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Abstract:  

The representation of the submerged relief is very importance in diverse areas of knowledge such 

as Projects to build or reassess port dimensions, installation of moles, ducts, marinas, bridges, 

tunnels, mineral prospecting, waterways, dredging, silting control of river and lakes, and others. 

The depths of the aquatic bodies, indispensable for the representation of those, are obtained 

through the bathymetric surveys. However, the result of a bathymetric sampling is a grid of points 

that, for itself, it is not capable of generating directly the Digital Model of Depth (DMD), being 

necessary the use of interpolators. Currently, there are more than 40 available scientific methods 

of interpolation, each one with its particularities and characteristics. This study has the objective 

to analise, comparing, the efficiency of Universal Kriging (UK) and of the Inverse Distance 

Weighted (IDW) in the computational representation of bathymetric surfaces, varying in a 

decreasing way the quantity of sample points. Through the results, we can be stated the superiority 

of the interpolator Universal Kriging in efficiency in creating DMD with basis in the bathymetric 

surveys data. 

Keywords:  Bathymetric surveys; Interpolators; Kriging; Inverse squared distance weighted; 

universal kriging. 

 

Resumo:  

A representação do relevo submerso é de essencial importância em diversas áreas do conhecimento 

como em projetos para construção ou reavaliação de dimensões portuárias, instalação de moles, 

dutos, marinas, pontes, túneis, prospecção mineral, cursos de água, dragagem, controle de 

sedimentos de rios e lagos e outros. As profundidades dos corpos aquáticos, indispensáveis para a 

representação destes, são obtidas através dos levantamentos batimétricos. No entanto, o produto 

resultante de uma batimetria é uma malha de pontos amostrais que, por si só, não é capaz de gerar 

diretamente o Modelo Digital de Profundidade (MDP), sendo necessário o uso de interpoladores. 

Até o momento existem mais de 40 métodos de interpolação disponíveis na literatura, cada um 

com suas particularidades e características. Este estudo teve como objetivo analisar, 
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comparativamente, a eficiência da Krigagem Universal (KU) e do Inverso Ponderado da Distância 

(IPD) na representação computacional de superfícies batimétricas, variando de forma decrescente 

a quantidade de pontos amostrais. Através dos resultados pode-se constatar a superioridade do 

interpolador Krigagem Universal quanto à eficiência em criar MDP com base nos dados de 

levantamentos batimétricos. 

Palavras-chaves: Levantamentos batimétricos; Interpoladores; Krigagem;Iinverso do quadrado 

da distância; Krigagem universal. 

 

 

1.Introduction 

 

 

Brazil has an extensive coast and the largest hydrographic net of the world, with rivers that stand 

out in depth, width and extension. This affirmation alone would justify any study related to the 

submerged floor. 

Since the early 19th century, navigators have tried to better understand the seafloor. At present, this 

study is necessary in portuary works, both in the construction and dredging of new ports; leasing 

of gas pipelines and transoceanic telephone cables; exploration of oil and other mineral resources; 

environmental preservation; research activities; follow-up of erosion or silting-up processes, and, 

especially, in navigation (Iho 2005; Sánchez 2010).  

For analysis, preparation and introduction procedures of these studies, the use of Digital Elevation 

Models (DEMs) is essential. These models consist of a computational mathematical representation 

of the distribution of a space phenomenon occurring within a region of the land surface (Felgueiras 

1998). 

DEMs allow from a simple three-dimensional visualization of the floor to more complex analyses, 

like volume calculations and generation of slope maps (Felgueiras 1998). 

The depths of water bodies, essential in the construction of DEMs of seafloor, are obtained through 

bathymetric surveys. In spite of the growing technological evolution, single-beam bathymetric 

survey is still the most used technique in the whole world (Iho 2005). This technique is carried out 

on board of vessels using single-beam echosounders for depth measurements at high sampling rate 

and GPS (Global Positioning System) receptors for differential planimetric positioning (Ferreira 

2015). The outcome is a mesh of three-dimensional points that, by itself, is not able to directly 

generate the imaged floor surface. To build a DEM that represents such morphology, it is necessary 

to employ interpolation techniques to estimate the depth value of non-sampled places (Camargo 

1998; Silveira 2014). 

Interpolators are mathematical functions used in the construction of continuous surfaces from a 

set of collected points. They are used for densification of a sample that does not cover the whole 

interest area. Interpolation techniques are based, more frequently, on the basic geography principle 

that near objects tend to be more correlated than distant ones (Ferreira 2015). 

