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1. Introduction

Due to their excellent ability to boost the rate of chemical 
and biochemical reactions, enzymes have been widely used 
as catalysts in various fields, including but not limited to 
the textile industry, pharmaceutical industry, steal industry, 
animal feed, daily cosmetics, food industry, environmental 
governance and bioenergy utilization (Gurung et al., 2013; 
Jegannathan and Nielsen, 2013; Choi et al., 2015; Dwevedi, 
2016; Escamilla-Alvarado  et  al., 2017). Their extensive 
application in industrial production is demonstrated by 
a respectable averaged annual growth rate of 4.6% over 
the past decades (Datta  et  al., 2013). The demand for 
proteases and lipases claims more than 70% share of the 
global enzyme market, amounting to as much as 5 billion 
US dollars, and is predicted to increase to 17.5 billion 
US dollars by 2024 (Han  et  al., 2015; Mohamad  et  al., 
2015; Mojsov, 2016; Patel et al., 2016; Guerrand, 2017). 
The inherent characteristics of instability, low reusability 

and high cost are severe limitations and prevent enzymes 
from evolving into a cost-effective option (Minteer, 2017). 
The application of immobilization techniques could 
alleviate these disadvantages and therefore has emerged 
and developed gradually since the 1970s (Vaghari et al., 
2016; Bernal et al., 2018). Enzyme immobilization offers the 
advantage of maintaining and developing robust biocatalyst 
activity under harsh operational conditions for a long 
time (Landarani-Isfahani et al., 2015; Rueda et al., 2016). 
Aside from carrier-free immobilization and carrier‑bound 
immobilization as the main methods (Wang et al., 2015), 
adsorption (Klein  et  al., 2016; Nguyen and Kim, 2017), 
covalent attachment (Wu  et  al., 2015), crosslinking 
and encapsulation are also frequently used in enzyme 
immobilization (Bezerra et al., 2015; Majewski et al., 2017; 
Ma et al., 2018; Singh et al., 2019).
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We reviewed the application of enzyme immobilization 
by using MNPs over the past five years and found 
that organic polymer‑functionalized and mesoporous 
material‑functionalized MNPs are frequently used for 
enzyme immobilization (Table  1) (Bilal  et  al., 2018). 
Herein, we elaborate on applications that can improve the 
stability of enzymes and enhance their catalytic efficiency. 
Silica‑coated nanocomposites provide a core‑shell structure 
to preserve the properties of the enzyme, whereas organic 
materials prevent the accumulation of immobilized 
enzyme, and in mesoporous materials, organosilane is 
introduced into the mesoporous matrix to increase the 
loading capacity and to prevent leaching.

2.1. Mesoporous material-functionalized MNPs

The formation of functionalized silica coatings improves 
the chemical stability and biocompatibility of magnetic 
nanoparticle surfaces, providing outstanding supports 
by preventing nanoparticle aggregation in solution 
(Mahto et al., 2016; Gao et al., 2017a). In the application 
of immobilized enzymes, surface-modified nanomaterials 
promote particle dispersion and enhance antioxidant 
capacity, thus modulating the reaction features. In metal 
nanoparticles and metal magnetic nanoparticles, Fe3O4 is 
the most common material. In the methods of modification, 
organic molecule modification uses surfactant, a silylation 
coupling agent (3-aminopropyltriethoxysilane APTES), 
and an organic polymer, whereas inorganic modification 
applies silica core-shell particles (Mahto  et  al., 2016; 
Gkaniatsou et al., 2018) and mesoporous silica (Gao et al., 
2017a). The immobilization of mesoporous material-coated 
MNPs is shown in Figure 1.

Here, silica coating is a unique method because it helps 
form a silica shell on the surface of the magnetic core for 
the functionalization/modification of Fe3O4 nanoparticles 
(Cui  et  al., 2017, 2018a, b). The formation of the silica 
shell can protect the magnetic core from aggregation 
and oxidation, thereby improving its chemical stability. 
Additionally, it also enhances the characteristics of 

