Acessibilidade / Reportar erro

Rapid magma ascent and formation of the Águas Belas-Canindé granitic batholith, NE Brazil: evidence of epidote dissolution and thermobarometry

Abstract

Mineral chemistry and intensive parameter estimates for the Major Isidoro (626 Ma) and Monteirópolis (627 Ma) magmatic epidote-bearing granitic plutons, emplaced along the Jacaré dos Homens transpressional shear zone (JHSZ), Borborema Province, are focused in this study. These plutons consist of medium-to-coarse grained equigranular to porphyritic tonalite to granite that show abundant dioritic enclaves. These granites contain biotite (Fe# 0.44 to 0.55), Fe-edenite (Major Isidoro), hastingsite (Monteirópolis), titanite, and epidote that often show allanite core as key mafic mineral phases. Pistacite molecular content in epidote is in the interval of 27 to 31 mol%, presenting TiO2 < 0.30%, typical for magmatic epidote. Estimated intensive parameters reveal crystallization at 6.5 ± 1 (Major Isidoro) and 4.7 ± 0.6 kbar (Monteirópolis), temperatures from ~940°C (near-liquidus) to 675 ± 35°C (near-solidus) and oxidizing conditions. Partial corrosion of epidote took place during 15.6 to 32 (Major Isidoro) and 27-49 years (Monteirópolis), corresponding to rather high magma ascension rates of 365 to 750 and 395 to 635 m.years-1, respectively. The JHSZ likely favored upward magma transport at the Sergipano and Pernambuco-Alagoas domains boundary, during the onset of the Brasiliano orogeny (650-620 Ma).

KEYWORDS:
Pernambuco-Alagoas Domain; calc-alkaline orogenic granites; crystallization conditions; magmatic epidote; high ascension rates

INTRODUCTION

Mineral and whole-rock chemistries constitute an important way to assess intensive crystallization parameters and to give information on the nature, source, and evolution of the magmas. These parameters (P-T-fO2-time path) are of first-order importance to comprehend the physicochemical evolution of granitic magmas. Studies on mineral chemistry of natural and experimental assemblages showed that ferromagnesian and coexisting mineral phases constitute a tool for estimating intensive crystallization parameters of granites (e.g., Anderson et al. 2008Anderson J.L., Barth A.P., Wooden J.L., Mazdab F. 2008. Thermometry and Thermobarometers in Granitic Systems. Reviews in Mineralogy and Geochemistry, 69(1):121-142. https://doi.org/10.2138/rmg.2008.69.4
https://doi.org/https://doi.org/10.2138/...
). For example, biotite composition has been largely used as a redox and tectonomagmatic indicator (e.g., Wones and Eugster 1965Wones D.R., Eugster H.P. 1965. Stability of biotite: experiment, theory and application. American Mineralogist, 50:1228-1272., Nachit et al. 1985Nachit H., Razafimahefa N., Stussi J.M., Carron J.P. 1985. Composition chimique des biotites et typologie magmatique des granitoïdes. Comptes rendus de l'Académie des sciences de la Terre et des planetes. Earth and Planetary Sciences, 11(II):813-818., Abdel-Rahman 1994Abdel-Rahman A.F.M. 1994. Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525
https://doi.org/https://doi.org/10.1093/...
, Shabani et al. 2003Shabani A.A.T., Lalonde A.E., Whalen J.B. 2003. Composition of biotite from granitic rocks of the Canadian Appalachian Orogen: a potential tectonomagmatic indicator? The Canadian Mineralogist, 41(6):1381-1396. https://doi.org/10.2113/gscanmin.41.6.1381
https://doi.org/https://doi.org/10.2113/...
; among others). Calcic amphiboles are of special interest due to their compositional diversity and common occurrence, which constitute a good potential to investigate magmatic processes (Putirka 2016Putirka K. 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101(4):841-858. https://doi.org/10.2138/am-2016-5506
https://doi.org/https://doi.org/10.2138/...
, and references therein). This phase has been successfully employed as a geobarometer and, together with plagioclase (the pair amphibole-plagioclase), as a powerful geothermometer (e.g., Hammarstron and Zen 1986Hammarstron J.M., Zen E.-A. 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 71(11-12):1297-1313., Hollister et al. 1987Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4):231-239., Schmidt 1992Schmidt M.W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110:304-310. https://doi.org/10.1007/BF00310745
https://doi.org/https://doi.org/10.1007/...
, Holland and Blundy 1994Holland T., Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116:433-447. https://doi.org/10.1007/BF00310910
https://doi.org/https://doi.org/10.1007/...
, Mutch et al. 2016Mutch E.J.F., Blundy J.D., Tattitch B.C., Cooper F.J., Brooker R.A. 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende. Contributions to Mineralogy and Petrology, 171:85. https://doi.org/10.1007/s00410-016-1298-9
https://doi.org/https://doi.org/10.1007/...
, among others). Titanite shows potential to quantitative estimates of pressure and temperature (e.g., Enami et al. 1993Enami M., Suzuki K., Liou J.G., Bird D.K. 1993. Al-Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence. European Journal of Mineralogy, 5(2):219-231. https://doi.org/10.1127/ejm/5/2/0219
https://doi.org/https://doi.org/10.1127/...
). Magmatic epidote (mEp) was initially described as indicating high-pressures of crystallization in intermediate calc-alkaline granites (> 0.5 GPa; Zen and Hammarstrom 1984Zen E.-A., Hammarstrom J.M. 1984. Magmatic epidote and its petrologic significance. Geology, 12(9):515-518. https://doi.org/10.1130/0091-7613(1984)12<515:MEAIPS>2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
). However, the crystallization of this phase is strongly dependent on oxygen fugacity and bulk magma composition. Thus, at fO2 buffered by hematite-magnetite (HM) the stability of epidote is shifted to a lower pressure (> 0.3 GPa; Schmidt and Thompson 1996Schmidt M.W., Thompson A.B. 1996. Epidote in calc-alkaline magmas: An experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. American Mineralogist, 81(3-4):462-474. https://doi.org/10.2138/am-1996-3-420
https://doi.org/https://doi.org/10.2138/...
, Ferreira et al. 2003Ferreira V.P., Valley J.W., Sial A.N, Spicuzza M.J. 2003. Oxygen isotope compositions and magmatic epidote from two contrasting metaluminous granitoids, NE Brazil. Contributions to Mineralogy and Petrology, 145:205-216. https://doi.org/10.1007/s00410-003-0443-4
https://doi.org/https://doi.org/10.1007/...
, Schmidt and Poli 2004Schmidt M.W., Poli S. 2004. Magmatic Epidote. Reviews in Mineralogy and Geochemistry, 56(1):399-430. https://doi.org/10.2138/gsrmg.56.1.399
https://doi.org/https://doi.org/10.2138/...
). Furthermore, this phase has been successfully employed to estimate the ascension rate of epidote-bearing magmas (e.g., Sial et al. 1999Sial A.N., Toselli A.J., Saavedra J., Parada M.A., Ferreira V.P. 1999. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile. Lithos, 46(3):367-392. https://doi.org/10.1016/S0024-4937(98)00074-7
https://doi.org/https://doi.org/10.1016/...
, 2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
, Brasilino et al. 2011Brasilino R.G., Sial A.N., Ferreira V.P., Pimentel M.M. 2011. Bulk rock and mineral chemistries and ascent rates of high-K calc-alkalic epidote-bearing magmas, Northeastern Brazil. Lithos, 127(3-4):441-454. https://doi.org/10.1016/j.lithos.2011.09.017
https://doi.org/https://doi.org/10.1016/...
).

The Borborema Province (BP), in northeastern Brazil, comprises several intermediate plutonic rock associations that were recognized as containing epidote along with the main mafic coexisting mineral assemblage (biotite, amphibole, titanite) (e.g., Sial 1990Sial A.N. 1990. Epidote-bearing calc-alkalic granitoids in Northeast Brazil. Brazilian Journal of Geology, 20(1-4):88-100. https://doi.org/10.25249/0375-7536.199088100
https://doi.org/https://doi.org/10.25249...
, 1993Sial A.N. 1993. Contrasting metaluminous magmatic epidote-bearing granitic suites from two Precambrian Foldbelts in Northeast Brazil. Anais da Academia Brasileira de Ciências, 65(Suppl.):141-162., Brasilino et al. 1999Brasilino R.G., Sial A.N., Lafon J.M. 1999. Magmatic epidote, hornblende barometric estimates, and emplacement of the Conceição das Creoulas pluton, Alto Pajeu Terrane, NE Brazil. Anais da Academia Brasileira de Ciências, 71(1):3-16., Sial et al. 1999Sial A.N., Toselli A.J., Saavedra J., Parada M.A., Ferreira V.P. 1999. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile. Lithos, 46(3):367-392. https://doi.org/10.1016/S0024-4937(98)00074-7
https://doi.org/https://doi.org/10.1016/...
, 2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
, Ferreira et al. 2011Ferreira V.P., Sial A.N., Pimentel M.M., Armstrong R., Spicuzza M.J., Guimarães I.P., Silva Filho A.F. 2011. Contrasting sources and P-T crystallization conditions of epidote-bearing granitic rocks, northeastern Brazil: O, Sr, and Nd Isotopes. Lithos, 121(1-4):189-201. https://doi.org/10.1016/j.lithos.2010.11.002
https://doi.org/https://doi.org/10.1016/...
, Long et al. 2005Long E.L., Castellana C.H., Sial A.N. 2005. Age, Origin and Cooling History of the Coronel João Sá Pluton, Bahia, Brazil. Journal of Petrology, 46(2):255-273. https://doi.org/10.1093/petrology/egh070
https://doi.org/https://doi.org/10.1093/...
, 2019Long E.L., Ketcham D.H., Fanning C.M., Sial A.N. 2019. The unregenerate São Rafael pluton, Borborema Province, Northeastern Brazil. Lithos, 332-333:192-206. https://doi.org/10.1016/j.lithos.2019.01.036
https://doi.org/https://doi.org/10.1016/...
, Sial and Ferreira 2015Sial A.N., Ferreira V.P. 2015. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68:113-133. https://doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/https://doi.org/10.1016/...
, Campos et al. 2016Campos B.C.S., Vilalva F.C.J., Nascimento M.A.L., Galindo A.C. 2016. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications. Journal of South American Earth Sciences, 70:224-236. https://doi.org/10.1016/j.jsames.2016.05.010
https://doi.org/https://doi.org/10.1016/...
). Therefore, it constitutes an important site for mineralogical studies using mineral chemistry, which allows estimating intensive crystallization parameters, including magma ascension rate. However, there is limited work regarding intensive crystallization parameters of plutonic rocks in the BP, especially in the Pernambuco-Alagoas Domain, where the presence of mEp was recently reported (cf. Silva et al., 2015Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva J.M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part I):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
https://doi.org/https://doi.org/10.1016/...
, 2016Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N. 2016. Two stage mantle-derived granitic rocks and the onset of the Brasiliano orogeny: Evidence from Sr, Nd, and O isotopes. Lithos, 264:189-200. https://doi.org/10.1016/j.lithos.2016.08.030
https://doi.org/https://doi.org/10.1016/...
, 2019Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N. 2019. Geochemical and isotope evidence for mantle-derived source rock of high-K calc-alkaline I-type granites, Pernambuco-Alagoas Domain, northeastern Brazil. International Journal of Earth Sciences, 108:1095-1120. https://doi.org/10.1007/s00531-019-01696-9
https://doi.org/https://doi.org/10.1007/...
, Ferreira et al. 2015Ferreira V.P., Sial A.N., Pimentel M.M., Armstrong R., Guimarães I.P., Silva Filho A.F., Lima M.M.C., Silva T.R. 2015. Reworked old crust-derived shoshonitic magma: The Guarany pluton, Northeastern Brazil. Lithos, 232:150-161. https://doi.org/10.1016/j.lithos.2015.06.030
https://doi.org/https://doi.org/10.1016/...
, Silva 2017Silva T.R. 2017. Granitos da porção sudeste do batólito águas Belas-Canindé, domínio Pernambuco-Alagoas: Geoquímica, petrologia, geocronologia e caracterização geotectônica. PhD thesis, Universidade Federal de Pernambuco, Recife, 190 p. https://doi.org/10.13140/RG.2.2.16693.70888
https://doi.org/https://doi.org/10.13140...
).

In this work, we dealt with chemical data from biotite, hornblende, plagioclase, titanite, and epidote from the Major Isidoro and Monteirópolis epidote-bearing granites to investigate the physicochemical conditions (P-T-fO2-time path-transport) in which they were generated.