Many are the interpolation methods found in the literature, each one with their peculiarities and 

characteristics. They are basically divided into deterministic and probabilistic interpolators (Santos 

2010). Both methods are based on the similarity of near points to create a spatially continuous 

surface. Deterministic models make estimations from mathematical functions. Probabilistic 
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models, besides mathematical functions, apply statistical methods, allowing besides creating 

spatially continuous surfaces, estimating the uncertainty of predictions (Ferreira 2015).  

Among the available interpolators, the Inverse Distance Weighted (IDW) deterministic 

interpolator and the kriging probabilistic interpolator stand out (Carvalho e Assad 2005; Silva et 

al. 2008).  

According Azpurua and Dos Ramos (2010), Meng et al. (2013) and Merwade et al. (2006) showed 

that Inverse Distance Weighting (IDW) to produce better results than geostatistical methods. 

Conversely, Bello–Pineda and Hernández–Stefanoni (2007) showed that the kriging method was 

better than IDW for mapping the bathymetry of the Yucatan submerged platform (Curtarelli et al. 

2015).  

In inverse distance weighted, maximum and minimum interpolated values are within the range of 

the sampling points (Ferreira 2015). This method determines values for not sampled points using 

a weighted linear combination of a set of sampled points. The weight is a function of the inverse 

of the distance raised to any mathematical exponent (Landim 2000; Watson 1985). This method is 

easy to implement, with few decisions to take regarding the model parameters. However, this 

interpolator is sensitive to clusters and to the presence of outliers (Ferreira 2015). 

Kriging is an interpolator that can be exact or smoothed depending on the model, associated to 

prediction error analysis. To apply kriging assumptions must be followed (Ferreira 2015). 

The main difference between kriging and other interpolation methods is in the way that weighting 

is attributed to the different samples. In kriging, weights are determined from a space analysis 

based on semivariogram. In addition, kriging normally provides unbiased and minimal variance 

of estimates. A great advantage of kriging over inverse distance weighted and other deterministic 

methods is easy production of prediction maps, like prediction errors and probabilities, in other 

words, kriging supplies the precision associated to each estimate (Vieira 2000). A disadvantage is 

the necessity of a series of decision making on data modulation, tendencies, adjustment of 

semivariograms and choice of neighborhood size. Thus, prior to interpolation, kriging requires a 

detailed geostatistical analysis of the studied phenomenon. 

In spite of the vast use of these interpolators, many divergences exist on their choice and use. 

Studies by Kravchenco and Bullock (2003), demonstrated that kriging performs a more precise 

description of the spatial structure of the studied phenomenon. However, the inverse distance 

weighted interpolator is simpler to apply and demands less time. 

Better results for kriging, when compared with the inverse distance weighted method were also 

noted by Tabios and Salas (1985), Laslett et al. (1987) and Warrick et al. (1988). In contrast, 

Kanegae Júnior et al. (2006), Wollenhaupt et al. (1994) and Gotway and Hartford (1996) 

demonstrated that inverse distance weighted is more efficient than kriging. Silva et al. (2008) and 

Souza et al.  (2010) did not find great differences while comparing these methods. 

Such divergences can be directly associated with the amount of sampling points. In agreement 

with Burrough apud Camargo (1998) when data are abundant, most interpolation methods produce 

basically identical results. Conversely, when data is scattered as in topobathymetric surveys, 

deterministic methods have limitations in the representation of spatial variability. 

Therefore, the aim of the present study was to compare the efficiency of kriging and inverse 

distance weighted in the computational representation of bathymetric surfaces, decreasingly 

varying the amount of sampling points.  

The purpose of this article is to make a comparison on the efficiency of Universal Kriging (KU) 

and the Weighted Inverse of Distance (IPD) in the computational representation of bathymetric 

surfaces. 
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1.1 Inverse Distance Weighted (IDW) 

 

 
The inverse distance weighted determines the values for not sampled places using a weighted 

linear combination of a set of sampled points. The weight is a function of inverse distance raised 

to any mathematical exponent (Landim 2000; Watson 1985). As a result, as distance increases the 

weights decrease; the decrease gets more intense, with higher exponents. The exponent value can 

be chosen by minimizing root mean square deviation (RMSD), obtained from cross validation 

(Ferreira 2015). Inverse distance weighted is calculated by the following Equation 1 described by 

Ferreira (2015): 
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where: Ẑ  is the estimated value for place l0; n is the number of measured values, ( )iZ l , involved 

in the prediction; 𝑝(𝑑𝑖) =
1

𝑑𝑖
𝑃𝑜𝑡 is the weight attributed to observation i (inverse distance function); 

and Pot is the mathematical exponent. 