Aside from optimizing immobilization methods, the 
selection of suitable support materials is also vital in 
industrial production (Santos et al., 2015). These materials 
can input their specific properties upon immobilization, 
given that the properties of the supported enzyme are 
determined by both the enzyme and the support material 
(Bilal et al., 2018). For instance, magnetic nanoparticles 
(MNPs) are valued for their high surface area, large 
surface-area-to-volume ratio and easy separation under 
external magnetic fields (Liu et al., 2018; Shiri et al., 2018). 
Moreover, porous materials feature large pore diameters 
and outstanding carrying capacities (Sun  et  al., 2016; 
Abe et al., 2017, Cacicedo et al., 2019). Low cost, thermal 
resistance, high reusability and stability are the desired 
features of ideal support materials (Zdarta et al., 2018). Since 
the pore size of mesoporous materials can be mediated 
continuously from 2 nm to 50 nm, they are suitable and 
ideal materials for enzyme fixation (Baino et al., 2016).

In recent years, magnetic materials, mesoporous 
materials, and metal-organic materials have led to many 
beneficial changes in enzyme immobilization studies, 
which have the potential to advance their industrial 
production. This review provides an update on the research 
on enzyme immobilization by MNPs and the functionalized 
mesoporous materials SBA-15 and MCM-41 in the last five 
years and discusses the changes in enzyme properties 
and the application of immobilization support materials.

2. Magnetic nanoparticles

Bypassing the procedures of catalyst filtration or 
centrifugation after a finished reaction, magnetic separation 
is a practical approach to recycle magnetized catalysts 
(Shokouhimehr, 2015; Zhang  et  al., 2016). Magnetic 
materials are extensively used in the separation process 
after enzyme catalytic reactions because of their excellent 
adsorption to magnetic substances, which enhances 
their reusability and reduces the cost of immobilized 
enzymes (Vaghari  et  al., 2016; Zhao  et  al., 2019). 

Table 1. Enzyme immobilization on MNPs.

Immobilization 
Method

Support material Enzyme
Improved Enzyme 

Properties
Ref

Covalent Bond Fe3O4 nanoparticles Candida antarctica 
lipase B

Stability (Gkaniatsou et al., 
2018)

Covalent Bond Fe3O4 nanocomposites Lipase Hydrophilicity and 
biocompatibility

(Mahto et al., 
2016)

Crossing-linking Tannic-acid-templated magnetic 
mesoporous silica nanoparticles 
(TA-MMSNs)

NHase Yield (Gao et al., 2017a)

Crossing-linking Polydopamine (PDA)-functionalized 
magnetic nanoparticle

DNA catalytic Stability and 
reusability

(Yang et al., 2018)

Crossing-linking PAL-coated magnetic
nanoparticles

Phenylalanine 
ammonia-lyase 
(PAL)

Reproducibility (Ender et al., 
2016)

Crossing-linking Dendritic polymer-modified
nanoparticles

Lipase Yield (Li et al., 2018)
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hydrophilicity and biocompatibility of the material. During 
silica coating, Candida antarctica lipase B was adsorbed 
to MNPs modified by 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide and 1-hydroxy-2,5-pyrrolidinedione. 
After 10 min of reaction, HPD/ECD aqueous solutions had 
a strong activating effect on the carboxylic acid group of 
Candida antarctica lipase B at RT. Additionally, the amino 
groups were attached to the surface of Fe3O4 nanoparticles 
by covalent bonds. Thus, superparamagnetic materials and 
functionalized nanoparticles that remained dispersive were 
employed to immobilize the lipase under mild conditions. 
The enzyme maintained its stability throughout the process 
(Gkaniatsou et al., 2018).

Additionally, silicon dioxide shells protect nuclei from 
aggregation and oxidation, improving their chemical 
stability by increasing biocompatibility and hydrophilicity 
(Poorakbar  et  al., 2018). The changed optimum pH 
values after immobilization were mostly caused by 
the immobilization of magnetically mesoporous silica 
nanocomposites with polyaniline functionalized (Pani‑MS@
Fe3O4) by multipoint immobilization to ensure the stability 
of lipase molecules. Recent studies demonstrated that 
mesoporous silica-immobilized lipase modified with 
polyaniline showed high activity across a wide pH range 
and high temperature stability, which was attributed 
to the change in the optimal pH in Pani-MS@Fe3O4 by 
multipoint fixation facilitating the stabilization of lipase 
molecules by Fe3O4 nanocomposites (Mahto et al., 2016). 
Notably, the advantages of immobilized NHase included 
improvements in the loading capacity, ease of separation 
and recycling of materials (Gao et al., 2017b). Moreover, 
tannic acid‑modified magnetic mesoporous silica was 
crosslinked with the enzyme glutaraldehyde to form 
crosslinked nitrile hydratase aggregates, which were 
characterized by a high loading rate, easy separation and 
recovery of materials compared to those of the free enzyme 
(Gao et al., 2017a). Moreover, the activities of free NHase 
and tannic acid-templated magnetic mesoporous silica 
nanoparticle-immobilized NHase (CLNHAs@TA-MSNs) 
were highest at 30°C and 40°C, respectively. CLNHAs@
TA-MSNs had a higher optimum temperature than free 
NHase. The reason is that the active conformation of NHase 
molecules could be maintained at high temperatures 
through multipoint covalent bonds between NHase 
molecules and TA-MSNs, whereas the destruction of 
the conformation of CLNHAs@TA-MSNs required much 
more energy.