GEOLOGICAL BACKGROUND

The Borborema Province, northeastern Brazil, is characterized by widespread Neoproterozoic-Cambrian granitic magmatism whose emplacement in many places is associated with shear zones (Santos and Medeiros 1999Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE Brazil. Brazilian Journal of Geology, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
https://doi.org/https://doi.org/10.25249...
, Neves et al. 2006Neves S.P., Bruguier O., Vauchez A., Bosch D., Silva J.M.R., Mariano G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): Implications for western Gondwana assembly. Precambrian Research, 149(3-4):197-216. https://doi.org/10.1016/j.precamres.2006.06.005
https://doi.org/https://doi.org/10.1016/...
, Van Schmus et al. 2008Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu S.F., Penaye J., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil and the Central African Fold Belt. Geological Society, London, Special Publications, 294(1):69-99. https://doi.org/10.1144/SP294.5
https://doi.org/https://doi.org/10.1144/...
, Ferreira et al. 1998Ferreira V.P., Sial A.N., Jardim de Sá E.F. 1998. Geochemical and isotopic signatures of the Proterozoic granitoids in terranes of the Borborema Province, northeastern Brazil. Journal of South American Earth Sciences, 11(5):439-455. https://doi.org/10.1016/S0895-9811(98)00027-3
https://doi.org/https://doi.org/10.1016/...
, 2004Ferreira V.P., Sial A.N., Pimentel M.M., Moura C.A.V. 2004. Acidic to intermediate magmatism and crustal evolution in the Transversal Zone, northeastern Brazil. In: Mantesso Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.). Geologia do Continente Sul-americano: a evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Editora USP, p. 189-201., Amorim et al. 2019Amorim J.V.A., Guimarães I.P., Farias D.J.S., Lima J.V., Santos L., Ribeiro V.B., Brainer C. 2019. Late-Neoproterozoic ferroan granitoids of the Transversal subprovince, Borborema Province, NE Brazil: petrogenesis and geodynamic implications. International Geology Review, 61(14):1745-1767. https://doi.org/10.1080/00206814.2018.1544936
https://doi.org/https://doi.org/10.1080/...
, Guimarães et al. 2004Guimarães I.P., Silva Filho A.F., Almeida C.N., Van Schmus W.R., Araújo J.M.M., Melo S.C., Melo E.B. 2004. Brasiliano (Pan-African) granitic magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research, 135(1-2):23-53. https://doi.org/10.1016/j.precamres.2004.07.004
https://doi.org/https://doi.org/10.1016/...
, Lima et al. 2017Lima J.V., Guimarães I.P., Santos L., Amorim J.V.A., Farias D.J.S. 2017. Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 75:116-133. https://doi.org/10.1016/j.jsames.2017.02.004
https://doi.org/https://doi.org/10.1016/...
). The province is characterized by a mosaic of shear zones that are used to identify six main domains; one of them named Pernambuco-Alagoas (Fig. 1). Within this domain three granite series were identified: calc-alkaline, high-K calc-alkaline, and shoshonitic (e.g., Silva Filho et al. 2002Silva Filho A.F., Guimarães I.P., Van Schmus W.R. 2002. Crustal Evolution of the Pernambuco-Alagoas Complex, Borborema Province, NE Brazil: Nd Isotopic Data from Neoproterozoic Granitoids. Gondwana Research, 5(2):409-422. https://doi.org/10.1016/S1342-937X(05)70732-2
https://doi.org/https://doi.org/10.1016/...
, 2016Silva Filho A.F., Guimarães I.P., Santos L., Armstrong R., Van Schmus W.R. 2016. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 68:134-154. https://doi.org/10.1016/j.jsames.2015.12.013
https://doi.org/https://doi.org/10.1016/...
, Brito et al. 2009Brito M.F.L., Silva Filho A.F., Guimarães I.P. 2009. Geologia isotópica do batólito shoshonítico-ultrapotássico Neoproterozóico Serra do Catú e implicações na evolução da interface dos Domínios Canindé e Pernambuco-Alagoas. Revista Brasileira de Geociências, 39(2):324-337. https://doi.org/10.25249/0375-7536.2009392324337
https://doi.org/https://doi.org/10.25249...
, Ferreira et al. 2015Ferreira V.P., Sial A.N., Pimentel M.M., Armstrong R., Guimarães I.P., Silva Filho A.F., Lima M.M.C., Silva T.R. 2015. Reworked old crust-derived shoshonitic magma: The Guarany pluton, Northeastern Brazil. Lithos, 232:150-161. https://doi.org/10.1016/j.lithos.2015.06.030
https://doi.org/https://doi.org/10.1016/...
). Silva Filho et al. (2014Silva Filho A.F., Guimarães I.P., Van Schmus W.R., Armstrong R., Silva J.M.R., Osako L.S., Cocentino L.M. 2014. SHRIMP U-Pb zircon geochronology and Nd signatures of supracrustal sequences and orthogneisses constrain the Neoproterozoic evolution of the Pernambuco-Alagoas domain, southern part of Borborema Province, NE Brazil. International Journal of Earth Sciences, 103:2155-2190. https://doi.org/10.1007/s00531-014-1035-4
https://doi.org/https://doi.org/10.1007/...
) divided the Pernambuco-Alagoas Domain into the Garanhuns, Água Branca, and Palmares subdomains. Migmatitic gneiss and granitic rocks of the Garanhuns sub-domain (northern portion) are derived predominantly from older (Paleoproterozoic) sources, whereas the others subdomains (southern portion) contain rocks derived from substantially younger (Tonian) sources. The Buíque-Paulo Afonso, Águas Belas-Canindé, and Ipojuca-Atalaia granitic batholiths (Silva Filho et al. 2002Silva Filho A.F., Guimarães I.P., Van Schmus W.R. 2002. Crustal Evolution of the Pernambuco-Alagoas Complex, Borborema Province, NE Brazil: Nd Isotopic Data from Neoproterozoic Granitoids. Gondwana Research, 5(2):409-422. https://doi.org/10.1016/S1342-937X(05)70732-2
https://doi.org/https://doi.org/10.1016/...
), each consisting of various plutons, which intruded Paleoproterozoic gneisses, represent these younger sources of the southern portion of the Água Branca and Palmares subdomains. This study focuses on part of the Águas Belas-Canindé (Água Branca subdomain).

Figure 1.
(A) Borborema Province. Major domains: MCD: Médio Coreaú; CE: Ceará; RGN: Rio Grande do Norte (SFB: Seridó Fold Belt; SJC: São José do Campestre Archaean nucleus); TD: Transverse; PEAL: Pernambuco-Alagoas; RP: Riacho do Pontal; SD: Sergipano; SFC: São Francisco Craton; SLC: São Luís Craton; Faults and shear zones: PASZ: Patos shear zone; PESZ: Pernambuco shear zone; TBL: Transbrasiliano Lineament. Cities and towns: Fo: Fortaleza; Na: Natal; Re: Recife; Sa: Salvador (Van Schmus et al. 2008Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu S.F., Penaye J., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil and the Central African Fold Belt. Geological Society, London, Special Publications, 294(1):69-99. https://doi.org/10.1144/SP294.5
https://doi.org/https://doi.org/10.1144/...
). (B) Geologic map of the Pernambuco-Alagoas Domain (modified from Silva Filho et al. 2002Silva Filho A.F., Guimarães I.P., Van Schmus W.R. 2002. Crustal Evolution of the Pernambuco-Alagoas Complex, Borborema Province, NE Brazil: Nd Isotopic Data from Neoproterozoic Granitoids. Gondwana Research, 5(2):409-422. https://doi.org/10.1016/S1342-937X(05)70732-2
https://doi.org/https://doi.org/10.1016/...
, 2016Silva Filho A.F., Guimarães I.P., Santos L., Armstrong R., Van Schmus W.R. 2016. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 68:134-154. https://doi.org/10.1016/j.jsames.2015.12.013
https://doi.org/https://doi.org/10.1016/...
).

Field relationships and petrography

The studied plutons constitute NE-SW elongate intrusions along the boundary of the Pernambuco-Alagoas and Sergipano domains, limited to the south/southeast by the Jacaré dos Homens transpressional shear zone (JHSZ) (Fig. 2) (De Oliveira 2008De Oliveira R.G. 2008. Arcabouço geofísico, isostasia e causas do magmatismo Cenozóico da Província Borborema e de sua margem continental (Nordeste do Brazil). PhD thesis, Federal University of Rio Grande do Norte, Natal, 411 p., Mendes et al. 2009Mendes V., Brito M.F.L., Paiva I.P. 2009. Folha Arapiraca (SC.24-X-D, escala 1:250.000). Integration Geological (Geologic map). Recife: Brazilian Geological Survey (CPRM)., Lima et al. 2014Lima M.M.C., Silva T.R., Ferreira V.P., Silva J.M.R. 2014. Metasedimentary rocks of the northern portion of the Macururé domain, Sergipano Belt, northeastern Brazil: Geochemical characterization of their protoliths and tectonic implications. Estudos Geológicos, 24(2):89-107. https://doi.org/10.18190/1980-8208/estudosgeologicos.v24n2p89-107
https://doi.org/https://doi.org/10.18190...
). The Major Isidoro pluton is in sharp contact to the north with the Poço da Cacimba, and to the west with the Monteirópolis plutons (Silva et al. 2016Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N. 2016. Two stage mantle-derived granitic rocks and the onset of the Brasiliano orogeny: Evidence from Sr, Nd, and O isotopes. Lithos, 264:189-200. https://doi.org/10.1016/j.lithos.2016.08.030
https://doi.org/https://doi.org/10.1016/...
, Lima 2019Lima M.M.C. 2019. Petrologia e geoquímica de plútons do leste do batólito Águas Belas-Canindé, Domínio Pernambuco-Alagoas, Província Borborema. PhD thesis, Universidade Federal de Pernambuco, Recife, 206 p.). The Major Isidoro pluton presents two main facies: biotite granite and epidote-amphibole-biotite tonalite, which consist of pink-gray leucocratic to mesocratic, coarse-grained to porphyritic with alkali-feldspar up to 5 cm in length. It shows a well-developed magmatic low angle dipping foliation that usually strikes northwest. However, in some samples, superposition of high-temperature solid-state deformation expressed by chessboard extinction in quartz, development of myrmekitic intergrowths around alkali feldspar, and static recrystallization of feldspar grains occur. Elliptical diorite enclaves up to 0.5 meters long occur everywhere into this pluton; in some places, they appear along with the granite magmatic foliation, implying that they represent disrupted syn-plutonic dikes.

Figure 2.
Geological map of the Águas Belas-Canindé batholith showing the studied plutons.

The Major Isidoro granite has undergone partial melting, segregation, and ductile deformation that suggest high-strain synkinematic emplacement. This pluton was emplaced coevally with an amphibolite facies metamorphic event in the region. In some parts, the granite is migmatized, where diatexite migmatite (cf. Sawyer 2000Sawyer E.W. 2000. Grain-scale and outcrop-scale distribution and movement of melt in a crystallising granite. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1-2):73-85. https://doi.org/10.1017/S0263593300007306
https://doi.org/https://doi.org/10.1017/...
, 2008Sawyer E.W. 2008. Atlas of Migmatites. Ottawa: NRC Research Press, 371 p. The Canadian Mineralogist, Special Publication 9.), which shows up to 1-meter heterogeneous schlieren features, are more common than metatexite migmatite; in this later, magmatic foliation is preserved. The schlierens in the diatexites are gray, characterized by biotite-rich domains separated by quartz-feldspar domains.

The Monteirópolis pluton consists of leucocratic medium- to coarse-grained amphibole-biotite alkali feldspar granodiorite to granite; porphyritic granite that displays up to 4.5 cm long zoned alkali feldspar crystals is also found. This pluton shows magmatic foliation that has dominantly gentle dips (usually < 30°, but sometimes up to 55°) to the northwest. Diorite enclaves and amphibole-rich clots, typically a few centimeters to about 25 cm long, are present mainly in the eastern portion of the pluton. These enclaves have sharp contacts with the host granite and show regular, generally oval, but occasionally lobate, with rare diffuse contours.

The mineral assemblage of quartz + alkali feldspar + plagioclase + biotite ± hornblende + titanite ± alanite ± magnetite ± ilmenite± epidote is common within both investigated plutons. Biotite and amphibole are the main mafic phases, and together with the shape-preferred orientation of alkali feldspar define the magmatic/metamorphic foliation of these plutons. Minor saussurite is observed as products of post-magmatic transformations of feldspars.

AGE AND SR-ND-O ISOTOPIC SIGNATURES

Silva et al. (2015Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva J.M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part I):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
https://doi.org/https://doi.org/10.1016/...
, 2016Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N. 2016. Two stage mantle-derived granitic rocks and the onset of the Brasiliano orogeny: Evidence from Sr, Nd, and O isotopes. Lithos, 264:189-200. https://doi.org/10.1016/j.lithos.2016.08.030
https://doi.org/https://doi.org/10.1016/...
) presented an integrated study of Sr, Nd, Pb, and O isotopes for the studied intrusions. U-Pb SHRIMP zircon crystallization ages of the Major Isidoro and Monteirópolis batholiths are respectively 626.6 ± 4.1 and 625.8 ± 3.7 Ma. Inherited zircon cores from the Major Isidoro yielded ages varying from 800 to 1,000 Ma. These crystallization ages point to an emplacement of the Major Isidoro and Monteirópolis batholiths to early stages of the Brasiliano orogeny. The Sr-Nd-O isotopic signatures constrain their sources. The Major Isidoro granites have Nd-model ages of 1.1 to 1.4, showing ԑNd(627 Ma), 87Sr/86Sr(627 Ma), and δ18O(zircon) (-1.09 to -2.12, 0.7069 to 0.7086, and 6.95 to 7.02‰, respectively) more evolved than the Monteirópolis granites that show homogeneous model age of 1.0 Ga and higher ԑNd(625 Ma), and lower 87Sr/86Sr(625 Ma) and δ18O(zircon) (-0.78 to +1.06, 0.7050-0.7052, 5.0 to 5.9‰).

ANALYTICAL PROCEDURES

All samples for whole-rock chemical analyses were crushed in a stainless steel jaw crusher and split to < 74 μm grain size in a chromium steel ring mill. The Loss On Ignition (LOI) was determined on one gram of a pre-dried sample by igniting to 1,000°C for two hours. Major and some trace elements (Sr, Zr, Nb, Y, Rb, Ba, and Ni) were determined on fused discs of sample mixed with lithium tetraborate flux (ratio sample: flux = 1:5 fused in a Pt-Au crucible) with a fully automated Rigaku RIX-3000 XRF spectrometer at the NEG-LABISE, Universidade Federal de Pernambuco, Recife, Brazil. The calibration curves were prepared by analyses of international reference materials (AC-E, AL-I, AN-G, BE-N, IF-G, and MA-N from the International Working Group (IWG), DR-N, FK-N, and UB-N from the Association Nationale de la Recherche et de la Technologie (ANRT), GA, GH, MICA-MG, PM-S, and WS-E from the Centre de Recherches Pétrographiques et Géochimiques (CRPG).

