdala and the ventral hippocampal for-
mation should be important for the generation and
expression of these more widespread seizure states.
Their subsequent experiments were designed to iden-
tify the source or sources of the epileptiform activity
in type Il and lll status, with special emphasis on the
roles of the basal nucleus and the ventral hippoc-
ampal formation. The major findings are that the

basal nucleus of the amygdala is the primary epilep-
togenic focus of both seizure states, and that the
ventral hippocampus is additionally involved in the
development of sustained ictal discharges with fa-
cial and forelimb clonus?.

On the other hand, the increased metabolic rate
in the caudate putamen (striatum) may be a result of
neuronal circuits involved in seizure control. The cau-
date putamen represents the largest receiving area
of the basal ganglia. This region transforms motor
information coming from the cortex and conveys it
to output nuclei, e.g., the substantia nigra, the
entopeduncular nucleus and the globus pallidus?.

The increase in glucose metabolism within the
substantia nigra suggests that take part in an im-
portant circuit for the initiation and propagation of
seizure activity within the limbic system. Alternatively,
pathways interconnecting substantia nigra with the
limbic forebrain are responsible for its modulator
effect on the limbic seizure threshold. They may dif-
fusely innervate almost all parts of the limbic sys-
tem and thus render it capable of controlling the
neuronal activity and regulating the neuronal excit-
ability throughout the brain. Surprisingly, “C-2DG
autoradiographic monitoring of limbic seizures in
rats produced by focal application of picrotoxin or
penicillin into the entorhinal cortex shows that the
substantia nigra becomes activated relatively late in
the course of seizures?®, making the first proposal
rather unlikely. In fact, autoradiographic studies on
the functional anatomy of limbic seizures disclosed
that amygdala acts as an exit for propagation of lim-
bic seizures to extrapiramidal pathways, where the
paroxysmal activity can be relayed forward result-
ing in emergence of motor phenomena?®.

The pre-tectal area (PT) is interconnected with
superior colliculus and zona incerta®°. These structu-
res receive projections from the cortex and have
widespread projections that might influence seizure
activity. In the other hand, since the activation of
this structure (PT) also correlated with maximal con-
vulsive activity, it is possible that PT play a role in
seizure motor expression, in view of their numerous
descending projections to cerebellum™.

The importance of the thalamus in epileptic syn-
dromes obviously correlates with its extensive pro-
jection to cortical and other areas. Thalamic areas
are also able to reduce epileptiform activity if they
were stimulated electrically. In humans, electrical
stimulation of the centromedial, anterior or reticu-
lar nuclei reduced different types of epilepsy?'-32.
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In summary, our results suggest that these dif-

ferences may be particularly important for under-
standing triggering and spreading mechanisms un-
derlying epileptic activity during status epilepticus
and recurrent seizures.
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