The large specific surface area, adjustable pore size 
and easy surface functionalization make mesoporous 
silica materials ideal carriers in catalytic reactions. 
Moreover, MNPs have potential application value in the 
field of magnetic separation due to their low toxic side 
effects and special magnetic properties. However, simple 
magnetic nanoparticles are prone to agglomeration. 
In future research, additional attention should be paid 
to the immobilization of MNPs in combination with 
mesoporous silica materials.

2.2. Organic polymer-functionalized MNPs

Compared with mesoporous silica-immobilized 
enzymes, organic polymer magnetic material-immobilized 
enzymes are widely used as lightweight materials due to 
their low density, structural diversity and easy processing 
(Figure  2). Generally, in situ modification and ectopic 
modification are the two methods used for modifying MNPs 
with organic polymers. During in situ modification, the 
organic polymer is added as a stabilizer to the precursor 
solution to form Fe3O4 nanoparticles, and the polymer 
coating is synthesized on the polymerized monomer. 
However, the repulsive force generated by the polymer 
coating tends to weaken the magnetic properties. Thus, 
the enzymes interact with the material via van der Waals 
interactions to prevent their aggregation and improve the 
stability and dispersion.

One study described the preparation of a mild and 
versatile immobilized enzyme reactor by applying 
DNA-directed immobilization (DDI) to anchor trypsin 
on polydopamine (PDA)-functionalized magnetic 
nanoparticles (MNPs). The reactor exhibited outstanding 
reusability and improved catalytic efficiency. Notably, the 
immobilized trypsin reactor maintained 55% of its initial 
activity even after 70 cycles of reaction at pH 9.0 and 
37°C. Its outstanding properties are mostly ascribed to 
immobilization by DDI, which is attached to the vector by 
a DNA splice that acts as a linkage between the enzyme 
and the vector. DNA, as a spacer molecule, allows the 
free use of the enzyme functional units to enhance the 
conformation of the enzyme. The functional units of the 
enzyme (e.g., active sites) are freely available to enhance 
its conformation, thereby boosting its activity and potency 
(Yang et al., 2018). Ferenc Ender et al. (2016), introduced 
a novel microfluidic device (Magne-Chip) containing 
microliter-volume reaction cells filled with PAL-coated 
magnetic nanoparticles (MNPs), which could be used as a 
novel efficient and flexible tool for the enzyme‑catalyzed 

Figure 1. Mesoporous material-functioned MNPs. Figure 2. Organic polymer-functioned MNPs.
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biotransformation of L-phenylalanine (L-1a) and five 
unnatural substrates (rac-1b–f) by phenylalanine 
ammonia‑lyase (PAL). The experimental results showed 
the excellent reproducibility of enzyme-catalyzed 
biotransformation in the chip and the high reusability 
of the enzyme layer during 14 hours of continuous 
measurement (>98% over 7 repetitive measurements 
with L-1a) (Ender  et  al., 2016). In this work, a novel 
melamine-glutaraldehyde dendrimer was first grafted 
onto amino-magnetic nanoparticles to facilitate the 
immobilization of lipase on the protein‑binding site. 
Dendritic polymer-modified nanoparticles were used to 
control the lipase conformation to enhance the potential 
of contact with the lipase catalytic center. The activity of 
immobilized lipase was approximately 58.0 times higher 
than that of BCL powder and 3.0 times higher than that of 
immobilized lipase from unmodified polymer. Moreover, 
the time required for the reaction was reduced from 
180 mins to 20 mins. However, due to the weak physical 
adsorption interaction between the enzyme and the carrier, 
enzyme leakage may occur in each batch of the reaction, 
resulting in increased costs for separation and purification 
of downstream products (Li et al., 2018).