Mineral chemistry analyses were performed at the Electron Microprobe Laboratory, Universidade de Brasilia, Brazil, using a Superprobe JEOL JXA-8230 equipped with WDS, with an accelerating potential of 15 kV, a current of 10 ηA, and a 5μ diameter beam. WDS spot analyses of the main rock-forming minerals were performed using the following standards and X-ray lines: albite (Na Kα), forsterite (Mg Kα), topaz (F Kα), microcline (Al Kα, Si Kα, K Kα), andradite (Ca Kα), vanadinite (V Kα, Cl Kα), MnTiO3 (Ti Kα, Mn Kα), Cr2O3 (Cr Kα), SrSO4 (Sr Lα), NiO (Ni Kα), andradite (Fe Kα), and BaSO4 (Ba Lα). Counting times were 10s on peak and 5s on the two background positions for all elements. Matrix effects corrections were computed following the PRZ procedure and raw data reduction was done with Armstrong software from JEOL. Cationic proportions and structural formulae of plagioclase, amphibole, titanite, biotite, and epidote were calculated based on 32, 23, 5, 22 and 12.5 oxygens in the formula unit, respectively (Deer et al. 2013Deer W.A., Howie R.A., Zussman J. 2013. An Introduction to the Rock-Forming Minerals. 3rd ed. London: Mineralogical Society, 498 p. https://doi.org/10.1180/DHZ
https://doi.org/https://doi.org/10.1180/...
). Tables 1 to 5 contain representative microprobe chemical analyses.

MINERAL CHEMISTRY

Plagioclase

Microprobe analyses of plagioclase from the Major Isidoro granites and enclaves indicate compositions between An23-35 (oligoclase-andesine) and An34-40 (andesine), respectively (Fig. 3; Tab. 1). Plagioclase from the Monteirópolis granite has relatively homogeneous compositions varying from An16 to An19 (oligoclase). Plagioclase grains from the two plutons shows normal zoning with the nuclei slightly enriched in Ca compared to rim presenting low Ba (0.002 apfu [atoms per formula units]) and Fe3+ (0.012) contents.

Figure 3.
Ternary molecular Albite-Anortite-Orthoclase feldspar diagram showing the compositional variations of plagioclase from the studied granites.

Table 1.
Microprobe analyses for plagioclase of the studied granites.

Amphibole

Analyzed hornblende grains (Tab. 2) classified according to nomenclature scheme proposed by Leake et al. (1997Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3):623-651., 2003Leake B.E., Woolley A.R., Birch W.D., Burke E.A.J., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H.J., Krivovichev V.G., Schumacher J.C., Stephenson N.C.N., Whittaker E.J.W. 2003. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s 1997 recommendations. The Canadian Mineralogist, 41(6):1355-1362. https://doi.org/10.2113/gscanmin.41.6.1355
https://doi.org/https://doi.org/10.2113/...
) are members of the calcic group in which (Ca + Na)B ≥ 1.50 and NaB ≤ 0.50. Amphibole grains from the Major Isidoro granite and enclaves show Si content from 6.25 to 6.43 atoms per formula units (apfu), AlVI contents in the range of 0.25 to 0.534 apfu, and Ti content in the 0.04 to 0.12 apfu range. Amphiboles from granites and enclaves are, respectively, hastingsite and Mg-hastingsite (Fig. 4). Amphibole grains from the Monteirópolis pluton have lower Si contents than those in the Major Isidoro granite, in the range of 6.56 to 6.66 apfu, AlVI contents in the range of 0.17 to 0.29 apfu, and Ti contents in a narrow range from 0.06 to 0.11 apfu; they are classified as Fe-edenite to edenite (Fig. 4). Based on the new classification and nomenclature scheme for the amphiboles (Hawthorne et al. 2012Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D. 2012. IMA Report: Nomenclature of the amphibole supergroup. American Mineralogist, 97(11-12):2031-2048. https://doi.org/10.2138/am.2012.4276
https://doi.org/https://doi.org/10.2138/...
), all analyzed hornblendes classify as pargasite. Amphibole compositions were plotted (Figs. 5A and 5B) in order to test the role of Edenite and Tschermak exchanges. The relatively homogeneous compositions suggest that Edenite (AlVI < 0.2 apfu) and Tschermak (AlTot < 0.2 apfu) exchange mechanisms play a minor role in the evolution of the two plutons.

Table 2.
Microprobe analyses and structural formulae for amphibole of the studied granites#.

Figure 4.
Classification diagram of amphibole following Leake et al. (1997Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3):623-651.). Symbols as in Figure 3.

Figure 5.
Compositional variations of amphibole from the studied granites. (A) Tschermak and (B) Edenite substitutions. Symbols as in Figure 3.

Titanite

Titanite grains from the studied plutons show very low Al + Fe3+ (< 0.12; Tabs. 3A and 3B). The composition of titanite depends on temperature and pressure (Enami et al. 1993Enami M., Suzuki K., Liou J.G., Bird D.K. 1993. Al-Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence. European Journal of Mineralogy, 5(2):219-231. https://doi.org/10.1127/ejm/5/2/0219
https://doi.org/https://doi.org/10.1127/...
). These authors suggested that titanite crystals having Al + Fe3+ < 0.35 apfu indicate crystallization at temperatures greater than ~700°C. Our results point to crystallization within the range for typical high-temperature titanite (> 700°C), which is consistent with the early crystallization of euhedral titanite in these plutons.

Table 3A.
Microprobe analyses for titanite of the Major Isidoro granites.
Table 3B.
Microprobe analyses for titanite of the Monteirópolis granites.

Biotite

Biotite from the Major Isidoro granites has higher Altot contents (2.67 to 2.94 apfu and Fe# (Fe/(Mg + Fe) of 0.50 to 0.58) compared to biotite in Monteirópolis granites, with Altot varying from 2.49 to 2.85 apfu, and Fe# from 0.44 to 0.55 (Tabs. 4A and 4B). These compositions lying approximately between the annite and phlogopite end-members (Fig. 6). Such compositions are in the typical range from orogenic calc-alkaline granites when compared with those presented by Nachit et al. (1985Nachit H., Razafimahefa N., Stussi J.M., Carron J.P. 1985. Composition chimique des biotites et typologie magmatique des granitoïdes. Comptes rendus de l'Académie des sciences de la Terre et des planetes. Earth and Planetary Sciences, 11(II):813-818.) and Abdel-Rahman (1994Abdel-Rahman A.F.M. 1994. Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525
https://doi.org/https://doi.org/10.1093/...
) (Figs. 7, 8A and 8B). Biotite crystals from both plutons have fluorine contents dominant over chlorine.

Table 4A.
Microprobe analyses for biotite of the Major Isidoro granites.
Table 4B.
Microprobe analyses for biotite of the Monteirópolis granites.

Figure 6.
Compositional variations of biotite from the studied granites in the Fe/(Fe + Mg) vs. AlTot diagram. Symbols as in Figure 3.

Figure 7.
Compositional variations of biotites in the AlTot vs. Mg diagram. Symbols as in Figure 3.

Figure 8.
Composition of biotite from the studied granites expressed in the discrimination diagrams of Abdel-Rahman (1994Abdel-Rahman A.F.M. 1994. Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525
https://doi.org/https://doi.org/10.1093/...
). (A) MgO vs. FeO and (B) MgO x FeO x Al2O3. Symbols as in Fig. 3.

Epidote

According to chemical criteria of Tulloch (1979Tulloch A.J. 1979. Secondary Ca-Al Silicates as Low-Grade Alteration Products of Granitoid Biotite. Contributions to Mineralogy and Petrology, 69:105-117. https://doi.org/10.1007/BF00371854
https://doi.org/https://doi.org/10.1007/...
), Johnston and Wyllie (1988Johnston A.D., Wyllie P.J. 1988. Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. Contributions to Mineralogy and Petrology, 98:352-362. https://doi.org/10.1007/BF00375185
https://doi.org/https://doi.org/10.1007/...
), and Vyhnal et al. (1991Vyhnal C.R., McSween H.Y., Speer J.A. 1991. Hornblende chemistry in southern Appalachian granitoids: Implication for aluminum hornblende thermobarometry and magmatic epidote stability. American Mineralogist, 76(1-2):176-188.), magmatic epidote in granites has pistacite contents (Ps = molar [Fe3+ /(Fe3+ + Al)] x 100) between 25 to 29 mol%; however, epidote grains described in the Borborema Province have Ps contents of up to 33 mol% (Sial et al. 1999Sial A.N., Toselli A.J., Saavedra J., Parada M.A., Ferreira V.P. 1999. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile. Lithos, 46(3):367-392. https://doi.org/10.1016/S0024-4937(98)00074-7
https://doi.org/https://doi.org/10.1016/...
, 2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
, Ferreira et al. 2003Ferreira V.P., Valley J.W., Sial A.N, Spicuzza M.J. 2003. Oxygen isotope compositions and magmatic epidote from two contrasting metaluminous granitoids, NE Brazil. Contributions to Mineralogy and Petrology, 145:205-216. https://doi.org/10.1007/s00410-003-0443-4
https://doi.org/https://doi.org/10.1007/...
, 2011Ferreira V.P., Sial A.N., Pimentel M.M., Armstrong R., Spicuzza M.J., Guimarães I.P., Silva Filho A.F. 2011. Contrasting sources and P-T crystallization conditions of epidote-bearing granitic rocks, northeastern Brazil: O, Sr, and Nd Isotopes. Lithos, 121(1-4):189-201. https://doi.org/10.1016/j.lithos.2010.11.002
https://doi.org/https://doi.org/10.1016/...
, 2015Ferreira V.P., Sial A.N., Pimentel M.M., Armstrong R., Guimarães I.P., Silva Filho A.F., Lima M.M.C., Silva T.R. 2015. Reworked old crust-derived shoshonitic magma: The Guarany pluton, Northeastern Brazil. Lithos, 232:150-161. https://doi.org/10.1016/j.lithos.2015.06.030
https://doi.org/https://doi.org/10.1016/...
; among others), which enlarge typical Ps ranges to 25-33 mol%. The analyzed crystals of the Major Isidoro granite yield values of 27 to 29 mol%, while the analyzed grains of the Monteirópolis plutons show Ps values of 29 to 31 mol%, which are within the range (25-33 mol%) proposed by these authors. Magmatic epidote, according to Evans and Vance (1987Evans B.W., Vance J.A. 1987. Epidote phenocrysts in dacitic dikes, Boulder County, Colorado. Contributions to Mineralogy and Petrology, 96:178-185. https://doi.org/10.1007/BF00375231
https://doi.org/https://doi.org/10.1007/...
), has TiO2 contents < 0.6 wt%, while secondary epidote replacing biotite has TiO2 contents > 0.6 wt.%. The analyzed crystals present values ranging from 0.0 to 0.3 wt.% for both plutons (Table 5), suggesting that they are primary, in accordance with the Tulloch’s criteria based on pistacite contents in addition to textural evidence.

Table 5.
Microprobe analyses, cation proportions, and pistacite contents for epidote of the studied plutons.

DISCUSSION

Intensive crystallization parameters

Near-solidus temperature

Blundy and Holland (1990Blundy J.D., Holland T.J.B. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104:208-224. https://doi.org/10.1007/BF00306444
https://doi.org/https://doi.org/10.1007/...
) proposed a hornblende-plagioclase thermometer with estimated uncertainties of ± 75°C, in a temperature range of 500-1,100°C, for quartz-saturated rocks. In a later work, Holland and Blundy (1994Holland T., Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116:433-447. https://doi.org/10.1007/BF00310910
https://doi.org/https://doi.org/10.1007/...
) extended the formulation of Blundy and Holland (1990Blundy J.D., Holland T.J.B. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104:208-224. https://doi.org/10.1007/BF00306444
https://doi.org/https://doi.org/10.1007/...
) to embrace a broad range of bulk compositions (e.g., natural garnet amphibolites). The calibration based on the equilibrium: edenite + albite = richterite + anorthite (reaction B of Holland and Blundy 1994Holland T., Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116:433-447. https://doi.org/10.1007/BF00310910
https://doi.org/https://doi.org/10.1007/...
) shows lower values of temperature than those estimated using reaction A of Holland and Blundy (1994Holland T., Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116:433-447. https://doi.org/10.1007/BF00310910
https://doi.org/https://doi.org/10.1007/...
), and are considered to be the most reliable because they more precisely reproduce the T estimated by other independent methods such as garnet-hornblende and clinopyroxene-hornblende (Anderson 1996Anderson J.L. 1996. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2):125-138. https://doi.org/10.1017/S0263593300006544
https://doi.org/https://doi.org/10.1017/...
, Bachmann and Dungan 2002Bachmann O., Dungan M. 2002. Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. American Mineralogist, 87(8-9):1062-1076. https://doi.org/10.2138/am-2002-8-903
https://doi.org/https://doi.org/10.2138/...
). This thermometer works well in the ranges of 400-1,000°C (± 35-40°C) and 1 to 15 kbar over a broad range of bulk compositions. Molina et al. (2015Molina J.F., Moreno J.A., Castro A., Rodríguez C., Fershtater G.B. 2015. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232:286-305. https://doi.org/10.1016/j.lithos.2015.06.027
https://doi.org/https://doi.org/10.1016/...
) calibrated an empirical amphibole/liquid Mg partitioning thermometer using regression methods and observed that their T estimates are consistent with those of the edenite-albite-richterite-anorthite thermometer of Holland and Blundy (1994Holland T., Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116:433-447. https://doi.org/10.1007/BF00310910
https://doi.org/https://doi.org/10.1007/...
). Near-solidus hornblende-plagioclase temperatures (reaction B of Holland and Blundy 1994Holland T., Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116:433-447. https://doi.org/10.1007/BF00310910
https://doi.org/https://doi.org/10.1007/...
) for the Major Isidoro and Monteirópolis plutons range from 680 to 720 and from 660 to 700°C, respectively.