Souza (2003) affirmed that the algorithm of the inverse distance weighted is what better represents 

the floor surface for generation of the digital elevation model (DEM), as it has the characteristic 

of softening the study surface.  

Another important characteristic of this method is that it allows the handling of dimension 

parameters of the search neighborhood, the number of neighbors to be processed in the calculation 

and the exponent to be employed in the distance weighted.  

According to Landim (2000), with this method, the results are variable, from highly biased to in 

favor of points nearest to results where weight is practically the same for all near points. According 

to this same author, the exponent has the following effects on the estimated results: low exponents 

(0-2) emphasize local anomalies; whereas high exponents (3-5) soften local anomalies. Higher or 

equal exponents to 10 result in even estimates. 

 

 

1.2 Kriging 

 

 
Geostatistics is based on the theory of regionalized variables. Such theory assumes that the studied 

phenomenon is stationary (Vieira 2000; Santos 2010). Geostatistical inference is based on the 

assumption of three hypotheses of stationarity: first and second order stationarity and 

semivariogram. First-order stationarity, according to Babak and Deutsch (2009) is that in the mean 

is constant in every area studied. According to Banerjee et al. (2015) second order stationarity is a 

less restrictive condition and exists if the mean and variance of the stochastic process are 

independent of location and covariance exists and is dependent only on distance h. The intrinsic 

hypothesis is the most used because it is less restrictive (Chilès & Delfiner 2012, Siqueira et al. 

2010; Lark 2012), this means that it only requires the existence and stationarity of the 

semivariogram without any restriction regarding the existence of variance Finite (Vieira 2000).  

For geostatistical studies, second order stationarity is required (Guimarães 2004).  
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However, according to Santos (2010), such hypothesis cannot satisfy certain phenomena; in such 

cases, a less restrictive hypothesis can be used, the intrinsic hypothesis or semivariogram 

stationarity. 

Intrinsic hypothesis assumes that Z (l) exists and does not depend on location l, and that for every 

Δd, the difference variance [Z (l + Δd) – Z (l)] exists and does not depend on location l, where Z 

(l) corresponds to an occurrence of the studied phenomenon at point l and Δd is the distance 

between the successive occurrences (Guimarães 2004; Santos 2010). 

The semivariogram is the most used tool in Geostatistics because it requires that only the intrinsic 

hypothesis is satisfied (Guimarães 2004). The experimental semivariogram was obtained from the 

calculation of semivariances ˆ( )Δd  according to Equation 2: 
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where N(Δd) is the number of pairs of Z(li) and Z(li+ Δd) values, separated by a distance Δd. It is 

expected that differences {[Z(li) - Z(li + Δd)]} decrease as Δd decreases, in other words, it is 

expected that nearest spatial observations have a more similar behavior between each other than 

more distant ones. Thus, it is expected that ˆ( )Δd  increases with distance (Camargo 1998).   

As it can be Analyzed in equation (2), in the construction of the semivariogram, all possible pairs 

of data are examined. If distance Δd between two points is null, the semivariance will also be. 

When distance Δd is small, the points to be compared are very similar and, very correlated, soon 

the semivariance value is reduced (Ferreira 2015). The semivariogram graphic representation is 

shown according Figure 1, where the following parameters are identified:  

Range: distance within which samples present themselves spatially correlated; 

Sill: semivariogram value corresponding to its reach. From this point, it is considered that there is 

no more space dependence between samples; and, 

Nugget: ideally, γ(0) = 0. However, for most of the studied phenomena there is a discontinuity of 

the semivariogram for smaller distances than the least distance between samples, then, γ(0) ≠ 0. In 

agreement with Camargo (1998) a part of this discontinuity can be attributed to measurement 

errors, but it is impossible to quantify whether the largest contribution comes from measurement 

errors or from small-scale variation unnoticed by the sampling. 

 

 
Figure 1: Representation of semivariogram’s parameters. 

Source: Adapted from Silveira (2014). 

