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ABSTRACT 
Finding the orthogonal (shortest) distance to an ellipsoid corresponds to the 
ellipsoidal height in Geodesy. Despite that the commonly used Earth reference 
systems, like WGS-84, are based on rotational ellipsoids, there have also been over 
the course of the years permanent scientific investigations undertaken into different 
aspects of the triaxial ellipsoid. Geodetic research has traditionally been motivated 
by the need to approximate closer and closer the physical reality. Several 
investigations have shown that the earth is approximated better by a triaxial 
ellipsoid rather than a rotational one Burša and Šima (1980). The problem of finding 
the shortest distance is encountered frequently in the Cartesian- Geodetic coordinate 
transformation, optimization problem, fitting ellipsoid, image processing, face 
recognition, computer games, and so on. We have chosen a triaxial ellipsoid for the 
reason that it possesess a general surface. Thus, the minimum distance from 
rotational ellipsoid and sphere is found with the same algorithm. This study deals 
with the computation of the shortest distance from a point to a triaxial ellipsoid. 
Keywords: Orthogonal (Shortest) Distance; Triaxial Ellipsoid; Coordinate 
Transformation; Fitting Ellipsoid. 
 

RESUMO 
Encontrar a distância orthogonal a um elipsóide corresponde a altura elipsoidal em 
Geodésia. Apesar de os sistemas de referência da Terra mais comumente usados, 
como WGS-84, são baseados em elipsóides rotacionais, tem tido por anos, 
investigações científicas permanentes feitas em diferentes aspectos do elipsóide 
triaxial. A pesquisa geodésica tem sido tradicionalmente motivada pela necessidade 
de uma aproximação cada vez mais próxima da realidade física. Diversas 
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investigações, tem mostrado que a Terra se aproxima mais de um elipsóide traxial 
ao invés de rotacional, Busa e Sima (1980). O problema de se encontrar a distância 
mais curta é encontrado frequentemente em transformações de coordenadas 
geodésicas cartesianas, problema de otimização, adequação de elipsóide, 
processamento de imagens, reconhecimento de faces, jogos de computador, etc. Nós 
escolhemos o elipsóide triaxial pela razão de que ele tem uma superfície geral. 
Assim, a distência mínima a um elipsóide rotacional e a esfera é encontrada com o 
mesmo algorítimo. Este trabalho realiza o cálculo da distância mais curta a partir de 
um ponto de um elipsóide triaxial. 
Palavreas-Chave: Distância Ortogonal; Elipsóide Triaxial; Transformação de 
Coordenadas. 
 
1. INTRODUCTION 
 Although ellipsoid (general or triaxial) equation Eq. (1) is quite simple and 
smooth but geodetic computations are quite difficult on the ellipsoid. The main 
reason for this difficulty is the lack of symmetry. Triaxial ellipsoid is generally not 
used in geodetic applications. Rotational ellipsoid (ellipsoid revolution, biaxial 
ellipsoid, spheroid) is frequently used in geodetic applications.  
 Today increasing GPS and satellite measurement precision will allow us to 
determine more realistic earth ellipsoid. Geodetic research has traditionally been 
motivated by the need to continually improve approximations of physical reality. 
 Geodetic research has traditionally been motivated by the need to approximate 
closer and closer the physical reality. Several investigations have shown that the 
earth is approximated better by a triaxial ellipsoid rather than a rotational one.  
 Furthermore, non-spherical celestial bodies such as planets, physical satellites, 
asteroids and comets can be modeled by a triaxial ellipsoid. Also,   the present day 
accuracy requirements and the modern computational capabilities push toward the 
study on the triaxial ellipsoid as a geometrical and a physical model in geodesy and 
related interdisciplinary sciences Panou et al (2013). 
 First, the basic definition of ellipsoid starts with giving mathematical 
equations to explain the concepts. To show how computations of the shortest 
distance to an ellipsoid, are carried out, we solve this problem separately: standard 
ellipsoid and the shifted-oriented ellipsoid. The efficacy of the new algorithms is 
demonstrated through simulations.  
 When we look at the literature on this subject we see the various studies: 
Eberly (2008), Feltens (2009) and Ligas (2012). For the solution Eberly (2008) 
gives a method that is based on sixth degree polynominal. He has benefited from the 
largest root of 6th degree polynomial. Feltens (2009) gives a vector-based iteration 
process for finding the point on the ellipsoid. Ligas (2012) claims his method turns 
out to be more accurate, faster and applicable than Feltens method. The presented 
paper tries to give the shortest distance calculation not only for the ellipsoid in 
standard position but also the shifted-oriented ellipsoid. We could not find enough 
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studies with numerical examples on this subject in the literature, especially for 
shifted-oriented ellipsoid. 
  Triaxial ellipsoid formulas are quite useful, because obtaining the rotational 
ellipsoid formula from triaxial ellipsoid formula is easy. For this, equatorial semi-
axis are accepted equal to each other (ax=ay =a) which is sufficient on triaxial 
ellipsoid formula. Similarly to obtain sphere formula from rotational ellipsoid 
formula it is sufficient to take as (a = b= R) Bektas (2009). 
 