Near-liquidus temperature

Watson and Harrison (1983Watson E.B., Harrison T.M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821X(83)90211-X
https://doi.org/https://doi.org/10.1016/...
) developed a solubility model based on the relationship between zircon crystallization and melt composition, and defined a saturation behavior of Zr as a function of temperature and magma composition. This model could be used when zircon was one of the earliest minerals to crystallize and assumes that zircon was not a cumulate phase, xenocrystic, or inherited from the source region. Sensitivity tests reinforce previous thoughts (see Watson & Harrison 1983Watson E.B., Harrison T.M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821X(83)90211-X
https://doi.org/https://doi.org/10.1016/...
) and indicate that temperature and composition are the two dominant controls on zircon solubility in crustal melts with no observable effects due to pressure (up to 25 kbar) or variable water content (Boehnke et al. 2013Boehnke P., Watson E.B., Trail D., Harrison T.M., Schmitt A. 2013. Zircon saturation re-revisited. Chemical Geology, 351:324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028
https://doi.org/https://doi.org/10.1016/...
). Estimates of the near liquidus temperature can be obtained by the Equation 1, using whole-rock analyses:

T Z r ( ° C ) = { ( 12,900 ) / l n ( 497,644 / Z r ) + 3.8 + 0.85 ( M - 1 ) - 273.15 } (1)

According to this method, the calculated temperatures for the Major Isidoro pluton vary from 740 to 868°C (avg. 818°C) and to the Monteirópolis pluton temperature ranges from 763 to 856°C (avg. 805°C). Very low Zr saturation temperatures for some samples seem to underestimate the liquidus temperature with values slightly higher than those obtained to near-solidus temperature. The studied plutons present zircon cores inherited from the source, which interfere in the obtained Zr saturation temperatures (mean TZr for inheritance-rich granites of 766°C were found by Miller et al. 2003Miller C.F., McDowell S.M., Mapes R.W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6):529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
). Green and Watson (1982Green T.H., Watson E.B. 1982. Crystallization of Apatite in Natural Magmas Under High Pressure, Hydrous Conditions, with Particular Reference to ‘Orogenic’ Rock Series. Contributions to Mineralogy and Petrology, 79:96-105. https://doi.org/10.1007/BF00376966
https://doi.org/https://doi.org/10.1007/...
) and Harrison and Watson (1984Harrison T.M., Watson E.B. 1984. The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7):1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4
https://doi.org/https://doi.org/10.1016/...
) related P2O5 contents at a given silica value to temperature at which that composition may be expected to crystallize apatite. This model could be used for silica compositions between 45 and 75%, and 0 and 10% water, and for the range of pressures expected in the crust (up to 25 kbar; Green and Adam 2002Green T.H., Adam J. 2002. Pressure effect on Ti- or P-rich accessory mineral saturation in evolved granitic melts with differing K2O/Na2O ratios. Lithos, 61(3-4):271-282. https://doi.org/10.1016/S0024-4937(02)00083-X
https://doi.org/https://doi.org/10.1016/...
). Iron content or oxidation state of the liquid play insignificant effects on phosphate saturation (Tollari et al. 2006Tollari N., Toplis M.J., Barnes S.J. 2006. Predicting phosphate saturation in silicate magmas: An experimental study of the effects of melt composition and temperature. Geochimica et Cosmochimica Acta, 70(6):1518-1536. https://doi.org/10.1016/j.gca.2005.11.024
https://doi.org/https://doi.org/10.1016/...
). According to Harrison and Watson (1984Harrison T.M., Watson E.B. 1984. The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7):1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4
https://doi.org/https://doi.org/10.1016/...
), the following expression can be used to estimate the minimum liquidus temperature: T (°C) = {[8,400 + 26,400(SiO2 - 0.5)]/[ln(42/P2O5) + 3.1 + 12.4(SiO2 - 0.5)] - 273.15}. Using this approach, the granites of the Major Isidoro pluton have near-liquidus temperatures that vary between 863 and 1,000°C (average = 936°C) while granites from the Monteirópolis pluton present a wider temperature range, from 814 to 1,023°C (Tab. 6). Apatite is an early phase relative to zircon in the crystallization sequence from both plutons, and apatite exhibits significantly higher saturation temperatures (e.g., Anderson et al. 2008Anderson J.L., Barth A.P., Wooden J.L., Mazdab F. 2008. Thermometry and Thermobarometers in Granitic Systems. Reviews in Mineralogy and Geochemistry, 69(1):121-142. https://doi.org/10.2138/rmg.2008.69.4
https://doi.org/https://doi.org/10.2138/...
, Naranjo and Vlach 2018Naranjo A.F.S., Vlach S.R.F. 2018. On the crystallization conditions of the Neoproterozoic, high-K calc-alkaline, Bragança Paulista-type magmatism, southern Brasília Orogen, SE Brazil. Brazilian Journal of Geology, 48(3):631-650. https://doi.org/10.1590/2317-4889201820180033
https://doi.org/https://doi.org/10.1590/...
) with an acceptable near-liquidus to solidus temperature span of ~940 to ~700°C.

Table 6.
Temperature estimates from apatite (TAp) and zircon (TZr) saturation thermometry. Major elements in wt.%, and Zr in ppm.

Amphibole barometry

Several empirical and experimental igneous barometers based on Al-in-hornblende were proposed by Hammarstron and Zen (1986Hammarstron J.M., Zen E.-A. 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 71(11-12):1297-1313.), Hollister et al. (1987Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4):231-239.), Schmidt (1992Schmidt M.W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110:304-310. https://doi.org/10.1007/BF00310745
https://doi.org/https://doi.org/10.1007/...
), Anderson and Smith 1995Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
https://doi.org/https://doi.org/10.2138/...
, Anderson 1996Anderson J.L. 1996. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2):125-138. https://doi.org/10.1017/S0263593300006544
https://doi.org/https://doi.org/10.1017/...
, Holland and Blundy (1994Holland T., Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116:433-447. https://doi.org/10.1007/BF00310910
https://doi.org/https://doi.org/10.1007/...
), and Mutch et al. (2016Mutch E.J.F., Blundy J.D., Tattitch B.C., Cooper F.J., Brooker R.A. 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende. Contributions to Mineralogy and Petrology, 171:85. https://doi.org/10.1007/s00410-016-1298-9
https://doi.org/https://doi.org/10.1007/...
) to granitic rocks that have the mineral assemblage plagioclase + K-feldspar + quartz + hornblende + biotite + titanite + magnetite ± ilmenite + melt + fluid phase in equilibrium. The reported revised expression for the Al-in-hornblende barometer of Anderson and Smith (1995Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
https://doi.org/https://doi.org/10.2138/...
) incorporating the effect of temperature from the hornblende-plagioclase thermometer of Holland and Blundy (1994Holland T., Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116:433-447. https://doi.org/10.1007/BF00310910
https://doi.org/https://doi.org/10.1007/...
) and using the experimental data from Johnson and Rutherford (1989Johnson M.C., Rutherford M.J. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9):837-841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
) and Schmidt (1992Schmidt M.W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110:304-310. https://doi.org/10.1007/BF00310745
https://doi.org/https://doi.org/10.1007/...
) was considered as reliable for our emplacement pressures. The resulting equation is Equation 2:

P ( ± 0.6 k b a r ) = 4.76 A l - 3.01 - { T ( º C ) - 675 / 85 } × { 0.530 A l + 0.005294 T ( º C ) - 675 } (2)

Accordingly, when applied to the epidote-bearing Major Isidoro and Monteirópolis plutons, pressures of 5.27-7.71 and 4.3-5.34 kbar, respectively, are obtained. These results of the Al-in-hornblende barometer of Schmidt (1992Schmidt M.W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110:304-310. https://doi.org/10.1007/BF00310745
https://doi.org/https://doi.org/10.1007/...
) and Anderson and Smith (1995Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
https://doi.org/https://doi.org/10.2138/...
) are portrayed in Table 2. These values are generally within the uncertainty of ± 0.6 kbar. These pressures of crystallization are within the lower limit of stability of magmatic epidote (0.3 to 0.7GPa; Zen and Hammarstrom 1984Zen E.-A., Hammarstrom J.M. 1984. Magmatic epidote and its petrologic significance. Geology, 12(9):515-518. https://doi.org/10.1130/0091-7613(1984)12<515:MEAIPS>2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
, Schmidt and Poli 2004Schmidt M.W., Poli S. 2004. Magmatic Epidote. Reviews in Mineralogy and Geochemistry, 56(1):399-430. https://doi.org/10.2138/gsrmg.56.1.399
https://doi.org/https://doi.org/10.2138/...
).

Oxygen fugacity

Oxygen fugacity by far exerts the strongest control on mafic silicate mineral chemistry (Anderson and Smith 1995Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
https://doi.org/https://doi.org/10.2138/...
, Anderson 1996Anderson J.L. 1996. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2):125-138. https://doi.org/10.1017/S0263593300006544
https://doi.org/https://doi.org/10.1017/...
). This parameter is difficult to estimate in silicic rocks, especially those that contain only one Fe-Ti oxide mineral (Wones 1989Wones D.R. 1989. Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74(7-8):744-749.). The presence of titanite + magnetite + quartz assemblage has long been known as suggestive of relatively high fO2 in siliceous magmas (e.g., Wones 1989Wones D.R. 1989. Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74(7-8):744-749., Enami et al. 1993Enami M., Suzuki K., Liou J.G., Bird D.K. 1993. Al-Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence. European Journal of Mineralogy, 5(2):219-231. https://doi.org/10.1127/ejm/5/2/0219
https://doi.org/https://doi.org/10.1127/...
, and references therein). According to Wones (1989Wones D.R. 1989. Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74(7-8):744-749.), when this assemblage occurs along with clinopyroxene or amphibole with intermediate or higher Mg# ((Mg/(Mg + Fe)) ratios, relatively high fO2 is implied.

Anderson and Smith (1995Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
https://doi.org/https://doi.org/10.2138/...
) suggested that amphibole Fe# ratios for barometry studies should be in the range of 0.40-0.65 (Mg-rich amphiboles). The amphibole from both Major Isidoro and Monteirópolis studied granites present Fe# ratios that vary from 0.577-0.639 and 0.552-0.575, respectively, which are consistent with moderate to high oxygen fugacity (Fig. 9). This exceptional condition remains to be validated (cf. Putirka 2016Putirka K. 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101(4):841-858. https://doi.org/10.2138/am-2016-5506
https://doi.org/https://doi.org/10.2138/...
). Fe-rich amphibole bearing plutons that crystallized under low oxygen fugacity are not suitable for applying hornblende barometry, even though the full mineral assemblage is present and yields high pressures (Anderson and Smith 1995Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
https://doi.org/https://doi.org/10.2138/...
). Fe-rich amphiboles should not have Fe3+/(Fe3+ + Fe2+) ratios lower than 0.20 to apply hornblende barometry (Schmidt 1992Schmidt M.W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110:304-310. https://doi.org/10.1007/BF00310745
https://doi.org/https://doi.org/10.1007/...
, Anderson and Smith 1995Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
https://doi.org/https://doi.org/10.2138/...
). However, exceptions occur when biotite crystallize simultaneously with amphibole and partially incorporate Mg (e.g., Papoutsa and Pe-Piper 2014Papoutsa A., Pe-Piper G. 2014. Geochemical variation of amphiboles in A-type granites as an indicator of complex magmatic systems: Wentworth pluton, Nova Scotia, Canada. Chemical Geology, 384:120-134. https://doi.org/10.1016/j.chemgeo.2014.07.001
https://doi.org/https://doi.org/10.1016/...
, Campos et al. 2016Campos B.C.S., Vilalva F.C.J., Nascimento M.A.L., Galindo A.C. 2016. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications. Journal of South American Earth Sciences, 70:224-236. https://doi.org/10.1016/j.jsames.2016.05.010
https://doi.org/https://doi.org/10.1016/...
). For the studied granites, hornblende Fe3+/(Fe3+ + Fe2+) ratios are within the limiting range except for one core and one rim of the analyzed amphibole from the Monteirópolis granite.

Figure 9.
AlIV vs. (Fe/(Fe + Mg) plot for amphibole showing qualitative fO2 conditions following Anderson and Smith (1995Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
https://doi.org/https://doi.org/10.2138/...
). Symbols as in Figure 3.

The whole-rock Fe# [Fe/(Fe + Mg)] ratio varies independently of Fe# ratio of amphibole and biotite, and with the increase of fO2, the Fe# ratio of these minerals notably decrease (e.g., Anderson and Smith 1995Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
https://doi.org/https://doi.org/10.2138/...
, Anderson et al. 2008Anderson J.L., Barth A.P., Wooden J.L., Mazdab F. 2008. Thermometry and Thermobarometers in Granitic Systems. Reviews in Mineralogy and Geochemistry, 69(1):121-142. https://doi.org/10.2138/rmg.2008.69.4
https://doi.org/https://doi.org/10.2138/...
). Anderson et al. (2008Anderson J.L., Barth A.P., Wooden J.L., Mazdab F. 2008. Thermometry and Thermobarometers in Granitic Systems. Reviews in Mineralogy and Geochemistry, 69(1):121-142. https://doi.org/10.2138/rmg.2008.69.4
https://doi.org/https://doi.org/10.2138/...
) proposed an approximate fO2 relative to the quartz-fayalite-magnetite buffer (ΔQFM) depending upon Fe# [Fe/(Fe + Mg)] in biotite. For biotite from the Major Isidoro granite, Fe# in biotite ranges from 0.50 to 0.58, and for biotite from the Monteirópolis from 0.43 to 0.55, corresponding to ΔQFM = + 1 to < + 2.5. This result is similar to those for granites in the northern Borborema Province obtained by Campos et al. (2016Campos B.C.S., Vilalva F.C.J., Nascimento M.A.L., Galindo A.C. 2016. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications. Journal of South American Earth Sciences, 70:224-236. https://doi.org/10.1016/j.jsames.2016.05.010
https://doi.org/https://doi.org/10.1016/...
), who also observed that biotite with high fO2QFM = + 0.8 to + 2.0) crystallizes together with amphibole at similar high oxidizing conditions.

The presence of magmatic epidote requires fO2> quartz-fayalite-magnetite (QFM) (Liou 1973Liou J.G. 1973. Synthesis and stability relations of epidote, Ca2Al2FeSiO12(OH). Journal of Petrology, 14(3):381-413. https://doi.org/10.1093/petrology/14.3.381
https://doi.org/https://doi.org/10.1093/...
) and further reinforces high oxygen fugacity. The pistacite content of epidote of the studied granites (27 to 31mol.%) suggests that fO2 was higher than QFM and buffered between NNO (nickel-nickel oxide) and HM oxygen buffers (e.g., Sial et al. 2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
).