When the semivariogram presents identical behavior for all directions it is isotropic; otherwise, it 
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is anisotropic. If anisotropy is detected, it must be corrected through linear transformations; since 

it prevents the existence of stationarity, condition necessary for accuracy in analysis and estimates 

for the area in study (Vieira 2000; Santos 2011). 

After obtaining the experimental semivariogram, it is possible to adjust it through theoretical 

models (Santos 2011). It is important that the adjusted model represents the trend of ˆ( )Δd  in 

relation to Δd. Thus, estimates obtained from kriging will be more accurate and, consequently 

more reliable (Camargo 1998). The adjustment of the theoretical semivariogram is a very 

important phase, and must not be carried out automatically, since all the necessary parameters to 

apply kriging depend on the adjusted semivariogram model.  

In the literature it is possible to find several isotropic models; these contemplate semivariograms 

with and without sill. Among the models without sill, the exponent model is quoted; while, among 

those with sill (the most common), the exponential, spherical and Gaussian models can be 

mentioned (Vieira 2000; Santos 2011).  

Models with sill are known in Geostatistics as transitive models. Some of these models reach the 

sill asymptotically. For such models, the reach is randomly defined as the corresponding distance 

at 95% of the sill. Models without sill, as the name suggests, do not reach the sill; in other words, 

they keep on increasing as the distance increases. These models are used to represent phenomena 

that have infinite scattering capacity (Camargo 1998; Vieira 2000). 

The main difference between kriging and other interpolation methods is in the way that weights 

(pi) are attributed to different samples. In kriging, weights are determined from a spatial analysis 

based on the experimental semivariogram. In addition, kriging supplies, on average, unbiased 

estimates and minimum variance. Another interesting characteristic of kriging is that it allows the 

calculation of the estimate variance; in other words, kriging supplies accuracy associated to each 

prediction (Camargo 1998; Vieira 2000). 

According to Santos (2011) if trend is detected in the data, it is necessary to use universal kriging. 

In this method, trend removal is done by an adjustment of low degree polynomials. Then, the 

remaining analytical procedure becomes an analysis of residues. Universal kriging was proposed 

by Journel and Matheron to resolve a problem presented by the French National Institute of 

Geographic (IGN), related to the mapping of an underwater surface of evident inclination (Landim 

et al. 2002).  

 

 

2.Materials and methods 

 

 

The data used in the present study were collected in December of 2010 in a bathymetric survey of 

one of the main dammings of the Sao Bartolomeu stream located at the Federal University of 

Viçosa (UFV) in Viçosa city (MG, Brazil). The studied area has approximately 8800 m², 150 m 

length and 66 m width.  

At collection, a single-beam echobathymeter and a couple of RTK (Real Team Kinematic) GPS 

receptors were used. After collection, data were processed in the Hypack 2010 software producing 

a file with 1414 points containing planimetric coordinates and respective depths according Figure 

2. After statistical analysis of data, as recommended by Ferreira (2010), it was concluded that the 

survey accuracy in question is in agreement with the quality standards stipulated by DHN (Office 

of Hydrography and Navigation) and with the IHO (International Hydrographic Organization).  



499                                                                                                                                In bathymetric... 

 

Bull. Geod. Sci, Articles section, Curitiba, v. 23, n°3, p.493 - 508, Jul - Sept, 2017. 

 
Figure 2: Location of sampled points for GRID1 (a), GRID2 (b) and GRID3 (c). 

 

In order to reach the goals, the original file, containing 1414 points, here denominated GRID1, 

was randomly divided into two other files, GRID2 (Figure 2, center), containing 706 points, and 

GRID3 (Figure 2, right), containing 359 points.  Kriging and Inverse distance weighted were 

applied to GRIDS 1, 2 and 3, aiming to compare the efficiency of both interpolators in presence 

of many and few sampling points. 

Firstly, supervised Kriging was applied, thus, depth data were submitted to an exploratory analysis. 

Basically, this type of analysis is based on construction and graphic interpretation, calculations 

and statistical interpretation. Such analysis is a very important procedure, as it allows detecting the 

existence of outliers and/or trends that may affect interpolation (Guimarães, 2004; Vilela, 2004).  

In this study, exploratory analysis consisted in obtaining trend graphs, mean, variance, standard 

deviation, variation coefficient (CV), maximum value, minimum value, asymmetry, kurtosis 

estimation and outliers detection tests. 