Overall, the application of magnetic nanomaterial 
MNPs for enzyme immobilization has shown satisfactory 
performance. The protective effect of the MNP material on 
the enzyme increases the stability of the enzyme under 
acidic and thermal conditions, and the MNPs, as magnetic 
materials, provide better recycling performance. In addition, 
enzymes linked to these polymers by noncovalent or 
covalent bonds to produce biocatalysts can be used as 
homogeneous catalysts, and applying appropriate stimuli 
can result in high reusability of the immobilized enzyme 
(Singh et al., 2013; Shahrestani et al., 2016; Fletcher et al., 
2019; Suo et al., 2020).

3. Mesoporous materials

3.1. Functional group-modified SBA-15

SBA-15 mesoporous materials with tunable pore 
diameters (from 20 to 50 nm) can be synthesized for various 
applications (Meléndez-Ortiz  et  al., 2016). A chemical 
covalent bond is formed between the functional groups 
on the enzyme protein molecule and the reactive group on 
the mesoporous material, forming an immobilized product 
with a strong binding force to ensure the stability of the 
enzyme during the catalytic reaction (Gholamzadeh et al., 
2017; Yang et al., 2019). After the introduction of different 
organosilanes (amino, cyano, epoxy or mercapto) onto the 
surface or the pores of the mesoporous matrix, the presence 
of these functional groups generates many reaction sites 
for subsequent attachment of enzymes, thereby improving 
the loading capacity and preventing the leaching of the 
enzyme (Zhong et al., 2019). The procedure of enzyme 
immobilization on mesoporous materials via covalent 
bonds is illustrated in Figure 3.

SBA-15 materials have a high specific surface area, 
ordered structure and large pore volume, which provide 
high immobilization efficiency (Bhanja  et  al., 2017; 

Wongvitvitchot et al., 2019). Moreover, SBA-15 can provide 
pH protection, which is influenced by the pore size of the 
material (Lynch et al., 2016). In addition, SBA-15 can be 
optimized by postmodication, and when functionalized or 
modified SBA-15 is used for immobilizing enzymes, their 
thermal stability and pH sensitivity are further improved 
(Rios et al., 2016; Zhong et al., 2019). Immobilization of 
enzymes by SBA-15 after the introduction of a suitable 
bridging agent can also improve the enzyme stability and 
reusability as well as the pH and temperature tolerance 
(Xiang et al., 2018). In studies of enzyme immobilization 
with mesoporous materials as carriers, lipase accounts 
for a large fraction (Gholamzadeh et al., 2017). Based on 
production requirements, lipase immobilized with the 
mesoporous material SBA-15 is used to catalyze chemical 
reactions, including esterification and transesterification 
(Zhao et al., 2015; Gholamzadeh et al., 2017). Here, we 
summarized the recent progress on lipases immobilized 
with various support materials (Table 2).

3.1.1. Functionalized SBA-15 for lipase immobilization

Over the last 20 years, SBA-15 has been widely used 
for immobilizing lipase. In recent years, organically 
modified and ionic liquid-modified SBA-15 have shown 
satisfactory performance in enzyme immobilization 
(Abolghasemi et al., 2016; Kong et al., 2016; Yuan et al., 
2016). The immobilization of Candida antarctica lipase B 
(CALB) by using mesoporous SBA-15 resulted in improved 
enzymatic activity and stability. The thermal stability of 
CALB after immobilization greatly depends on its moisture 
content; when it reached 3.22%, and its thermal stability 
was significantly improved (Cai et al., 2016). Moreover, 
higher protein rigidity contributed to 4-12 times higher 
thermal stability of immobilized lipase at 60°C than that 
of free lipase (Živković et al., 2015).