1.1 Ellipsoid 
 An ellipsoid is a closed quadric surface that is analogue of an ellipse (see 
Figure1). Ellipsoid has three different axes (ax>ay>b). Mathematical literature often 
uses “ellipsoid” in place of “Triaxial ellipsoid or general ellipsoid”. Scientific 
literatura (particularly geodesy) often uses “ellipsoid” in place of “biaxial ellipsoid, 
rotational ellipsoid or ellipsoid revolution”. Older literature uses ‘spheroid’ in place 
of rotational ellipsoid. The standard equation of an ellipsoid centered at the origin of 
a cartesian coordinate system and aligned with the axes is given below. 
(http://en.wikipedia.org/wiki/Ellipsoid). 
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Figure 1 - The shortest distance on triaxial ellipsoid (standard position) 
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2. FINDING THE POINT ON THE ELLIPSOID 
 It can be proved that the shortest distance is along the surface normal. The first 
step is to find the projection of an external point denoted as PG(xG, yG,,zG )  as shown 
in Figure1 onto this ellipsoid along the normal to this surface i.e. point PE  (xE, 
yE,,zE) Feltens (2009),  Ligas (2012).  PG (xG, yG,,zG ) is a point on the earth surface. 
This section is handled under two headings: first, the shortest distance from the 
standard ellipsoid, second, the shortest distance from the shifted-oriented ellipsoid. 
 
2.1. The Shortest Distance from the Standard Ellipsoid 
 In this section, we assume that the ellipsoid is in standard position, in other 
words its axis is aligned and centered at the origin (Figure 1).  We will discuss the 
other ellipsoid under the next title. The following definitions will be used. 
 ax = equatorial semimajor axis of the ellipse   
 ay = equatorial semiminor axis of the ellipse   
 b = polar semi-minor axis of the ellipse  
 λ = geodetic longitude  
 ϕ = geodetic latitude  
 h = PG PE : ellipsoid height : the shortest distance 
 Feltens (2009) gives a vector-based iteration process for finding the point on 
the ellipsoid. Ligas (2012) claims his methods turn out to be more accurate, faster 
and applicable. Ligas’ Method is based on solving nonlinear system of equation. 
Ligas’ Method is as follows: 
 In accordance with Figure1 a collinearity condition can be written between PE 
and PG 
 The first stage begins with constructing two collinear vectors: a vector normal 
(n) to the ellipsoid (obtained from the gradient operator of a triaxial ellipsoid) in the 
point PE that may be expressed as (seen in Figure 1): 

n = [n1, n2, n3] = 
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 And a vector (h), the shortest distance, connecting points PG and PE, Figure 1: 
 

h = [h1, h2, h3] = [xE − xG, yE − yG, zE − zG]   (6) 
 
 From the essentials of vector calculus, it is known that coordinates of collinear 
vectors are proportional with the constant factor k, thus, we may write: 
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 From the above Eq. (8) Ligas wrote the below given three equations: 
 

f1 = (xE − xG) F. yE -(yE − yG) E. xE        (9.a) 
f2 = (xE − xG) G. zE -(zE − zG) E. xE      (9.b) 
f3 = (yE− yG) G.  zE-(zE − zG) F. yE    (9.c) 

 But only two of them are necessary to set a single variant of a system of 
nonlinear equations to be solved. In addition, the coordinates of PE must satisfy the 
equation of the triaxial ellipsoid i.e. 
 

 f4 =E.xE
2 + F.yE

2 + G.zE
2 – 1          (9.d) 