Subsequently, geostatistical analysis was carried out to verify the existence and, in this case, to 

quantify the degree of spatial dependence of the attribute in study, from the adjustment of the 

theoretical models to experimental semivariograms. 

Semivariograms were also built for directions: N-S (0°), E- W (90°), NE-SW (45°) and SE-NW 

(135º). After estimation of ˆ( )Δd , the obtained spatial structures were analyzed; theoretical 

semivariogram models which better conformed to the experimental semivariograms were built 

from these structures and from knowledge of the phenomenon in study. 

When presence of spatial dependence was noted between data, inferences were carried out for 

kriging for not sampled places from the measured points, according to equation 3 (Camargo 1998; 

Vieira 2000; Ferreira 2015).  
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where: Ẑ  is the depth value estimated for location l0;  n is the number of measured values, ( )iZ l , 

involved in the estimate; ip  are weights associated to the measured values.  

For interpolation using inverse distance weighted, exponents were tested adopting the one which 

presented better results. A minimum of 10 and maximum of 15 sampled nearest neighboring points 
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were used. For kriging, only points within the range of reach of the spatial dependence obtained 

by each attribute were considered. 

In this study, evaluation of the performance of inverse distance weighting and kriging interpolators 

was carried out by cross validation, considering the estimates of the root-mean-square deviation 

(RMSD), mean error (ME), coefficient of determination (
2R ) and simple linear regression 

parameters between observed and predicted values, angular (a) and linear coefficient (b).  

According to Santos (2011), RMSD reduces if the model adopted for the theoretical 

semivariogram is well chosen. In this case RMSD tends to be the same as the square root of the 

kriging variance. Likewise, a mean discrepancy close to zero is expected, indicating accuracy in 

the estimation. 
2R  will be best when it is the same as the unit, the same occurs for the angular 

coefficient (a). However, the linear coefficient (b) will be best when null. In agreement with 

Morillo Barragán et al. (2002) the RMSD between predicted and observed depths, in addition to 

the ME are given, respectively, by the following Equations 4 and 5. 
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where: PRED

iZ  and OBS

iZ  respectively correspond to predicted and observed depths; n corresponds to 

the number of observed values and predicted correspondences. 

 

 

3 Results and discussion 

 

Results of the exploratory data analysis can be verified according Table 1. 

 

Table 1: Estimates of descriptive statistics on Depth of São Bartolomeu stream 

 GRID1 GRID2 GRID3 

Mean (m) -4.18 -4.17 -4.14 

Median (m) -4.46 -4.45 -4.46 

Variance (m²) 1.12 1.15 1.44 

Standard deviation (m) 1.06 1.07 1.20 

CV (%) 25.32 25.66 28.98 

Maximum (m) 0 0 0 

Minimum (m) -5.54 -5.53 -5.53 

Asymmetry 2.09 2.08 2.01 

Kurtosis 5.57 8.45 7.40 

It can be noticed that data present a mean variability, considering variance and sampling standard 

deviation values. Such variability is confirmed by the variation coefficient measurement, based on 
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limits proposed by Warrick and Nielsen (1980), who consider: low (CV ≤ 12%); average (12% < 

CV < 60%) and high variability (CV ≥ 60%). It is observed, by the variation coefficient, standard 

deviation and variance, a higher sampling variation in GRID3, comparatively to GRIDS 1 and 2, 

affecting prediction. 

Moreover, it is emphasized that right asymmetry presented by mean estimates, median and by the 

coefficient of asymmetry, highlight the form of damming of the Sao Bartolomeu Stream. The data 

showed the presence of some values distant from mean is noticed. They may be possible outliers; 

however, zero value depths correspond to the margin of a damming, not being, thus, atypical 

values. 

Based on the exploratory analysis, the trend graph was built, using Arcgis 10 software according 

Figure 3. 

 

 
Figure 3 – Graphics showing second order trend present in GRID1 (a), GRID2 (b) and GRID3 

(c). 

In all GRIDS, the presence of second order trend is noticed in depth data, seen in parabolas exposed 

in vertical plans, which is in agreement with authenticity, as it is a reservoir with intense 

inclination.  

When trend presence is noticed proper geostatistical interpolation is applied. In view of this data 

characteristic, universal kriging (UK) is chosen. According to Santos (2011), UK applies an 

adjustment of low-degree polynomials for trend removal, allowing working with residues. 

