Acessibilidade / Reportar erro

Estimation of genetic parameters and selection gains for sweet potato using Bayesian inference with a priori information

ABSTRACT.

The selection of superior sweet potato genotypes using Bayesian inference is an important strategy for genetic improvement. Sweet potatoes are of social and economic importance, being the material for ethanol production. The estimation of variance components and genetic parameters using Bayesian inference is more accurate than that using the frequently used statistical methodologies. This is because the former allows for using a priori knowledge from previous research. Therefore, the present study estimated genetic parameters and selection gains, predicted genetic values, and selected sweet potato genotypes using a Bayesian approach with a priori information. Root shape, soil insect resistance, and root and shoot productivity of 24 sweet potato genotypes were measured. Heritability, genotypic variation coefficient, residual variation coefficient, relative variation index, and selection gains direct, indirect and simultaneous were estimated, and the data were analyzed using Bayesian inference. Data from 11 experiments were used to obtain a priori information. Bayesian inference was a useful tool for decision-making, and significant genetic gains could be achieved with the selection of the evaluated genotypes. Root shape, soil insect resistance, commercial root productivity, and total root productivity showed higher heritability values. Clones UFVJM06, UFVJM40, UFVJM54, UFVJM09, and CAMBRAIA can be used as parents in future breeding programs.

Keywords:
Ipomoea batatas (L.) Lam; genetical enhancement; bayes' theorem; biometry; experimental statistics

Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, 87020-900 - Maringá PR/ Brasil, Tel.: (55 44) 3011-4253, Fax: (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaagron@uem.br