 
 From Eqs(9.a),(9. b) and (9.c) three pairs of  equations are obtained which 
together with fixed one Eq.(9.d) produce three variants of the system of equations to 
be solved in order to obtain the solution for PE. As a result, it is established three 
nonlinear sytems of equation: 
 Case.1:Eqs.(9.a),(9. b) and (9.d) 
 Case.2:Eqs.(9.a),(9. c) and (9.d) 
 Case.3:Eqs.(9.b),(9. c) and (9.d) 
 Ligas (2012) has been doing research on three different nonlinear system of 
equation in terms of run-time and the number of iterations. But in our opinion it is 
pointless. It is not possible to say one of the systems will yield better results than the 
others. The distinctions between the results of different systems are actually 
meaningless. The distinctions completely arise from rounding errors. Because only 
two of the three equations ((9.a), (9. b) and (9.c)) are independent. Hence we can 
choose any two of these three equations. For example, Case.1 is chosen and these 
three equations are linearized by Taylor series expansion and the system of 
equations is solved in order to obtain the solution for XE = [xE , yE , zE ]. 
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 The initial guesses for the point on the ellipsoid PE were chosen the same as in 
Feltens (2009), namely:  
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 For the solution of nonlinear system (9.a,9.b,9.d) to obtain the value for XE = 
[xE , yE , zE]  is necessary the calculus of the Jacobi’s Matrix 

[ ] 3,2,1  ;3,2,1, === kijA ik , the vector f, calculated  in equations 

(11.a,11.b,11.c).  
T he entries may be written as follows  
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 Replacing   xG ,  yG , zG     for respectively   x , y , z in the equations (9.a-c) , we 
find: 
 

f1 = (xo-x).F.yo-(yo-y).E.xo    (11.a) 
f2 = (xo-x).G.zo-(zo-z).E.xo    (11.b) 
f3 = E.xo
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2 – 1    (11.c) 
 
 The elements of matix A find calculated from the partial derivates: 
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 A δEi + f =0        (13) 
 

 Can be solved very easily in MATLAB 
 

 δEi = - A/ f         (14) 
 

 or classically 
 

δEi = - A-1.f         (15) 
 

 Thus an iterative solution scheme may be implemented by: 
 

XEi+1= XEi + δEi       (16) 
 
 If δEi is less than threshold, the iteration is stopped. After the first step is 
accomplished, finding PE on the ellipsoid, and  having coordinates of  PE , the 
shortest distance PG PE,= h  may easily be computed as: 
 

222 )()()()().( GEGEGEEGE zzyyxxzsignzzsignh −−+−−= (17) 

 
 The following link can be used for the shortest distance and projection 
coordinates on triaxial ellipsoid Bektas (2014). 
http://www.mathworks.com/matlabcentral/fileexchange/46261-the-shortest-
distance-from-a-point-to-ellipsoid. 
 
2.2. The shortest distance from the shifted-oriented ellipsoid 
 In general, for shifted-oriented ellipsoid as in (Figure 2), the data point PG(XG, 
YG,,ZG )    can be rotated and translated to axis-aligned ellipsoid centered at the 
origin and the distances can be calculated in that system. For this conversion we 
utilize performed as follows by making use of ellipsoid's center coordinates 
(Xo,Yo,Zo) and the rotation angles (ε, ψ, ω) , in accordance with Figure 2 
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Figure 2 - Shifted - oriented ellipsoid 

 
 

 The shortest distance ( h ) calculation is made of the new converted 
coordinates PG(xG, yG,zG)    in standard position with the above procedure and  the 
coordinates of  PE  (xE, yE,,zE) in standard position are found. To find the true 
coordinates of PE(XE, YE, ZE)  we need to make a transformation as below: 
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 Here, R is 3D rotational matrix 
 

 
 
3. Obtaining Ellipsoid Parameters from Conic Equation  
 Generally an ellipsoid is defined with 9 parameters. These parameters are; 3 
coordinates of centre (Xo,Yo,Zo), 3 semi-axes (ax,ay,b) and 3 rotational angles (ε, ψ, 
ω) which represent rotations around x-,y- and z- axes respectively as shown  in 
Figure2. These angles control the orientation of the ellipsoid. 
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 If we know the conic equation, ellipsoid parameters can be calculated. Here is 
a conic equation 
 