Granitic magma transport estimates

Epidote from the Major Isidoro and Monteirópolis granites is partially included in later minerals such as biotite, plagioclase, and hornblende and shows resorbed rims, especially in contact with quartz and K-feldspar (Fig. 10). Epidote dissolution in residual melts is explained by non-equilibrium conditions when relatively high-pressure epidote is brought up from deeper levels in the magma and mineral aggregates shield and prevent re-equilibration of the epidote inclusions with residual melt (e.g., Brandon et al. 1996Brandon A.D., Creaser R.A., Chacko T. 1996. Constraints on Rates of Granitic Magma Transport from Epidote Dissolution Kinetics. Science, 271(5257):1845-1848. https://doi.org/10.1126/science.271.5257.1845
https://doi.org/https://doi.org/10.1126/...
). The textural relationships of epidote with other minerals in rocks yield compelling information on upward magma transport (e.g., Brandon et al. 1996Brandon A.D., Creaser R.A., Chacko T. 1996. Constraints on Rates of Granitic Magma Transport from Epidote Dissolution Kinetics. Science, 271(5257):1845-1848. https://doi.org/10.1126/science.271.5257.1845
https://doi.org/https://doi.org/10.1126/...
, Sial et al. 1999Sial A.N., Toselli A.J., Saavedra J., Parada M.A., Ferreira V.P. 1999. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile. Lithos, 46(3):367-392. https://doi.org/10.1016/S0024-4937(98)00074-7
https://doi.org/https://doi.org/10.1016/...
, 2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
, Long et al. 2005Long E.L., Castellana C.H., Sial A.N. 2005. Age, Origin and Cooling History of the Coronel João Sá Pluton, Bahia, Brazil. Journal of Petrology, 46(2):255-273. https://doi.org/10.1093/petrology/egh070
https://doi.org/https://doi.org/10.1093/...
, Brasilino et al. 2011Brasilino R.G., Sial A.N., Ferreira V.P., Pimentel M.M. 2011. Bulk rock and mineral chemistries and ascent rates of high-K calc-alkalic epidote-bearing magmas, Northeastern Brazil. Lithos, 127(3-4):441-454. https://doi.org/10.1016/j.lithos.2011.09.017
https://doi.org/https://doi.org/10.1016/...
). Sial et al. (2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
), based on dissolution kinetic experiments on epidote from Brandon et al. (1996Brandon A.D., Creaser R.A., Chacko T. 1996. Constraints on Rates of Granitic Magma Transport from Epidote Dissolution Kinetics. Science, 271(5257):1845-1848. https://doi.org/10.1126/science.271.5257.1845
https://doi.org/https://doi.org/10.1126/...
) and estimating the size of partially corroded subhedral epidote crystals, proposed a way to estimate magma transport rates as follows:

  • Selection of mEp based on their mol.% Ps, and highly corroded subhedral grains which are partially shielded by plagioclase, biotite, or K-feldspar (Fig. 10);

  • Inferring the original shapes of corroded grains and measure the maximum dissolution zone width;

  • Estimating the duration of corrosion by using the minimum apparent diffusion coefficient of 5×10−17 m2/s for Si, Al, Ca, and Fe between tonalitic magma and epidote at 750°C (Brandon et al. 1996Brandon A.D., Creaser R.A., Chacko T. 1996. Constraints on Rates of Granitic Magma Transport from Epidote Dissolution Kinetics. Science, 271(5257):1845-1848. https://doi.org/10.1126/science.271.5257.1845
    https://doi.org/https://doi.org/10.1126/...
    ), as follows:

d z = D a p p × t

Where:

  • dz =  width of dissolution zone (m);
  • Dapp =  apparent diffusion coefficient (5×10−17 m2/s); and
  • t =  time for partial dissolution of epidote (s)

Accordingly, t = dz2/(5×10-17 m2/s).

  • Depth of host magma emplacement is inferred from Al-in hornblende barometry;

  • The rate of magma transport is the ratio of the route length (the difference between the emplacement depth and the source depth) to the average time of corrosion of epidote exposed to the host melt. For a tonalite melting, at water-saturated conditions and fO2 buffered by NNO, plagioclase and epidote may coexist from a depth ~10 kbar (Schmidt and Thompson 1996Schmidt M.W., Thompson A.B. 1996. Epidote in calc-alkaline magmas: An experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. American Mineralogist, 81(3-4):462-474. https://doi.org/10.2138/am-1996-3-420
    https://doi.org/https://doi.org/10.2138/...
    , Fig. 2). We infer the route length as the difference between 10 kbar and the emplacement depth. Accordingly,

T r = L r / t

Where:

  • Tr =  transport rate (m/year);
  • Lr =  (10 − Pe)·104/3 (m);
  • Lr =  length route (m);
  • Pe =  pressure of emplacement (kbar);
  • t =  time of partial dissolution of epidote (year).

Figure 10.
Textural aspects showed by magmatic epidote from the Major Isidoro (A, B, C) and Monteirópolis (D, E, F) granites. (A) Subhedral epidote armored by biotite; included occur euhedral apatite crystals; (B) subhedral epidote grains armored by biotite, and feldspar with minor corroded embayment; (C) euhedral magmatic epidote with allanite core included in biotite; (D) euhedral epidote partially dissolved by the host granitic magma; (E) euhedral magmatic epidote with allanite core embayed or totally dissolved where in contact with the quartz-feldspathic matrix; (F) euhedral epidote armored from total dissolution by biotite, and edenite from reaction with host magma. Parallel polarizers except for photo b and c. dashed lines are an attempt to reconstruct original shape of epidote crystals, indicating how much some of them have been dissolved by host magma. Mineral abbreviations after Whitney and Evans (2010Whitney D.L., Evans B.W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
https://doi.org/https://doi.org/10.2138/...
) are: All: allanite; Bt: biotite; Ep: epidote; Pl: plagioclase; Ttn: titanite; Ed: edenite; Hst: hastingsite; Ap: apatite; Qz: quartz; Opc: opaque mineral; Fsp: feldspar.

Based on this approach estimated by Sial et al. (2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
), we obtain the time for the dissolved width of magmatic epidote and the maximum upward ascension rates of the magmas that formed the Major Isidoro and Monteirópolis granites. This method gives only maximum speed because the calculations assume implicitly that epidote starts reacting with the host magma as pressure drops below 10 kbar assuming, therefore, the minimum possible time for corrosion of epidote crystals. For the Major Isidoro granites, the measured width of dissolution of 0.157 to 0.225 mm occurred during 15.6 to 32 years of partial corrosion, which correspond to ascent rates of 365 to 750 m.year-1, while for the Monteirópolis granites, the measured dissolution zones of 0.207 to 0.263 mm occurred during 27-49 years of partial corrosion, which correspond to ascent rates of 395 to 635 m.year-1.

Based on this approach, some limiting assumptions are found as pointed out by Sial et al. (2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
):

  • The error brackets on the Al-in-hornblende barometry, typically of ± 0.6 kbar;

  • Use of appropriate diffusion coefficients for Ca, Al, Si, and Fe for each magma composition;

  • Bias in measuring dissolution zone widths of mEp grains (only subhedral grains were used in this study and anhedral grains were ignored);

  • Decreasing rate of epidote dissolution, leading to an underestimate of digestion time.

Despite these uncertainties, the method provides a good general indication of rapid magma ascent. This is primarily due to the very short calculated dissolution times, which is < 50yr. When compared with ascent timescale from the literature, our rapid rate of upward magma movement suggests diking/conduit flow (10-1-102 years), and not diapirism (106-109 years), as the ascent mechanism (cf. Clemens and Mawer 1992Clemens J.D., Mawer C.K. 1992. Granitic magma transport by fracture propagation. Tectonophysics, 204(3-4):339-360. https://doi.org/10.1016/0040-1951(92)90316-X
https://doi.org/https://doi.org/10.1016/...
, Petford et al. 1993Petford N., Kerr R.C., Lister J.R. 1993. Dike transport of granitoid magmas. Geology, 21(9):845-848. https://doi.org/10.1130/0091-7613(1993)021<0845:DTOGM>2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, 2000Petford N., Cruden A.R., McCaffrey K.J.W., Vigneresse J.-L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408:669-673. https://doi.org/10.1038/35047000
https://doi.org/https://doi.org/10.1038/...
). Our calculated dissolution times can be increased by four orders of magnitude and still be short.

Magmatic epidote-bearing granites elsewhere

The occurrence of magmatic Epidote (mEp) and amphibole are key features to characterize the P-T-fO2 conditions and many textural features have been considered to identify epidote as magmatic (Zen and Hammarstrom 1984Zen E.-A., Hammarstrom J.M. 1984. Magmatic epidote and its petrologic significance. Geology, 12(9):515-518. https://doi.org/10.1130/0091-7613(1984)12<515:MEAIPS>2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
, Schmidt and Poli 2004Schmidt M.W., Poli S. 2004. Magmatic Epidote. Reviews in Mineralogy and Geochemistry, 56(1):399-430. https://doi.org/10.2138/gsrmg.56.1.399
https://doi.org/https://doi.org/10.2138/...
, Sial et al. 1999Sial A.N., Toselli A.J., Saavedra J., Parada M.A., Ferreira V.P. 1999. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile. Lithos, 46(3):367-392. https://doi.org/10.1016/S0024-4937(98)00074-7
https://doi.org/https://doi.org/10.1016/...
, 2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
), such as:

  • Strong zonation with allanite rich cores;

  • Inclusion of mEp into biotite, amphibole, and plagioclase;

  • Poikilitic texture;

  • Lack of biotite alteration to chlorite;

  • Lack of plagioclase alteration.

Additionally, compositional criteria (e.g., Tulloch 1979Tulloch A.J. 1979. Secondary Ca-Al Silicates as Low-Grade Alteration Products of Granitoid Biotite. Contributions to Mineralogy and Petrology, 69:105-117. https://doi.org/10.1007/BF00371854
https://doi.org/https://doi.org/10.1007/...
) based on pistacite contents have been used to differentiate its magmatic of subsolidus origin. Magmatic epidote (mEp) in granitic rocks is known since its early description by Keyes (1983aKeyes C.R. 1983a. Epidote as a primary component of eruptive rocks. Geological Society of America Bulletin, 4(1):305-312. https://doi.org/10.1130/GSAB-4-305
https://doi.org/https://doi.org/10.1130/...
, 1983bKeyes C.R. 1983b. Some Maryland Granites and their Origin. Geological Society of America Bulletin, 4(1):299-304. https://doi.org/10.1130/GSAB-4-299
https://doi.org/https://doi.org/10.1130/...
), however, just from the 1980s has its occurrence been recorded worldwide (e.g. North America: Hammarstron and Zen 1986Hammarstron J.M., Zen E.-A. 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 71(11-12):1297-1313.; Europe: Terentiev et al. 2016Terentiev R.V., Savko K.A., Santosh M., Korish E.H., Sarkisyan L.S. 2016. Paleoproterozoic granitoids of the Losevo terrane, East European Craton: Age, magma source and tectonic implications. Precambrian Research, 287:48-72. http://dx.doi.org/10.1016/j.precamres.2016.10.015
https://doi.org/http://dx.doi.org/10.101...
; Africa: Tchameni et al. 2016Tchameni R., Sun F., Dawaï D., Danra G., Tékoum L., Nomo Negue E., Vanderhaeghe O., Nzolang C., Dagwaï N. 2016. Zircon dating and mineralogy of the Mokong Pan-African magmatic epidote-bearing granite (North Cameroon). International Journal of Earth Sciences, 105:1811-1830. https://doi.org/10.1007/s00531-015-1276-x
https://doi.org/https://doi.org/10.1007/...
; India: Rogers 1988Rogers J.J.W. 1988. The Arsikere Granite of southern India: Magmatism and metamorphism in a previously depleted crust. Chemical Geology, 67(1-2):155-163. https://doi.org/10.1016/0009-2541(88)90012-5
https://doi.org/https://doi.org/10.1016/...
, Basak et al. 2019Basak A., Goswami B., Singha A., Das S., Bhattacharyya C. 2019. Magmatic epidote in the Grenvillian granitoids of North Purulia Shear Zone, Chhotanagpur Gneissic Complex, India and its significance. Current Science, 117(2):298-303. https://doi.org/10.18520/cs/v117/i2/298-303
https://doi.org/https://doi.org/10.18520...
; New Zealand: Tulloch 1979Tulloch A.J. 1979. Secondary Ca-Al Silicates as Low-Grade Alteration Products of Granitoid Biotite. Contributions to Mineralogy and Petrology, 69:105-117. https://doi.org/10.1007/BF00371854
https://doi.org/https://doi.org/10.1007/...
; South America: Sial 1986Sial A.N. 1986. Granite-types in northeast Brazil: current knowledge. Brazilian Journal of Geology, 16(1):54-72. https://doi.org/10.25249/0375-7536.19865472
https://doi.org/https://doi.org/10.25249...
, Sial and Ferreira 1990Sial A.N., Ferreira V.P. 1990. Granitoids in northeastern Brazil: Oxygen and sulfur isotope compositions and depths of emplacement. Journal of South American Earth Sciences, 3(2-3):103-112. https://doi.org/10.1016/0895-9811(90)90023-T
https://doi.org/https://doi.org/10.1016/...
, 2015Sial A.N., Ferreira V.P. 2015. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68:113-133. https://doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/https://doi.org/10.1016/...
, Sial et al. 1997Sial A.N., Ferreira V.P., Santos E.J. 1997. Magmatic epidote-bearing granitoids and ultrapotassic magmatism of the Borborema Province, northeast Brazil. In: International Symposium on Granites and Associated Mineralizations, 2., 1997. Excursions Guide. Salvador. p. 35-54., 1998Sial A.N., Ferreira V.P., Fallick A.E., Cruz M.J.M. 1998. Amphibole-rich clots in calc-alkalic granitoids in the Borborema province, northeastern Brazil. Journal of South American Earth Sciences, 11(5):457-471. https://doi.org/10.1016/S0895-9811(98)00034-0
https://doi.org/https://doi.org/10.1016/...
, 2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
).

