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Abstract

Important biological and clinical features of malignancy are reflected
in its transcript pattern. Recent advances in gene expression technol-
ogy and informatics have provided a powerful new means to obtain
and interpret these expression patterns. A comprehensive approach to
expression profiling is serial analysis of gene expression (SAGE),
which provides digital information on transcript levels. SAGE works
by counting transcripts and storing these digital values electronically,
providing absolute gene expression levels that make historical com-
parisons possible. SAGE produces a comprehensive profile of gene
expression and can be used to search for candidate tumor markers or
antigens in a limited number of samples. The Cancer Genome Ana-
tomy Project has created a SAGE database of human gene expression
levels for many different tumors and normal reference tissues and
provides online tools for viewing, comparing, and downloading ex-
pression profiles. Digital expression profiling using SAGE and
informatics have been useful for identifying genes that have a role in
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tumor invasion and other aspects of tumor progression.

Introduction

We are now very familiar with the premise
that cancer is characterized by acquired ge-
netic alterations that progressively alter genes
involved in growth, apoptosis and/or DNA
stability (1). It is also known that some of
these genetic alterations seem to be specific
to one or a very few subsets of cancer cell
types, whereas others are frequently present
in several types of cancer cells.

In the course of the last decade, there
have been many efforts to determine if the
genes altered in cancer are also useful as
diagnosis and classification markers. Many
of these cancer-causing genes have been ex-
ploited for improved clinical diagnosis and

to define potential therapeutic targets. Even
though the concept of acquired genomic DNA
alterations in malignancy has revolutionized
cancer research, the translation of this infor-
mation to clinically useful targets has been
largely based on evaluating one candidate
gene at a time. Advances in the fields of
genomics and biotechnology, such as high-
throughput mutational analysis, large-scale
expression analysis and DNA sequencing,
have considerably improved the quantity,
quality and accessibility of the molecular
information. This technical revolution is ac-
celerating the process of identifying the genes
of diagnostic, prognostic or therapeutic sig-
nificance in cancer.

Cancer is indeed a complex, dynamic and
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progressive process that is initiated by ge-
netic alterations. It also leads to even more
complex changes in the pattern of gene ex-
pression as the altered cells progress from
normal to malignant. To further increase the
challenges faced when interpreting these tran-
script patterns, expressed genes found within
these various malignant “transcriptomes” are
further modulated by genetic background,
environment and host physiology. However,
the pattern of expressed genes can still pro-
vide useful clues to better understand tumor
development and progression, if experiments
are carefully conceived and controlled. In
addition to the biological insight that might
be derived from this pattern, there are also
practical applications for simply identifying
which genes are expressed in cancer but not
in the corresponding normal tissue. This has
the practical advantage of identifying candi-
date tumor antigens. Gene expression profil-
ing also has the potential to better define the
molecular classes of tumors, previously un-
recognized by histology alone. The RNA
expression pattern may predict the pheno-
typic behavior of such cells more accurately
than traditional histological approaches and
possibly help to further differentiate between
aggressive and nonaggressive tumors. Gene
expression profiling has also been useful to
identify genes that have a central role in the
response to specific environmental condi-
tions such as hypoxia, hormonal stimuli and
drugs and may perhaps predict response to
therapy. This approach may also be helpful
to define genes in a specific pathway and to
elucidate functions of characterized and un-
characterized genes.

The development of technologies that
allow a large number of transcripts to be
analyzed simultaneously has made it pos-
sible to determine the molecular profile of
normal and disease cells in a quantitative
fashion. In addition to the comprehensive
functional investigation of one gene, cancer
research can now identify and quantify the
complex expression patterns that occur dur-
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ing tumor development and progression.

However, the analysis of large-scale ex-
pression profiling is not a trivial task and
requires the ability to compile data in a data-
base and effectively interpret this informa-
tion. Sophisticated computational and statis-
tical approaches, either new or derived from
approaches formerly applied to the physical
sciences, are now required to interpret com-
plex datasets. Other bioinformatics ap-
proaches are necessary to draw on the vast
and growing archive of information avail-
able through public databases or the bio-
medical literature. Correlating expression
levels in malignant cells with the informa-
tion derived from the recently sequenced
human genome is a particularly important
example. Finally, this information has to be
made readily available in a user-friendly for-
mat, so that scientists can concentrate on
making progress on developing better in-
sights and treatments.

Although such techniques are far from
reaching their full potential, some important
applications of this technology are already
transforming cancer research. The ability to
assay gene expression levels on a large scale
holds the promise of revealing a much more
complete picture of the molecular interac-
tions within the malignant cell. However,
these data are only a first step towards achiev-
ing a better understanding, diagnosis and
treatment of cancer.

Transcript profiling

Several methods have been developed to
monitor gene expression differences between
two samples. The first techniques widely
used to find differentially expressed tran-
scripts were subtractive hybridization and
differential display (2,3). Both techniques
identify transcripts but they do not have the
capacity to assay multiple samples as is pos-
sible with oligonucleotide arrays and cDNA
arrays (4,5), nor do they provide an in-depth
transcriptome characterization of sequenc-
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ing-based techniques such as cDNA library
sequencing and serial analysis of gene ex-
pression (SAGE). For this reason, DNA ar-
rays and SAGE are currently the techniques
most widely used for determining the rela-
tive and absolute abundance of transcript
levels through several different stages of
cancer and under cell response to different
physiological conditions or environmental
stimuli. This review focuses on the lesser
known SAGE technology, on how it has
been used to better understand cancer, and
on its potential for future applications.