A x2 + B y2 + C z2 + 2D xy +2E xz + 2F yz + 2G x + 2H y + 2I z - 1 = 0    (21) 
 

 Necessary conditions for  this  problem to  have  a  unique  solution  are  that  
n > = 9, (n: denotes the number of data point cartesian coordinates(x,y,z)) and the 
data points lie in general position (e.g., do not all lie is an elliptic plane).Throughout 
this paper, we assume that these conditions are satisfied. v = [ A  B  C  D  E  F  G  H  
I ]T unknown conic parameters.  
 It is solved easily in the Least Square (LS) sense by MATLAB as below: 
 

v= [ x.^2   y. .̂
2   z.^2   2*x.* y   2*x.*z    2*y.*z   2*x    2*y   2*z  ]     ones(n)  (22) 

 
 If n=9 the solution is named exact solution. All data points are satisfy Eq. (21). 
 If n>9 all data points do not satisfy Eq.(21). The solution named is algebraic 
ellipsoid fitting.  
 In theory, the conditions that ensure a quadratic surface to be an ellipsoid have 
been well investigated and explicitly stated in analytic geometry textbooks. Since an 
ellipsoid can be degenerated into other kinds of elliptic quadrics, such as an elliptic 
paraboloid. Therefore a proper constraint must be added by Li and Griffiths (2004) 
gives the following definitions: 
 

i=A+B+C       (23) 
 

j=AB+BC+AC-F2-E2-D2       (24) 
 
 However 4j-i2 > 0 is just a sufficient condition to guarantee that an equation of 
second degree in three variables represent an ellipsoid, but it is not neccesary. In this 
paper, we assume that these conditions are satisfied. 
 After conical equation Eq. (21) is solved in the LS sense by Eq. (22), this 
section we determine the center, semi-axis and rotation angles of the ellipsoid using 
an algorithm from Yury Petrov's Ellipsoid Fit Method Petrov (2009). MATLAB 
script the following link http://www.mathworks.com/ matlabcentral/ fileexchange/ 
24693-ellipsoid-fit. 
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 The solution of the above equation system which is established with conic 
coefficients gives us the coordinates of ellipsoid’s center (Xo,Yo,Zo). 
 In order to find of semi-axis (ax,ay,b) and rotation angles (ε, ψ, ω) of the 
ellipsoid, we use the following  M and  T  matrix, 
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 Rotation matrix R is obtained as follows, 
 

R = T.M.TT                                                    (26a) 
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 Eigenvalues and eigenvectors of this matrix S can be easily calculated whit the 
following MATLAB command, 
 

[evecs, evals]= eig (S )         (29) 
 

evals : Eigenvalues of  S = [λ1   λ2   λ3 ]T 
 Let’s assume  λ1 , λ2 and  λ3   are  the eigenvalues of the matrix S, in 
descending order. 
 Semi-axes of ellipsoid (ax,ay,b) are obtained from the eigenvalues of  S as 
below; 
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ax = 1/1 λ
 ay = 2/1 λ

 b= 3/1 λ
    (30) 

 
evecs : Eigenvectors of  S  give us  R - rotatiton matrix as in  Eq.(20) 
 
 The rotation angles (ε, ψ, ω)  are obtained from the R matrix as follows 
 

ψ = arc sin (R31)       (31.a) 
ε  = arc tan (-R32/R33)      (31.b) 
ω = arc tan ( -R21/R11)       (31.c) 

 
3.1 Numeric Example-1 (for standard ellipsoid) 
 In order to demonstrate the validity of the shortest distance algorithms 
presented above, a numerical example is given. The algorithm was implemented in 
MATLAB. The numerical computations in the triaxial case were carried out using 
Earth’s geometrical parameters ax= 6378388.0000m,   ay = 6378318.0000m and   b= 
6356911.9461m. 
 The following link can be used for shortest distance from a point to triaxial 
ellipsoid http://www.mathworks.com/matlabcentral/fileexchange/46261-the-
shortest-distance-from-a-point-to-ellipsoid. 
 Given PG point Cartesian coordinates  
xG = 3909863.9271m , yG =3909778.1230 m  ,  zG = 3170932.5016m.  Finding 
the shortest distance to triaxial ellipsoid. 
 For this, we must firstly find PE point Cartesian coordinates. The initial 
guesses for the PE point on the ellipsoid are determined according to Eq.(10) 
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 Finding PE   point on the ellipsoid from PG point iteratively from Eqs.(12-16) ; 
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   i        Xei                         Yei                  Zei                   δxi           δyi              δzi 
1  3912539.2956   3912410.4953  3162418.4019  -3283.630 -3240.634   8017.501 
2  3909255.6655  3909169.8616  3170435.9034         -4.111         -4.111        -3.402 
3  3909251.5547  3909165.7506 3170432.5016          -0.000          -0.000       -0.000 
 