Aiming at verifying the existence of anisotropy, semivariograms were calculated for directions: 

N-S (0°), E-W (90°), SW-NE (45°) and NW-SE (135º), according Figure 4. It is worth mentioning 

that as universal kriging was chosen, the built semivariograms here correspond to residual 

semivariograms. 

 

Figure 4: Directional experimental semivariograms and adjusted direction models: N-S (0°), E-

W (90°), SW-NE (45°) and NW-SE (135º) for GRID1. 
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By analyzing the semivariograms of GRID1 shown in Figure 4, it can be noticed that the depth 

variable presents practically identical spatial dependence standards up to range, that is, it presents 

the same spatial variability in all directions. Thus, it is concluded that the phenomenon is isotropic. 

Hence, a single semivariogram representing all directions can be used, entitled omnidirectional 

semivariogram.  

Therefore, semivariogram adjustment was carried out using Arcgis 10 software. An 

omnidirectional semivariogram was obtained that represents the trend of ˆ( )Δd  in relation to Δd. 

The same analysis was carried out for GRIDS 2 and 3, where anisotropy presence was not detected.  

The chosen theoretical models for each GRID are summarized in Table 2.  

The theoretical model which better adjusted to an experimental GRID1semivariogram was the 

stable. In this model, it is necessary to define a parameter, which varies from 0 to 2, where the null 

value makes the stable model identical to the exponential model. If the parameter is defined as 2, 

the model becomes Gaussian. The parameter value of the stable model defined in this study was 

1.432227. 

Table 2: Estimates of the variogram analysis 

UK Model Nugget (m²) Sill (m²) Range (m) 

GRID1 Stable 0.000 0.520 38.388 

GRID2 Gaussian 0.017 0.390 23.570 

GRID3 Spherical 0.037 0.666 53.497 

 

The omnidirectional experimental semivariogram and the adjusted model can be seen according 

Figure 5 for three grids. 
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Figure 5: Omnidirectional experimental semivariogram and adjusted model for GRID1 (a), 

GRID2 (b) and GRID3 (c). 

 

After obtaining the semivariogram, universal kriging interpolation can be applied. Prior to 

interpolation, cross validation is carried out, allowing evaluating the performance of interpolators; 

however the outcomes will be presented throughout the text.  

As previously mentioned, universal kriging was used to estimate points in not sampled locations.  

For interpolation using inverse distance weighted, the number of neighbors to be used in the 

interpolation was set firstly. A minimum of 10 and maximum of 15 sampled nearest points was 

adopted. Subsequently, a study was carried out to define the value of the exponent used as weight. 

This value was chosen by analyzing several factors, such as the area characteristics and the RMSD 

value obtained in the cross validation, as suggested by Ferreira (2015). Exponents were tested 

varying from 1 to 5. Results are shown according Figure 6. 

 

Figure 6: Graphic representation of Exponent x RMSD analysis. 
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By analyzing Figure 6, the choice of higher exponents for both GRIDS becomes obvious; however 

it is necessary to be careful with such choice. As reported by Landim (2000), the exponent choice 

has the following effects on estimated results: low exponents point out local anomalies, whereas 

high exponents soften local anomalies. In other words, the exponent controls the importance of 

points around the estimated value, that is, higher exponents result in fewer distant point influences.  

It was noticed that lower exponents, besides pointing out local anomalies, provide a smoother 

surface, this fact is explained by higher weight given to most distant points. The highest exponent, 

value 5, despite providing a lower RMSD value, around 0.290, for GRID1, 0.428 for GRID2 and 

0.535 for the GRID 3, provides a more detailed surface; in other words, less soft. Such fact is due 

to higher emphasis given to the nearest points.  

In view of that, exponent value 2 was chosen, mainly due to the studied area characteristics along 

with the vast use of this exponent in the literature (Morillo Barragán et al., 2002; Silva et al., 2008; 

Souza et al., 2010). It is worth pointing out that when exponent value 2 is chosen, inverse distance 

weighted is then called inverse squared-distance weighted (ISDW). 

In this study the evaluation of the performance of ISDW and UK interpolators was carried out by 

cross validation. Results are shown according Table 3. 