As imidazole-based ionic liquids (ILs) boost enzyme 
bioactivity, the immobilization of CALB on a carrier 
(IL‑SBA-15) could be achieved by modifying the mesoporous 
silica SBA-15. The hydrophilic carrier promoted the enzyme 
activity because it retained the essential aqueous layer of 
lipase and hence prevented the impairment of the catalytic 
activity (Zhong et al., 2018). Moreover, recombinant Candida 
antarctica lipase B (LIPB) expressed in Pichia pastoris 
was immobilized in SBA-15 to produce the biocatalyst 
SBA-15-LIPB-GA via glutaraldehyde (GA) crosslinking. 
The biocatalyst showed excellent thermal and solvent 
stability. Hydrophobic interactions were probably the main 
driving force of the adsorption (Rios et al., 2018). Notably, 

Figure 3. Enzyme immobilization on mesoporous materials.
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Rios NS et al., have shown that the surface of SBA-15 can 
be treated with 3-amino-propyltriethoxysilane (APTES) to 
form SBA-15-APTES. After activation, incubation (at pH 10.2) 
and divinyl sulfone (DVS) treatment, the biocatalyst 
SBA‑15-APTES-DVS-LIPB can be obtained, which combines 
multipoint covalent bonds between the enzyme and its 
carrier at 50°C and pH 7.0; SBA-15-LIPB-GA was reused 
for five cycles, and retained 76.80% of its initial activity 
after the third cycle (Rios et al., 2016).

All these above studies indicated that lipase immobilized 
using the mesoporous material SBA-15 showed improved 
thermal stability and enzymatic bioactivity. In addition, 
the immobilization of lipase into the modified mesoporous 
material SBA-15 exhibited superior properties compared 
to unmodified mesoporous material in terms of improved 
thermal stability, activity and solvent stability of the 
immobilized lipase.

3.1.2. Functionalized SBA-15 for immobilization of other 
enzymes

In addition to their ability to be applied to the 
immobilization of lipases, SBA-15 mesoporous materials 
used in immobilizing other enzymes have also been 

reported. The conversion rates of aminobutyl-based laccase 
to naphthalene, phenanthrene and anthracene were 82%, 
73% and 55%, respectively, which is close to the conversion 
rate of free enzymes. However, laccase technology based on 
aminopropyl-modified SBA-15 led to satisfactory covalent 
immobilization. In addition, the aminopropyl-grafted 
laccase on SBA-15 exhibited the best reusability, and after 
4 cycles, it had a higher activity than the aminobutyl-based 
laccase after 4 cycles (Bautista  et  al., 2015). Moreover, 
the method of acetylcholinesterase (AChE) immobilized 
on the amino-functionalized SBA-15 mesoporous sieve 
NH2-SBA-15 was reported and applied to the determination 
of organophosphorus and carbamate pesticides. With 
regard to different immobilization techniques, we 
found that the adsorption-crosslinking technique was 
the best method. Specifically, the results indicated that 
AChE-NH2-SBA-15 had a high immobilization efficiency of 
95% (Rui et al., 2018). Escuin PC et al., also compared and 
analyzed the immobilization of polyphenol oxidase (PPO) 
by various mesoporous SBA-15 silica materials at different 
pH values. The results showed that the pore size and volume 
of the carrier were the main structural characteristics 
affecting PPO immobilization. When the pH value 
reached 4.0, the carrier achieved a maximum load of PPO 

Table 2. Enzyme immobilization on SBA-15 mesoporous materials.

Immobilization 
Method

Support material Enzyme
Improved Enzyme 

Properties
Ref

Cross-Linking Epoxy functionalized
SBA-15

Carbonic anhydrase Storage stability (Fei et al., 2016)

Cross-Linking Aminoy Functionalized
SBA-15

Carbonic anhydrase Storage stability (Fei et al., 2016)

Encapsulation Mesoporous Silica SBA-
15

Alkaline protease Enzyme Activity (Kumari et al., 2015)

Cross-linking Mesoporous Silica SBA-
15

Lysozyme PH Resistance (Lynch et al., 2016)

Covalent bond Aminofunctionalized
SBA-15

Laccase Biodegradation (Bautista et al., 2015)

Adsorption Mesoporous Silica SBA-
15

Candida rugosa lipase Affinity and
thermostability

(Živković et al., 2015)

Adsorption Mesoporous Silica SBA-
15

Candida antarctica
Lipase B

Enzyme activity and
stability

(Cai et al., 2016)

Covalent bond Amino acid modified S
BA-15

Porcine pancreases
lipase

Heat resistance (Zou et al., 2013)

Adsorption Magnetic Fe3O4/SBA-15 Candida rugosa lipase Easily separated (Rios et al., 2016)