Epidote-bearing granite transport and formation in the Borborema Province

In the Borborema Province, northeastern Brazil, epidote-bearing granites occur commonly throughout Cryogenian-Ediacaran plutons (see Sial and Ferreira 2015Sial A.N., Ferreira V.P. 2015. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68:113-133. https://doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/https://doi.org/10.1016/...
). Interestingly, plutons of similar chemical composition, crystallized at similar pressure, may or may not contain magmatic epidote (e.g., Sial et al. 2008Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
https://doi.org/https://doi.org/10.1016/...
). This mineral is highly vulnerable to changing P-T conditions by dissolving during magma ascent; however, the presence of mEp in granitic rocks allows constraining the depth of melting and crystallization, and ascension rates through the continental crust. In this province, magmatic epidote is more abundant and better preserved in older (0.64-0.62 Ga) plutons, however, it occurs in fewer younger (ca. 0.57 Ga) plutons (cf. Ferreira et al. 2004Ferreira V.P., Sial A.N., Pimentel M.M., Moura C.A.V. 2004. Acidic to intermediate magmatism and crustal evolution in the Transversal Zone, northeastern Brazil. In: Mantesso Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.). Geologia do Continente Sul-americano: a evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Editora USP, p. 189-201.). Ferreira et al. (2011Ferreira V.P., Sial A.N., Pimentel M.M., Armstrong R., Spicuzza M.J., Guimarães I.P., Silva Filho A.F. 2011. Contrasting sources and P-T crystallization conditions of epidote-bearing granitic rocks, northeastern Brazil: O, Sr, and Nd Isotopes. Lithos, 121(1-4):189-201. https://doi.org/10.1016/j.lithos.2010.11.002
https://doi.org/https://doi.org/10.1016/...
) tied the magmatic epidote survival, which is possible only when upward magma transport from the deep crust is rapid, in the older plutons of the Transversal Domain of the Borborema Province, to hot continental crust conditions during the peak of metamorphism, in the main stage of the Brasiliano orogenic cycle. The Major Isidoro and Monteirópolis plutons are two of these early plutons (~0.63 Ga; Silva et al. 2015Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva J.M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part I):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
https://doi.org/https://doi.org/10.1016/...
, 2016Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N. 2016. Two stage mantle-derived granitic rocks and the onset of the Brasiliano orogeny: Evidence from Sr, Nd, and O isotopes. Lithos, 264:189-200. https://doi.org/10.1016/j.lithos.2016.08.030
https://doi.org/https://doi.org/10.1016/...
) plausibly produced by partial melting of a reworked Tonian lower-continental crust and by Tonian mantle-derived rocks, respectively, emplaced during the Brasiliano orogenesis along the JHSZ, which must have acted to facilitate the fast upward migration that contributed to prevent mEp dissolution. This is consistent with buoyancy-ascent of magmas in narrow channels, for instance; via an interconnected network of shear zones, as suggested by Collins and Sawyer (1996Collins W.J., Sawyer E.W. 1996. Pervasive granitoid magma transfer through the lower-middle crust during non‐coaxial compressional deformation. Journal of Metamorphic Geology, 14(5):565-579. https://doi.org/10.1046/j.1525-1314.1996.00442.x
https://doi.org/https://doi.org/10.1046/...
) and Petford et al. (2000Petford N., Cruden A.R., McCaffrey K.J.W., Vigneresse J.-L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408:669-673. https://doi.org/10.1038/35047000
https://doi.org/https://doi.org/10.1038/...
). Narrow conduits (e.g., dikes) ascent has been shown a viable mechanism for the transport of large volumes of calc-alkalic granite melt through the continental crust during a short timescale (Petford et al. 1993Petford N., Kerr R.C., Lister J.R. 1993. Dike transport of granitoid magmas. Geology, 21(9):845-848. https://doi.org/10.1130/0091-7613(1993)021<0845:DTOGM>2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
).

De Saint Blanquat et al. (2011De Saint Blanquat M., Horsman E., Habert G., Morgan S., Vanderhaeghe O., Law R., Tikoff B. 2011. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics, 500(1-4):20-33. https://doi.org/10.1016/j.tecto.2009.12.009
https://doi.org/https://doi.org/10.1016/...
) found a pluton volume of first-order importance for the duration of pluton construction and observed that the larger a pluton, the longer its construction time. Roughly considering the volume of the studied plutons between 100 and 200 km3 would give construction time span duration of less than 105 years (Petford et al. 2000Petford N., Cruden A.R., McCaffrey K.J.W., Vigneresse J.-L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408:669-673. https://doi.org/10.1038/35047000
https://doi.org/https://doi.org/10.1038/...
, De Saint Blanquat et al. 2011De Saint Blanquat M., Horsman E., Habert G., Morgan S., Vanderhaeghe O., Law R., Tikoff B. 2011. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics, 500(1-4):20-33. https://doi.org/10.1016/j.tecto.2009.12.009
https://doi.org/https://doi.org/10.1016/...
, and references therein), which is fairly higher than our fast ascent rates requiring more data (e.g., geophysical to better know the 3-d geometry and accurate volume of the studied pluton) to better understand and discuss. However, this contrast could be partly solved if we consider the growing magmatic pluton source-controlled by magma batches. As showed by Solano et al. (2012Solano J.M.S., Jackson M.D., Sparks R.S.J., Blundy J.D., Annen C. 2012. Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. Journal of Petrology, 53(10):1999-2026. https://doi.org/10.1093/petrology/egs041
https://doi.org/https://doi.org/10.1093/...
), lateral migration of evolved magma through high-porosity melt layers can collect the evolved granitic magma generated from a deep crustal hot zone (DCHZ) of larger areal extent into a localized ascent zone comprising dikes, faults, or shear zones. The segregation of granitic magma from its source is strongly dependent on its physical properties, of which viscosity is the most important one as a function of composition, temperature, and water content (Barker 1998Barker D.R. 1998. Granitic melt viscosity and dike formation. Journal of Structural Geology, 20(9-10):1395-1404. https://doi.org/10.1016/S0191-8141(98)00057-1
https://doi.org/https://doi.org/10.1016/...
, Giordano et al. 2008Giordano D., Russell J.K., Dingwell D.B. 2008. Viscosity of magmatic liquids: A model. Earth and Planetary Science Letters, 271(1-4):123-134. https://doi.org/10.1016/j.epsl.2008.03.038
https://doi.org/https://doi.org/10.1016/...
, and references therein). This property is a critical quantity governing transport ascent in volcanic and magmatic processes. The viscosities of the Major Isidoro and Monteirópolis magmas over their range of composition, water contents, and temperature (59.1-73.4 wt% SiO2, 0.36-1.5 wt% H2O, and 800-1,000°C, respectively; Tab. 6) were calculated using the model of Giordano et al. (2008Giordano D., Russell J.K., Dingwell D.B. 2008. Viscosity of magmatic liquids: A model. Earth and Planetary Science Letters, 271(1-4):123-134. https://doi.org/10.1016/j.epsl.2008.03.038
https://doi.org/https://doi.org/10.1016/...
), which agreed with subsequent experiments on felsic-mafic magma mixing reality (e.g., Laumonier et al. 2014Laumonier M., Scaillet B., Pichavant M., Champallier R., Andujar J., Arbaret L. 2014. On the conditions of magma mixing and its bearing on andesite production in the crust. Nature Communications, 5:5607. https://doi.org/10.1038/ncomms6607
https://doi.org/https://doi.org/10.1038/...
), providing values of 104.1-108.4, and 104.2-108.5 Pa s, respectively (lower than 106 Pa s to near-liquidus temperatures of ~1,000°C). Our viscosities values are within those found in the literature for granitic and volcanic magmas that are generally in the range of 103-108 Pa s (Scaillet et al. 1998Scaillet B., Holtz F., Pichavant M. 1998. Phase equilibrium constraints on the viscosity of silicic magmas: 1. Volcanic-plutonic comparison. Journal of Geophysical Research, 103(B11):27257-27266. https://doi.org/10.1029/98JB02469
https://doi.org/https://doi.org/10.1029/...
, Clemens and Petford 1999Clemens J.D., Petford N. 1999. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. Journal of the Geological Society, 156(6):1057-1060. https://doi.org/10.1144/gsjgs.156.6.1057
https://doi.org/https://doi.org/10.1144/...
, Laumonier et al. 2014Laumonier M., Scaillet B., Pichavant M., Champallier R., Andujar J., Arbaret L. 2014. On the conditions of magma mixing and its bearing on andesite production in the crust. Nature Communications, 5:5607. https://doi.org/10.1038/ncomms6607
https://doi.org/https://doi.org/10.1038/...
), which evidence very rapid magma ascent rates of up to 1 m.s-1 (e.g., Castro and Dingwell 2009Castro J.M., Dingwell D.B., 2009. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature, 461:780-783. https://doi.org/10.1038/nature08458
https://doi.org/https://doi.org/10.1038/...
). In Figure 11, we propose a schematic block diagram synthesizing our finds from the place of partial melting in a DCHZ to the level of emplacement of the Major Isidoro and Monteirópolis plutons.

Figure 11.
Schematic block diagram synthesizing the discussion in the text, from the place of partial melting in a deep crustal hot zone (DCHZ) to the level of emplacement of the Major Isidoro and Monteirópolis plutons (modified from Solano et al. 2012Solano J.M.S., Jackson M.D., Sparks R.S.J., Blundy J.D., Annen C. 2012. Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. Journal of Petrology, 53(10):1999-2026. https://doi.org/10.1093/petrology/egs041
https://doi.org/https://doi.org/10.1093/...
). The drawing is not to scale. After partial melting, the evolved magma may flow laterally and be drained via a network of dikes feeding a main conduit (e.g., dikes, faults, or shear zones) to the plutons (e.g., Brown and Solar 1998Brown M., Solar G.S. 1998. Granite ascent and emplacement during contractional deformation in convergent orogens. Journal of Structural Geology, 20(9-10):1365-1393. https://doi.org/10.1016/S0191-8141(98)00074-1
https://doi.org/https://doi.org/10.1016/...
, Vanderhaeghe 1999Vanderhaeghe O. 1999. Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: control of regional deformation. Tectonophysics, 312(1):35-55. https://doi.org/10.1016/S0040-1951(99)00171-7
https://doi.org/https://doi.org/10.1016/...
, 2001Vanderhaeghe O. 2001. Melt segregation, pervasive melt migration and magma mobility: the structural record from pores to orogens. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(4-5):213-223. https://doi.org/10.1016/S1464-1895(01)00048-5
https://doi.org/https://doi.org/10.1016/...
, 2009Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477(3-4):119-134. https://doi.org/10.1016/j.tecto.2009.06.021
https://doi.org/https://doi.org/10.1016/...
, Hall and Kisters 2012Hall D., Kisters A. 2012. The stabilization of self-organised leucogranite networks-Implications for melt segregation and far-field melt transfer in the continental crust. Earth and Planetary Science Letters, 355-356:1-12. http://doi.org/10.1016/j.epsl.2012.08.033
https://doi.org/http://doi.org/10.1016/j...
). We consider water-saturated conditions and fO2 buffered by NNO, where plagioclase and epidote may coexist at a depth ~10 kbar. From the ascent route of this depth to the level of emplacement, partial dissolution of epidote occurs during very short calculated dissolution times (< 50yr).

CONCLUSIONS

The Major Isidoro (627 Ma) and Monteirópolis (626 Ma) granites crystallized under oxidizing conditions between the NNO-HM buffers, with initial crystallization temperatures greater than 940°C. Pressures of 5.3-7.7 kbar (Major Isidoro) and 4.3-5.3 kbar (Monterirópolis) were estimated for the final level of emplacement. Epidote survival (partially dissolved) evidences rapid upward transportation rates of the Major Isidoro and Monteiropólis magmas (365-750 m/year), which were probably favored by the JHSZ, through hot deep to upper continental crust during the onset of the Brasiliano orogeny. These rates are comparable to those from epidote-bearing granites of similar age in other domains of the Borborema Province.

ACKNOWLEDGMENTS

We thank Edward Sawyer for discussions on the geology of the Major Isidoro pluton. Nilson M. Botelho is thanked for mineral chemistry laboratory facilities. We are grateful to Bruna Maria Borba de Carvalho for the acquisition of mineral chemistry at the Electron Microprobe Laboratory in the Universidade de Brasília, Brazil, and Anderson de Abreu da Silva for the XRF chemical analyses at the Stable Isotope Laboratory (LABISE) in the Universidade Federal de Pernambuco, Brazil. Comments on drafts and revised versions of the manuscript by Maia de Lourdes, Anelise Bertoti, Julio Mendes, and Adejardo da Silva Filho, as members of Silva’s thesis committee, are acknowledged. We are grateful to Claudio Ricomini, Chief Editor, for careful editorial handling, and especially to Olivier Vanderhaeghe, Silvio Vlach, and an anonymous reviewer for their positive, critical, and constructive comments, which greatly contribute to improve the paper. Obviously, any errors or omissions are solely the responsibility of the authors. VPF and ANS acknowledge the continuous financial support from the CNPq (process number 471034/2012-6) and FACEPE (process APQ-1738-1.07/12). This is the NEG-LABISE contribution n. 293.