Table 3: Presentation of main cross validation measures 

 

GRID1 – 1414 

points 

GRID2 – 706 

points 

GRID3 – 359 

points 

UK ISDW UK ISDW UK ISDW 

RMSD (m) 0.123 0.369 0.194 0.507 0.367 0.675 

ME (m) -0.002 0.061 0.003 0.092 0.008 0.154 

2R  0.986 0.903 0.966 0.821 0.902 0.772 

a (m) 0.995 0.911 0.976 0.884 0.985 0.784 

b (m) -0.018 -0.393 -0.108 -0.514 -0.067 -0.975 

 

When   analyzing Table 3, GRID by GRID, it can be noticed, through all adopted decision 

parameters, that UK favored higher accuracy, in both GRIDS, when compared to ISDW, fact 

justified by RMSD and ME values. In addition, according to Vieira (2000), simple linear 

regression between observed and predicted values must present 
2R  quite near the unit, as well as 

the regression coefficient "a" and intercept "b" quite near zero. For UK all three parameters were 

better estimated than in ISDW, which is an important result for the aim of the present work. 

Another important result is that UK carried out for GRID3 (fewer sampling points) compared with  

ISDW for GRID1 (higher number of sampling points) showed higher accuracy, fact justified by 

RMSD and ME values, showing that Kriging, in computational modeling of bathymetric surfaces, 

is more accurate than ISDW even in unfavorable situations. 

In practical terms, one of the reasons for building digital elevation models of water bodies is to 

subsequently calculate the volumes. Thus, volume calculation of the surveyed reservoir was 

carried out aiming at verifying the occurrence of significant differences.  Results are shown 

according Table 4. 
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Table 4: Calculated volumes for each interpolator and sampling grid 

 GRID1 GRID2 GRID3 

UK 30,318 m³ 30,155 m³ 31,118 m³ 

ISDW 32,689 m³ 33,203 m³ 33,933 m³ 

 

Difference of 2,371 m3 is noticed for GRID1, the difference is even higher for GRID2, around 

3,000 m3, yet for GRID3 the difference was approximately 2,800 m3. If we consider UK for GRID1 

as the most accurate interpolation, fact justified in Table 3, while applying UK in GRID2 and 

GRID3 the following discrepancies are found in the volume calculation, respectively: 163 m3 

(0.5%) and 800 m3 (2.6%). Whereas while applying ISDW in GRID2 and GRID3, still considering 

UK is for GRID1 as the most accurate interpolation, the following discrepancies are found in the 

volume calculation: respectively, 2,885 m3 (9.5%) and 3,615 m3 (11.9%). This is another fact that 

transmits the control of Geostatistics towards the deterministic method studied here.  

Since GRID1 presents more accuracy for both interpolators, the DEMs (Digital Elevation Model) 

produced from GRID1 for interpolation carried out by UK (a) and ISDW (b) are shown according 

Figure 7. 

 

 
Figure 7: Bathymetric depth DEM based on universal kriging using GRID1 (left map) and 

Depth bathymetric DEM based on ISDW using GRID1 (right map). 
 

 

Some differences are noticed by analyzing the DEMs produced by UK and ISDW. The surface 

produced by universal kriging, for both GRIDS, creates a more uniform floor with smoother 

outlines. Such result is mainly due to the fact that kriging is an accurate interpolator, which 

different from ISDW, estimates beyond maximum and minimum limits of sampled point values, 
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without a bias and with minimum variance. It is possible to notice that this interpolator models 

both regional trends and local anomalies, and is not sensitive to irregularly sampled or grouped 

data. A disadvantage of this interpolator is the mathematical complexity of its algorithm and 

necessary time for modeling the semivariogram. 

The DEM interpolated by ISDW for both GRIDS presented higher variability when compared with 

UK. It could also be noticed that ISDW suffers great influence from anomalous local values, 

besides being sensitive to grouped data, and in their presence, estimates biased values.  

 

 

4. Conclusions 

 

 

The construction of bathymetric surfaces is an important component in several studies. 

This study allowed verifying that the kriging interpolator presented better results in comparison to 

the inverse distance interpolator for this set of data; in scattered and abundant sample GRIDS. It 

was also verified, as it is standard in Surveying Engineering, that the volume calculation of the 

damming in study was more accurate when UK was applied in a scattered sample GRID, 

comparatively to the ISDW applied in abundant data. Another reason for the use of kriging is the 

possibility of generating DEM of uncertainties of the interpolation. 

In view of the present results, the application of Geostatistics is recommended in the modeling of 

bathymetric surfaces, with either scattered or abundant data.  

Considering kriging as superior in the construction of bathymetric surfaces, further studies are 

recommended to define the best sample GRID, in terms of cost and benefit using UK. 
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