Acessibilidade / Reportar erro

A novel method for DNA delivery into bacteria using cationic copolymers

Amphiphilic copolymers have a wide variety of medical and biotechnological applications, including DNA transfection in eukaryotic cells. Still, no polymer-primed transfection of prokaryotic cells has been described. The reversible addition-fragmentation chain transfer (RAFT) polymer synthesis technique and the reversible deactivation radical polymerization variants allow the design of polymers with well-controlled molar mass, morphology, and hydrophilicity/hydrophobicity ratios. RAFT was used to synthesize two amphiphilic copolymers containing different ratios of the amphiphilic poly[2-(dimethyl-amino) ethyl methacrylate] and the hydrophobic poly [methyl methacrylate]. These copolymers bound to pUC-19 DNA and successfully transfected non-competent Escherichia coli DH5α, with transformation efficiency in the range of 103 colony-forming units per µg of plasmid DNA. These results demonstrate prokaryote transformation using polymers with controlled amphiphilic/hydrophobic ratios.

Gene delivery; Bacterial transformation; Copolymers; DMAEMA


Associação Brasileira de Divulgação Científica Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto SP Brazil, Tel. / Fax: +55 16 3315-9120 - Ribeirão Preto - SP - Brazil
E-mail: bjournal@terra.com.br