REFERENCES

  • Abdel-Rahman A.F.M. 1994. Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525
    » https://doi.org/https://doi.org/10.1093/petrology/35.2.525
  • Amorim J.V.A., Guimarães I.P., Farias D.J.S., Lima J.V., Santos L., Ribeiro V.B., Brainer C. 2019. Late-Neoproterozoic ferroan granitoids of the Transversal subprovince, Borborema Province, NE Brazil: petrogenesis and geodynamic implications. International Geology Review, 61(14):1745-1767. https://doi.org/10.1080/00206814.2018.1544936
    » https://doi.org/https://doi.org/10.1080/00206814.2018.1544936
  • Anderson J.L. 1996. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2):125-138. https://doi.org/10.1017/S0263593300006544
    » https://doi.org/https://doi.org/10.1017/S0263593300006544
  • Anderson J.L., Barth A.P., Wooden J.L., Mazdab F. 2008. Thermometry and Thermobarometers in Granitic Systems. Reviews in Mineralogy and Geochemistry, 69(1):121-142. https://doi.org/10.2138/rmg.2008.69.4
    » https://doi.org/https://doi.org/10.2138/rmg.2008.69.4
  • Anderson J.L., Smith D.R. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614
    » https://doi.org/https://doi.org/10.2138/am-1995-5-614
  • Bachmann O., Dungan M. 2002. Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. American Mineralogist, 87(8-9):1062-1076. https://doi.org/10.2138/am-2002-8-903
    » https://doi.org/https://doi.org/10.2138/am-2002-8-903
  • Barker D.R. 1998. Granitic melt viscosity and dike formation. Journal of Structural Geology, 20(9-10):1395-1404. https://doi.org/10.1016/S0191-8141(98)00057-1
    » https://doi.org/https://doi.org/10.1016/S0191-8141(98)00057-1
  • Basak A., Goswami B., Singha A., Das S., Bhattacharyya C. 2019. Magmatic epidote in the Grenvillian granitoids of North Purulia Shear Zone, Chhotanagpur Gneissic Complex, India and its significance. Current Science, 117(2):298-303. https://doi.org/10.18520/cs/v117/i2/298-303
    » https://doi.org/https://doi.org/10.18520/cs/v117/i2/298-303
  • Blundy J.D., Holland T.J.B. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104:208-224. https://doi.org/10.1007/BF00306444
    » https://doi.org/https://doi.org/10.1007/BF00306444
  • Boehnke P., Watson E.B., Trail D., Harrison T.M., Schmitt A. 2013. Zircon saturation re-revisited. Chemical Geology, 351:324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028
    » https://doi.org/https://doi.org/10.1016/j.chemgeo.2013.05.028
  • Brandon A.D., Creaser R.A., Chacko T. 1996. Constraints on Rates of Granitic Magma Transport from Epidote Dissolution Kinetics. Science, 271(5257):1845-1848. https://doi.org/10.1126/science.271.5257.1845
    » https://doi.org/https://doi.org/10.1126/science.271.5257.1845
  • Brasilino R.G., Sial A.N., Ferreira V.P., Pimentel M.M. 2011. Bulk rock and mineral chemistries and ascent rates of high-K calc-alkalic epidote-bearing magmas, Northeastern Brazil. Lithos, 127(3-4):441-454. https://doi.org/10.1016/j.lithos.2011.09.017
    » https://doi.org/https://doi.org/10.1016/j.lithos.2011.09.017
  • Brasilino R.G., Sial A.N., Lafon J.M. 1999. Magmatic epidote, hornblende barometric estimates, and emplacement of the Conceição das Creoulas pluton, Alto Pajeu Terrane, NE Brazil. Anais da Academia Brasileira de Ciências, 71(1):3-16.
  • Brito M.F.L., Silva Filho A.F., Guimarães I.P. 2009. Geologia isotópica do batólito shoshonítico-ultrapotássico Neoproterozóico Serra do Catú e implicações na evolução da interface dos Domínios Canindé e Pernambuco-Alagoas. Revista Brasileira de Geociências, 39(2):324-337. https://doi.org/10.25249/0375-7536.2009392324337
    » https://doi.org/https://doi.org/10.25249/0375-7536.2009392324337
  • Brown M., Solar G.S. 1998. Granite ascent and emplacement during contractional deformation in convergent orogens. Journal of Structural Geology, 20(9-10):1365-1393. https://doi.org/10.1016/S0191-8141(98)00074-1
    » https://doi.org/https://doi.org/10.1016/S0191-8141(98)00074-1
  • Campos B.C.S., Vilalva F.C.J., Nascimento M.A.L., Galindo A.C. 2016. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications. Journal of South American Earth Sciences, 70:224-236. https://doi.org/10.1016/j.jsames.2016.05.010
    » https://doi.org/https://doi.org/10.1016/j.jsames.2016.05.010
  • Castro J.M., Dingwell D.B., 2009. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature, 461:780-783. https://doi.org/10.1038/nature08458
    » https://doi.org/https://doi.org/10.1038/nature08458
  • Clemens J.D., Mawer C.K. 1992. Granitic magma transport by fracture propagation. Tectonophysics, 204(3-4):339-360. https://doi.org/10.1016/0040-1951(92)90316-X
    » https://doi.org/https://doi.org/10.1016/0040-1951(92)90316-X
  • Clemens J.D., Petford N. 1999. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. Journal of the Geological Society, 156(6):1057-1060. https://doi.org/10.1144/gsjgs.156.6.1057
    » https://doi.org/https://doi.org/10.1144/gsjgs.156.6.1057
  • Collins W.J., Sawyer E.W. 1996. Pervasive granitoid magma transfer through the lower-middle crust during non‐coaxial compressional deformation. Journal of Metamorphic Geology, 14(5):565-579. https://doi.org/10.1046/j.1525-1314.1996.00442.x
    » https://doi.org/https://doi.org/10.1046/j.1525-1314.1996.00442.x
  • Deer W.A., Howie R.A., Zussman J. 2013. An Introduction to the Rock-Forming Minerals 3rd ed. London: Mineralogical Society, 498 p. https://doi.org/10.1180/DHZ
    » https://doi.org/https://doi.org/10.1180/DHZ
  • De Oliveira R.G. 2008. Arcabouço geofísico, isostasia e causas do magmatismo Cenozóico da Província Borborema e de sua margem continental (Nordeste do Brazil) PhD thesis, Federal University of Rio Grande do Norte, Natal, 411 p.
  • De Saint Blanquat M., Horsman E., Habert G., Morgan S., Vanderhaeghe O., Law R., Tikoff B. 2011. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics, 500(1-4):20-33. https://doi.org/10.1016/j.tecto.2009.12.009
    » https://doi.org/https://doi.org/10.1016/j.tecto.2009.12.009
  • Enami M., Suzuki K., Liou J.G., Bird D.K. 1993. Al-Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence. European Journal of Mineralogy, 5(2):219-231. https://doi.org/10.1127/ejm/5/2/0219
    » https://doi.org/https://doi.org/10.1127/ejm/5/2/0219
  • Evans B.W., Vance J.A. 1987. Epidote phenocrysts in dacitic dikes, Boulder County, Colorado. Contributions to Mineralogy and Petrology, 96:178-185. https://doi.org/10.1007/BF00375231
    » https://doi.org/https://doi.org/10.1007/BF00375231
  • Ferreira V.P., Sial A.N., Jardim de Sá E.F. 1998. Geochemical and isotopic signatures of the Proterozoic granitoids in terranes of the Borborema Province, northeastern Brazil. Journal of South American Earth Sciences, 11(5):439-455. https://doi.org/10.1016/S0895-9811(98)00027-3
    » https://doi.org/https://doi.org/10.1016/S0895-9811(98)00027-3
  • Ferreira V.P., Sial A.N., Pimentel M.M., Armstrong R., Guimarães I.P., Silva Filho A.F., Lima M.M.C., Silva T.R. 2015. Reworked old crust-derived shoshonitic magma: The Guarany pluton, Northeastern Brazil. Lithos, 232:150-161. https://doi.org/10.1016/j.lithos.2015.06.030
    » https://doi.org/https://doi.org/10.1016/j.lithos.2015.06.030
  • Ferreira V.P., Sial A.N., Pimentel M.M., Armstrong R., Spicuzza M.J., Guimarães I.P., Silva Filho A.F. 2011. Contrasting sources and P-T crystallization conditions of epidote-bearing granitic rocks, northeastern Brazil: O, Sr, and Nd Isotopes. Lithos, 121(1-4):189-201. https://doi.org/10.1016/j.lithos.2010.11.002
    » https://doi.org/https://doi.org/10.1016/j.lithos.2010.11.002
  • Ferreira V.P., Sial A.N., Pimentel M.M., Moura C.A.V. 2004. Acidic to intermediate magmatism and crustal evolution in the Transversal Zone, northeastern Brazil. In: Mantesso Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.). Geologia do Continente Sul-americano: a evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Editora USP, p. 189-201.
  • Ferreira V.P., Valley J.W., Sial A.N, Spicuzza M.J. 2003. Oxygen isotope compositions and magmatic epidote from two contrasting metaluminous granitoids, NE Brazil. Contributions to Mineralogy and Petrology, 145:205-216. https://doi.org/10.1007/s00410-003-0443-4
    » https://doi.org/https://doi.org/10.1007/s00410-003-0443-4
  • Giordano D., Russell J.K., Dingwell D.B. 2008. Viscosity of magmatic liquids: A model. Earth and Planetary Science Letters, 271(1-4):123-134. https://doi.org/10.1016/j.epsl.2008.03.038
    » https://doi.org/https://doi.org/10.1016/j.epsl.2008.03.038
  • Green T.H., Adam J. 2002. Pressure effect on Ti- or P-rich accessory mineral saturation in evolved granitic melts with differing K2O/Na2O ratios. Lithos, 61(3-4):271-282. https://doi.org/10.1016/S0024-4937(02)00083-X
    » https://doi.org/https://doi.org/10.1016/S0024-4937(02)00083-X
  • Green T.H., Watson E.B. 1982. Crystallization of Apatite in Natural Magmas Under High Pressure, Hydrous Conditions, with Particular Reference to ‘Orogenic’ Rock Series. Contributions to Mineralogy and Petrology, 79:96-105. https://doi.org/10.1007/BF00376966
    » https://doi.org/https://doi.org/10.1007/BF00376966
  • Guimarães I.P., Silva Filho A.F., Almeida C.N., Van Schmus W.R., Araújo J.M.M., Melo S.C., Melo E.B. 2004. Brasiliano (Pan-African) granitic magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research, 135(1-2):23-53. https://doi.org/10.1016/j.precamres.2004.07.004
    » https://doi.org/https://doi.org/10.1016/j.precamres.2004.07.004
  • Hall D., Kisters A. 2012. The stabilization of self-organised leucogranite networks-Implications for melt segregation and far-field melt transfer in the continental crust. Earth and Planetary Science Letters, 355-356:1-12. http://doi.org/10.1016/j.epsl.2012.08.033
    » https://doi.org/http://doi.org/10.1016/j.epsl.2012.08.033
  • Hammarstron J.M., Zen E.-A. 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 71(11-12):1297-1313.
  • Harrison T.M., Watson E.B. 1984. The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7):1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4
    » https://doi.org/https://doi.org/10.1016/0016-7037(84)90403-4
  • Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D. 2012. IMA Report: Nomenclature of the amphibole supergroup. American Mineralogist, 97(11-12):2031-2048. https://doi.org/10.2138/am.2012.4276
    » https://doi.org/https://doi.org/10.2138/am.2012.4276
  • Holland T., Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116:433-447. https://doi.org/10.1007/BF00310910
    » https://doi.org/https://doi.org/10.1007/BF00310910
  • Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4):231-239.
  • Johnson M.C., Rutherford M.J. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9):837-841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
  • Johnston A.D., Wyllie P.J. 1988. Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. Contributions to Mineralogy and Petrology, 98:352-362. https://doi.org/10.1007/BF00375185
    » https://doi.org/https://doi.org/10.1007/BF00375185
  • Keyes C.R. 1983a. Epidote as a primary component of eruptive rocks. Geological Society of America Bulletin, 4(1):305-312. https://doi.org/10.1130/GSAB-4-305
    » https://doi.org/https://doi.org/10.1130/GSAB-4-305
  • Keyes C.R. 1983b. Some Maryland Granites and their Origin. Geological Society of America Bulletin, 4(1):299-304. https://doi.org/10.1130/GSAB-4-299
    » https://doi.org/https://doi.org/10.1130/GSAB-4-299
  • Laumonier M., Scaillet B., Pichavant M., Champallier R., Andujar J., Arbaret L. 2014. On the conditions of magma mixing and its bearing on andesite production in the crust. Nature Communications, 5:5607. https://doi.org/10.1038/ncomms6607
    » https://doi.org/https://doi.org/10.1038/ncomms6607
  • Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3):623-651.
  • Leake B.E., Woolley A.R., Birch W.D., Burke E.A.J., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H.J., Krivovichev V.G., Schumacher J.C., Stephenson N.C.N., Whittaker E.J.W. 2003. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s 1997 recommendations. The Canadian Mineralogist, 41(6):1355-1362. https://doi.org/10.2113/gscanmin.41.6.1355
    » https://doi.org/https://doi.org/10.2113/gscanmin.41.6.1355
  • Lima J.V., Guimarães I.P., Santos L., Amorim J.V.A., Farias D.J.S. 2017. Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 75:116-133. https://doi.org/10.1016/j.jsames.2017.02.004
    » https://doi.org/https://doi.org/10.1016/j.jsames.2017.02.004
  • Lima M.M.C. 2019. Petrologia e geoquímica de plútons do leste do batólito Águas Belas-Canindé, Domínio Pernambuco-Alagoas, Província Borborema PhD thesis, Universidade Federal de Pernambuco, Recife, 206 p.
  • Lima M.M.C., Silva T.R., Ferreira V.P., Silva J.M.R. 2014. Metasedimentary rocks of the northern portion of the Macururé domain, Sergipano Belt, northeastern Brazil: Geochemical characterization of their protoliths and tectonic implications. Estudos Geológicos, 24(2):89-107. https://doi.org/10.18190/1980-8208/estudosgeologicos.v24n2p89-107
    » https://doi.org/https://doi.org/10.18190/1980-8208/estudosgeologicos.v24n2p89-107
  • Liou J.G. 1973. Synthesis and stability relations of epidote, Ca2Al2FeSiO12(OH). Journal of Petrology, 14(3):381-413. https://doi.org/10.1093/petrology/14.3.381
    » https://doi.org/https://doi.org/10.1093/petrology/14.3.381
  • Long E.L., Castellana C.H., Sial A.N. 2005. Age, Origin and Cooling History of the Coronel João Sá Pluton, Bahia, Brazil. Journal of Petrology, 46(2):255-273. https://doi.org/10.1093/petrology/egh070
    » https://doi.org/https://doi.org/10.1093/petrology/egh070
  • Long E.L., Ketcham D.H., Fanning C.M., Sial A.N. 2019. The unregenerate São Rafael pluton, Borborema Province, Northeastern Brazil. Lithos, 332-333:192-206. https://doi.org/10.1016/j.lithos.2019.01.036