Adsorption Mesoporous Silica SBA-
15

Candida antarctica
lipase B

Thermal stability (Rios et al., 2016)

Cross-linking SBA-15-LIPB-GA Candida antarctica
lipase B

High activity and
stability

(Rios et al., 2018)

Cross-linking NH2-SBA-15 Acetylcholinesterase Immobilization
efficiency

(Rui et al., 2018)

Covalent bond Mesoporous SBA-15
silica

Polyphenol oxidase Enzyme efficiency (Escuin et al., 2017)

Covalent bond Ionic Liquids Modified
SBA-15

Candida antarctica
Lipase B

Enzymatic activity (Zhong et al., 2018)
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(Escuin et al., 2017). Two functionalized SBA-15 materials 
with different types of functional groups, amine-
functionalized SBA-15 (AFS) and epoxy‑functionalized 
SBA-15 (GFS), were prepared by treatment with APTES 
and 3-glycidyloxypropyltrimethoxysilane (GTMS), 
respectively, for post functionalization. Specifically, 
carbonic anhydrase (CA) reached its maximum activity 
at pH 10.0 (Fei et al., 2016). Kumari et al., proposed a new 
procedure to prepare immobilized alkaline proteases on 
the surface of silanol‑functionalized SBA-15, providing 
a promising platform for application as milk coagulants 
in cheese‑making and further research. In this process, 
the method was applied to immobilize alkaline protease 
on SBA-15. SBA-15 has a surface silanol group, to which 
protease can be attached, resulting in a high stability. 
The enzyme stability was enhanced, and protease 
immobilization on SBA-15 exhibited a residual activity as 
high as 70% after 12 reapplications (Kumari et al., 2015).

In conclusion, in some cases, the enzymes immobilized 
with SBA-15 had high recoveries, such as aminopropyl 
grafted-laccase on the SBA-15 material mentioned before. 
Covalent immobilization of SBA-15 with enzymes using 
amino-modified SBA-15 via glutaraldehyde crosslinking 
can improve the immobilization efficiency of immobilized 
enzymes and reusability, and the use of divinyl sulfone (DVS) 
crosslinked with amine-modified SBA-15 for immobilizing 
enzymes can further enhance the thermal stability of 
immobilized enzymes. Epoxy-functionalized SBA-15 (GFS) 
has a more suitable pore size than amine‑functionalized 
SBA-15 (AFS). Modifications in the pore volume, specific 
surface area and immobilized enzyme could all improve 
the CA stability at high pH values during immobilization 
(Fei et al., 2016).

3.2. Modified MCM-41 materials

Kresge et al., reported an ordered mesoporous material 
named MCM-41, a novel nanostructured material featuring 
ordered hexagonal arrangement and continuous adjustment 
of pore diameter ranged from 2 to 10nm, a size smaller 
than that of SBA-15 mesoporous materials (Xu  et  al., 
2019). Currently, efforts have been made to analyze the 
utility of MCM-41 as a catalyst carrier (Jiang et al., 2016; 
Molaei et al., 2018; Polikarpova et al., 2018; Brezoiu et al., 
2019). The pure silicon MCM-41 mesoporous material has 
low surface activity and poor stability, and is only used 

as a general carrier or adsorption material. In order to 
improve its performance, so that it can be used in a wider 
range of areas, it is necessary to modify it. At present, 
there are mainly the introduction of metal heteroatoms, 
organic modification or functionalization and load‑type 
modification methods (Sang  et  al., 2013; Wu  et  al., 
2016; Fellenz et al., 2017; Costa et al., 2020). The loading 
modification is a common method in immobilized enzymes 
by loading the active components (such as Fe3O4) in the pore 
channel to improve the performance of the immobilized 
enzyme. The methods and materials for the above enzyme 
immobilization are listed in Table 3.

Recent reports have shown that the application of 
aqueous-organic two-phase systems to MCM‑41 mesoporous 
materials enhances enzyme activity, among these cases, 
Chen et al., reported that Candida rugosa lipase immobilized 
on MCM-41 mesoporous molecules showed excellent 
performance during the resolution of racemic naproxen 
methyl ester. Immobilized lipase was found to have 
increased activity relative to free lipase. In the range of 
pH 6.5-8.5, higher pH increases activity but decreases 
selectivity of lipase enantioselectivity in the reaction 
(Chen et al., 2015).