xE = 3909251.5547m     yE =3909165.7506m     zE =3170432.5016m     
 
 The shortest distance PG PE,= h may easily be computed as 
 

222 )()()()().( GEGEGEEGE zzyyxxzsignzzsignh −−+−−=  

 
h = 1000.000m. 
 
3.2 Numeric Example-2(for shifted-oriented ellipsoid) 
 12 triplets (x,y,z) cartesian coordinates are given below.  
 Here are data points coordinates:  
 

x:[  7      7      9      9    11    11      8      8    10    10    12    12 ] 
y:[22    19    23    19    24    20    21    17    22    18    23    19 ] 
z:[31    28    31    27    29    26    32    29    32    28    31    28 ] 

 
 a) Find the conic equation and the ellipsoid parameter; 
 b) Given PG point cartesian coordinates PG (XG = 7 , YG =22  , ZG =  31), find 
PE point  cartesian coordinates and the shortest distance from the ellipsoid. 
 
 Solution 

a) The conical coefficents  in the LS sense from Eq.(22) is, 
 v =  [-0.0006   -0.0008   -0.0010    0.0005   -0.0005    0.0003    0.0092    
0.0050    0.0278] 
 We determine the center, semi-axis and rotation angles of the ellipsoid using 
an algorithm from Yury Petrov's ellipsoid fit method. 
 The result of ellipsoid parameter is shown in Table 1: 
 

Table 1 - The result of ellipsoid parameter 
Center of Coordinates Semi-axes Rotate angles 

(degree) 
Xo Yo Zo ax ay b ε ψ ω 

10.3837 20.9653 29.0070 7.4676 3.1643 2.0147 47.98 18.68 28.21 
 
b)  PG (XG = 7 , YG =22  , ZG =  31) 
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 R- Rotational matrix from Eq.(20) 
 

R =

















−
−

6341.07038.03203.0

5534.07024.04477.0

0.54010.1067-     83480   .

 
 

 The data point coordinates PG(xG, yG,zG)    (oriented-shifted to ellipsoid centre) 
 

















−
−
−

=
















oG

oG

oG

G

G

G

ZZ

YY

XX

Rinv

z

y

x

)(  =

















−

−

136.1

490.2

000.3

 
 

 The projection coordinates PE (xE, yE,,zE)   
 The following link can be used for projection coordinates on triaxial ellipsoid 
http://www.mathworks.com/matlabcentral/fileexchange/46261-the-shortest-
distance-from-a-point-to-ellipsoid 
 

















E

E

E

z

y

x

 =

















1.039-

2.399

  2.980-

 

 
The projection coordinates   PE (XE, YE,,ZE)  converted to XYZ system 
 

StandartTrue
















+
















=
















E

E

E

o

o

o

E

E

E

z

y

x

R

Z

Y

X

Z

Y

X

=

















991.30

891.21

079.7

 

 
The shortest (orthogonal) distance is found to be controlled as below. 
 

222 )()()()().( GEGEGEEGE ZZYYXXZsignZZsignh −−+−−= = -0.135 

 
222 )()()()().( GEGEGEEGE zzyyxxzsignzzsignh −−+−−= = -0.135 
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 Here, minus sign indicates that point PG remains in the ellipsoid 
 
4. CONCLUSION 
 In this study, we handled the computation of the shortest distance from a point 
to an ellipsoid. We have shown this in two separate cases (standard ellipsoid and 
shifted-oriented ellipsoid).  The problem of finding the shortest distance is 
encountered frequently in the Cartesian- Geodetic coordinate transformation, 
optimization problem, fitting ellipsoid, image processing, face recognition, 
computer games, and so on. In conclusion, the presented method may be considered 
as fast, accurate and reliable and may be successfully used in other areas. The 
presented algorithm can be applied easily for rotational ellipsoid and sphere and, 
also for other surface such as paraboloid, hyperboloid. 
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