    » https://doi.org/https://doi.org/10.1016/j.lithos.2019.01.036
  • Mendes V., Brito M.F.L., Paiva I.P. 2009. Folha Arapiraca (SC.24-X-D, escala 1:250.000) Integration Geological (Geologic map). Recife: Brazilian Geological Survey (CPRM).
  • Miller C.F., McDowell S.M., Mapes R.W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6):529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
  • Molina J.F., Moreno J.A., Castro A., Rodríguez C., Fershtater G.B. 2015. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232:286-305. https://doi.org/10.1016/j.lithos.2015.06.027
    » https://doi.org/https://doi.org/10.1016/j.lithos.2015.06.027
  • Mutch E.J.F., Blundy J.D., Tattitch B.C., Cooper F.J., Brooker R.A. 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende. Contributions to Mineralogy and Petrology, 171:85. https://doi.org/10.1007/s00410-016-1298-9
    » https://doi.org/https://doi.org/10.1007/s00410-016-1298-9
  • Nachit H., Razafimahefa N., Stussi J.M., Carron J.P. 1985. Composition chimique des biotites et typologie magmatique des granitoïdes. Comptes rendus de l'Académie des sciences de la Terre et des planetes. Earth and Planetary Sciences, 11(II):813-818.
  • Naranjo A.F.S., Vlach S.R.F. 2018. On the crystallization conditions of the Neoproterozoic, high-K calc-alkaline, Bragança Paulista-type magmatism, southern Brasília Orogen, SE Brazil. Brazilian Journal of Geology, 48(3):631-650. https://doi.org/10.1590/2317-4889201820180033
    » https://doi.org/https://doi.org/10.1590/2317-4889201820180033
  • Neves S.P., Bruguier O., Vauchez A., Bosch D., Silva J.M.R., Mariano G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): Implications for western Gondwana assembly. Precambrian Research, 149(3-4):197-216. https://doi.org/10.1016/j.precamres.2006.06.005
    » https://doi.org/https://doi.org/10.1016/j.precamres.2006.06.005
  • Papoutsa A., Pe-Piper G. 2014. Geochemical variation of amphiboles in A-type granites as an indicator of complex magmatic systems: Wentworth pluton, Nova Scotia, Canada. Chemical Geology, 384:120-134. https://doi.org/10.1016/j.chemgeo.2014.07.001
    » https://doi.org/https://doi.org/10.1016/j.chemgeo.2014.07.001
  • Petford N., Cruden A.R., McCaffrey K.J.W., Vigneresse J.-L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408:669-673. https://doi.org/10.1038/35047000
    » https://doi.org/https://doi.org/10.1038/35047000
  • Petford N., Kerr R.C., Lister J.R. 1993. Dike transport of granitoid magmas. Geology, 21(9):845-848. https://doi.org/10.1130/0091-7613(1993)021<0845:DTOGM>2.3.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1993)021<0845:DTOGM>2.3.CO;2
  • Putirka K. 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101(4):841-858. https://doi.org/10.2138/am-2016-5506
    » https://doi.org/https://doi.org/10.2138/am-2016-5506
  • Rogers J.J.W. 1988. The Arsikere Granite of southern India: Magmatism and metamorphism in a previously depleted crust. Chemical Geology, 67(1-2):155-163. https://doi.org/10.1016/0009-2541(88)90012-5
    » https://doi.org/https://doi.org/10.1016/0009-2541(88)90012-5
  • Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, NE Brazil. Brazilian Journal of Geology, 29(1):73-84. https://doi.org/10.25249/0375-7536.1999297384
    » https://doi.org/https://doi.org/10.25249/0375-7536.1999297384
  • Sawyer E.W. 2000. Grain-scale and outcrop-scale distribution and movement of melt in a crystallising granite. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1-2):73-85. https://doi.org/10.1017/S0263593300007306
    » https://doi.org/https://doi.org/10.1017/S0263593300007306
  • Sawyer E.W. 2008. Atlas of Migmatites Ottawa: NRC Research Press, 371 p. The Canadian Mineralogist, Special Publication 9.
  • Scaillet B., Holtz F., Pichavant M. 1998. Phase equilibrium constraints on the viscosity of silicic magmas: 1. Volcanic-plutonic comparison. Journal of Geophysical Research, 103(B11):27257-27266. https://doi.org/10.1029/98JB02469
    » https://doi.org/https://doi.org/10.1029/98JB02469
  • Schmidt M.W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110:304-310. https://doi.org/10.1007/BF00310745
    » https://doi.org/https://doi.org/10.1007/BF00310745
  • Schmidt M.W., Poli S. 2004. Magmatic Epidote. Reviews in Mineralogy and Geochemistry, 56(1):399-430. https://doi.org/10.2138/gsrmg.56.1.399
    » https://doi.org/https://doi.org/10.2138/gsrmg.56.1.399
  • Schmidt M.W., Thompson A.B. 1996. Epidote in calc-alkaline magmas: An experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. American Mineralogist, 81(3-4):462-474. https://doi.org/10.2138/am-1996-3-420
    » https://doi.org/https://doi.org/10.2138/am-1996-3-420
  • Shabani A.A.T., Lalonde A.E., Whalen J.B. 2003. Composition of biotite from granitic rocks of the Canadian Appalachian Orogen: a potential tectonomagmatic indicator? The Canadian Mineralogist, 41(6):1381-1396. https://doi.org/10.2113/gscanmin.41.6.1381
    » https://doi.org/https://doi.org/10.2113/gscanmin.41.6.1381
  • Sial A.N. 1986. Granite-types in northeast Brazil: current knowledge. Brazilian Journal of Geology, 16(1):54-72. https://doi.org/10.25249/0375-7536.19865472
    » https://doi.org/https://doi.org/10.25249/0375-7536.19865472
  • Sial A.N. 1990. Epidote-bearing calc-alkalic granitoids in Northeast Brazil. Brazilian Journal of Geology, 20(1-4):88-100. https://doi.org/10.25249/0375-7536.199088100
    » https://doi.org/https://doi.org/10.25249/0375-7536.199088100
  • Sial A.N. 1993. Contrasting metaluminous magmatic epidote-bearing granitic suites from two Precambrian Foldbelts in Northeast Brazil. Anais da Academia Brasileira de Ciências, 65(Suppl.):141-162.
  • Sial A.N., Ferreira V.P. 1990. Granitoids in northeastern Brazil: Oxygen and sulfur isotope compositions and depths of emplacement. Journal of South American Earth Sciences, 3(2-3):103-112. https://doi.org/10.1016/0895-9811(90)90023-T
    » https://doi.org/https://doi.org/10.1016/0895-9811(90)90023-T
  • Sial A.N., Ferreira V.P. 2015. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68:113-133. https://doi.org/10.1016/j.jsames.2015.10.005
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.10.005
  • Sial A.N., Ferreira V.P., Fallick A.E., Cruz M.J.M. 1998. Amphibole-rich clots in calc-alkalic granitoids in the Borborema province, northeastern Brazil. Journal of South American Earth Sciences, 11(5):457-471. https://doi.org/10.1016/S0895-9811(98)00034-0
    » https://doi.org/https://doi.org/10.1016/S0895-9811(98)00034-0
  • Sial A.N., Ferreira V.P., Santos E.J. 1997. Magmatic epidote-bearing granitoids and ultrapotassic magmatism of the Borborema Province, northeast Brazil. In: International Symposium on Granites and Associated Mineralizations, 2., 1997. Excursions Guide Salvador. p. 35-54.
  • Sial A.N., Toselli A.J., Saavedra J., Parada M.A., Ferreira V.P. 1999. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile. Lithos, 46(3):367-392. https://doi.org/10.1016/S0024-4937(98)00074-7
    » https://doi.org/https://doi.org/10.1016/S0024-4937(98)00074-7
  • Sial A.N., Vasconcelos P.M., Ferreira V.P., Pessoa R.R., Brasilino R.G., Morais Neto J.M. 2008. Geochronological and mineralogical constraints on depth of emplacement and ascension rates of epidote-bearing magmas from northeastern Brazil. Lithos, 105(3-4):225-238. https://doi.org/10.1016/j.lithos.2008.04.002
    » https://doi.org/https://doi.org/10.1016/j.lithos.2008.04.002
  • Silva T.R. 2017. Granitos da porção sudeste do batólito águas Belas-Canindé, domínio Pernambuco-Alagoas: Geoquímica, petrologia, geocronologia e caracterização geotectônica PhD thesis, Universidade Federal de Pernambuco, Recife, 190 p. https://doi.org/10.13140/RG.2.2.16693.70888
    » https://doi.org/https://doi.org/10.13140/RG.2.2.16693.70888
  • Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N. 2016. Two stage mantle-derived granitic rocks and the onset of the Brasiliano orogeny: Evidence from Sr, Nd, and O isotopes. Lithos, 264:189-200. https://doi.org/10.1016/j.lithos.2016.08.030
    » https://doi.org/https://doi.org/10.1016/j.lithos.2016.08.030
  • Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N. 2019. Geochemical and isotope evidence for mantle-derived source rock of high-K calc-alkaline I-type granites, Pernambuco-Alagoas Domain, northeastern Brazil. International Journal of Earth Sciences, 108:1095-1120. https://doi.org/10.1007/s00531-019-01696-9
    » https://doi.org/https://doi.org/10.1007/s00531-019-01696-9
  • Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva J.M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part I):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.09.002
  • Silva Filho A.F., Guimarães I.P., Santos L., Armstrong R., Van Schmus W.R. 2016. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 68:134-154. https://doi.org/10.1016/j.jsames.2015.12.013
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.12.013
  • Silva Filho A.F., Guimarães I.P., Van Schmus W.R. 2002. Crustal Evolution of the Pernambuco-Alagoas Complex, Borborema Province, NE Brazil: Nd Isotopic Data from Neoproterozoic Granitoids. Gondwana Research, 5(2):409-422. https://doi.org/10.1016/S1342-937X(05)70732-2
    » https://doi.org/https://doi.org/10.1016/S1342-937X(05)70732-2
  • Silva Filho A.F., Guimarães I.P., Van Schmus W.R., Armstrong R., Silva J.M.R., Osako L.S., Cocentino L.M. 2014. SHRIMP U-Pb zircon geochronology and Nd signatures of supracrustal sequences and orthogneisses constrain the Neoproterozoic evolution of the Pernambuco-Alagoas domain, southern part of Borborema Province, NE Brazil. International Journal of Earth Sciences, 103:2155-2190. https://doi.org/10.1007/s00531-014-1035-4
    » https://doi.org/https://doi.org/10.1007/s00531-014-1035-4
  • Solano J.M.S., Jackson M.D., Sparks R.S.J., Blundy J.D., Annen C. 2012. Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. Journal of Petrology, 53(10):1999-2026. https://doi.org/10.1093/petrology/egs041
    » https://doi.org/https://doi.org/10.1093/petrology/egs041
  • Tchameni R., Sun F., Dawaï D., Danra G., Tékoum L., Nomo Negue E., Vanderhaeghe O., Nzolang C., Dagwaï N. 2016. Zircon dating and mineralogy of the Mokong Pan-African magmatic epidote-bearing granite (North Cameroon). International Journal of Earth Sciences, 105:1811-1830. https://doi.org/10.1007/s00531-015-1276-x
    » https://doi.org/https://doi.org/10.1007/s00531-015-1276-x
  • Terentiev R.V., Savko K.A., Santosh M., Korish E.H., Sarkisyan L.S. 2016. Paleoproterozoic granitoids of the Losevo terrane, East European Craton: Age, magma source and tectonic implications. Precambrian Research, 287:48-72. http://dx.doi.org/10.1016/j.precamres.2016.10.015
    » https://doi.org/http://dx.doi.org/10.1016/j.precamres.2016.10.015
  • Tollari N., Toplis M.J., Barnes S.J. 2006. Predicting phosphate saturation in silicate magmas: An experimental study of the effects of melt composition and temperature. Geochimica et Cosmochimica Acta, 70(6):1518-1536. https://doi.org/10.1016/j.gca.2005.11.024
    » https://doi.org/https://doi.org/10.1016/j.gca.2005.11.024
  • Tulloch A.J. 1979. Secondary Ca-Al Silicates as Low-Grade Alteration Products of Granitoid Biotite. Contributions to Mineralogy and Petrology, 69:105-117. https://doi.org/10.1007/BF00371854
    » https://doi.org/https://doi.org/10.1007/BF00371854
  • Vanderhaeghe O. 1999. Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: control of regional deformation. Tectonophysics, 312(1):35-55. https://doi.org/10.1016/S0040-1951(99)00171-7
    » https://doi.org/https://doi.org/10.1016/S0040-1951(99)00171-7
  • Vanderhaeghe O. 2001. Melt segregation, pervasive melt migration and magma mobility: the structural record from pores to orogens. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(4-5):213-223. https://doi.org/10.1016/S1464-1895(01)00048-5
    » https://doi.org/https://doi.org/10.1016/S1464-1895(01)00048-5
  • Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477(3-4):119-134. https://doi.org/10.1016/j.tecto.2009.06.021
    » https://doi.org/https://doi.org/10.1016/j.tecto.2009.06.021
  • Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu S.F., Penaye J., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil and the Central African Fold Belt. Geological Society, London, Special Publications, 294(1):69-99. https://doi.org/10.1144/SP294.5
    » https://doi.org/https://doi.org/10.1144/SP294.5
  • Vyhnal C.R., McSween H.Y., Speer J.A. 1991. Hornblende chemistry in southern Appalachian granitoids: Implication for aluminum hornblende thermobarometry and magmatic epidote stability. American Mineralogist, 76(1-2):176-188.
  • Watson E.B., Harrison T.M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821X(83)90211-X
    » https://doi.org/https://doi.org/10.1016/0012-821X(83)90211-X
  • Whitney D.L., Evans B.W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
    » https://doi.org/https://doi.org/10.2138/am.2010.3371
  • Wones D.R. 1989. Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist, 74(7-8):744-749.
  • Wones D.R., Eugster H.P. 1965. Stability of biotite: experiment, theory and application. American Mineralogist, 50:1228-1272.
  • Zen E.-A., Hammarstrom J.M. 1984. Magmatic epidote and its petrologic significance. Geology, 12(9):515-518. https://doi.org/10.1130/0091-7613(1984)12<515:MEAIPS>2.0.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1984)12<515:MEAIPS>2.0.CO;2
  • 1
    Manuscript ID: 20190110.

Publication Dates

  • Publication in this collection
    23 Sept 2020
  • Date of issue
    2020

History

  • Received
    15 Oct 2019
  • Accepted
    30 Apr 2020
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br