Appaturi and Selvaraj immobilized catalyst on the surface 
of DL-Alanine functionalized MCM-41. The durability of 
catalyst and rate of production (3-(2-furylmethylene)-2, 
4-pentanedione) were significantly enhanced than that 
of the free one. Studies have shown that the alanine 
molecule has been successfully immobilized on MCM-41. 
16Alanine-MCM-41 can be effective for the condensation 
reaction of furfural with acetylacetone under solvent-free 
conditions. The catalyst exhibited excellent performance, 
i.e., 92.41% of the main product 3-(2-furylmethylene)-2, 
4-pentanedione, due to its high selectivity for substrates 
(Appaturi et al., 2018). Of most recent, Xie et al., reported 
a structured Fe3O4-MCM-41 nanoparticles, which 
provided a protective layer on the surface of immobilized 
lipase. The compound involved covalent linking using 
glutaraldehyde as the cross-linking reagent onto the 
surface of materials, demonstrating excellent enzyme 
kinetic properties. The catalytic properties for the bound 
lipase carried out in the esterification of lard and soybean 
oil, showing that higher catalytic activity of immobilized 
lipases for the interesterification reaction, lower melting 
point of the final product than the original mixture (Xie 
and Zang, 2016). Besides, MCM-41 nanoparticles were 

Table 3. Enzyme immobilization on MCM-41 mesoporous materials.

Immobilization 
Method

Support material Enzyme
Improved Enzyme 

Properties
Ref

Covalent Bond Alanine Functionalized
MCM-41

DL-Alanine 
functionalized
MCM-41 catalyst

Substrate
Selectivity

(Gkaniatsou et al., 
2018)

Encapsulation CPS/GO-Fe3O4@MCM-41 Porcine pancreas lipase Reusability (Mahto et al., 
2016)

Covalent Bond MCM-41 coated with
polyethylenimine

Rmomyces lanuginosa 
lipase

Stability and
reusability

(Gao et al., 2017a)

Encapsulation Fe3O4 -MCM-41 Candida rugosa lipase Enzyme Activity (Yang et al., 2018)
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coated with polyethyleneimine (MCM-41@PEI) and 
chelated by further modification of divalent metal ions 
(M = Co2+, Cu2+ or Pd2+) to produce metal-chelated silica 
nanoparticles particles (MCM-41@PEI-M). Thermomyces 
lanuginosa lipase (TLL) was immobilized by physical 
adsorption on MCM-41@PEI. The results showed that the 
highest biocatalytic activity at very acidic and basic pH 
(pH = 3.0 and 10.0) values were achieved by MCM-41@
PEI-Co and MCM-41@PEI-Cu. While for different catalytic 
temperatures, MCM-41@PEI-Co maintained the highest 
activity at 75°C (Sadighi et al., 2017)

4. Conclusions

We summarized recent studies on the role of 
MNPs and the functionalized mesoporous materials 
SBA‑15 and MCM‑41 in immobilized enzyme applications. 
The traditional process of adsorption--immobilized 
enzymes is relatively simple, and the conformation of 
the enzyme is rarely affected, but the immobilization 
effect is not obvious. The reusability of immobilized 
enzymes can be improved due to the high adsorption of 
magnetic nanomaterial MNPs to magnetic substances. 
When mesoporous material-modified MNPs are applied to 
immobilized enzymes, due to the increased protection of 
the enzyme by the silica gel shell, the immobilized enzyme 
shows stability under harsh conditions. In addition, MNPs 
functionalized with organic polymers in immobilized 
enzymes can change multipoint covalent bonds, thus 
further promoting the catalytic efficiency. Furthermore, 
the specific structure of SBA-15 and MCM-41 enhances the 
binding capacity between the enzyme and substrate due 
to the increased spatial resistance and thus contributes to 
the excellent loading capacity of the immobilized enzyme.

Although several efforts have been made in the past 
few years to obtain versatile immobilization insights, joint 
studies are still necessary to evaluate the relationship 
of modified functional groups and carrier materials, 
binding sites between nanomaterials and enzymes and 
conformational shifts in the reactions. From previous 
successful studies, it can be concluded that the application 
of modified carrier material provides a vital approach for 
enzyme immobilization and several other fields.
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