Expressed sequenced tags

Large-scale sequencing of cDNA librar-
ies was first proposed as a rapid means to
access transcribed regions from the human
genome (6). Random transcribed sequences
generated by cDNA library sequencing are
known as expressed sequence tags (ESTs).
The Merck/Washington University EST
Project made one of the first large-scale
efforts to disseminate EST sequence data
(7). The Cancer Genome Anatomy Project
(8) succeeded this effort with its Tumor Gene
Index, contributing over one million ESTs
from normal, premalignant and malignant
cells. The Brazilian Genome Project has also
made a major contribution by sequencing
internal cDNA fragments that are comple-
mentary to existing data through its human
cancer Orestes project (9). The data from
these projects have revealed which tissues
express which transcripts and have greatly
reduced the time and effort necessary for
many gene-cloning projects, but represent a
laborious approach when simply used to
define gene expression levels. A key advan-
tage is that these data are free and easily
accessed. Cancer Genome Anatomy Project-
generated sequence data are made immedi-
ately available through the Cancer Genome
Anatomy Project web site or through the
National Center of Biotechnological Informa-
tion’s (NCBI) sequence resources such as

GenBank’s dbEST (http://www.ncbi.nlm.
nih.gov/dbEST/index.html) database or as
part of UniGene sequence clusters (http://
www.ncbi.nlm.nih.gov/UniGene). The main
disadvantages are that the individual experi-
menter cannot practically generate his own
EST data and that the level of detection is
low, since often only a few thousand tran-
scripts are assayed for each tissue or cell
type, out of the tens of thousands expressed.

The EST data serve a dual purpose of
determining coding nucleic acid sequences
and revealing the presence of the sequenced
transcripts in the RNA used for library con-
struction. Although the presence of a tran-
script in a particularly library can be reveal-
ing, the absolute level of a gene expression is
lost when cDNA libraries are normalized or
subtracted.

Serial analysis of gene expression

SAGE (10) uses automated DNA se-
quencing to efficiently count large numbers
of mRNA transcripts from a small popula-
tion of cells (Figure 1). SAGE increases the
number of genes that can be counted per
sequencing reaction, compared to cDNA li-
brary sequencing, by minimizing the portion
of the transcript sequenced. The method
works by cloning and sequencing a 10-base
pair (bp) portion of the cDNA at a defined
position near the 3' end of the transcript. This
10-bp portion, normally next to the last Nlalll
restriction site, is known as the transcript’s
‘tag’. SAGE tags are ligated and cloned end-
to-end in a sequencing vector, allowing the
‘serial’ analysis of multiple transcripts. The
number of times a particular tag is observed
in a tag population made from one mRNA
sample (SAGE library) is used to determine
transcript abundance. The SAGE transcript
profile from various types of cells can be
archived on a computer database and elec-
tronically compared to find statistically sig-
nificant differences in gene expression be-
tween cell types. To provide tag-to-gene links,
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Figure 1. The principle of serial
analysis of gene expression
(SAGE). Gene expression pro-
files are determined from cells
of interest by first capturing their
mRNA using oligo-dT-coated
beads and then preparing the
cDNA. The anchoring enzyme
Nilalll is used to cleave cDNA
that remains attached to the
beads. Linkers, which contain a
site for tagging enzyme BsmF1
and primers, are ligated to the
cDNA. The BsmF1 is used to
release a short tag. These tags
are paired into ditags, amplified
by PCR, cut with Nialll, ligated
to form concatamers, and
cloned into a sequencing vector
for efficient counting on an auto-
mated sequencer. Tag counts
from each tissue type are stored
electronically and used for com-
parison to other cell populations.
The relative fraction of each tran-
script can be calculated as well.
Informatics is used to match the
SAGE tag to a known gene or
expressed sequence tag.
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seven sources of cDNA were assembled (11).

Since SAGE counts transcripts by se-
quencing and avoids the errors inherent in
hybridization-based assays, it is often re-
garded as a very accurate means for expres-
sion profiling. SAGE transcript levels are
expressed as a fraction of the total tran-
scripts counted, not relative to another ex-
periment or a housekeeping gene, avoiding
error-prone normalization between experi-
ments. In addition, SAGE determines ex-
pression levels directly from an RNA sample
and it is not necessary to have a gene-specif-
ic fragment of DNA arrayed to assay each
gene. This allows SAGE to identify genes
that are not included in an array and avoids
the infrastructure necessary to create and
read large DNA arrays.

The number of samples that can be pro-
cessed using SAGE is small compared to
DNA arrays; it takes two weeks or more of
skilled labor to construct a SAGE library.
However, when an in-depth and quantitative
profile is desired for a small number of
samples the extra work involved in creating
a SAGE library can be justified. The strength
of SAGE is its use in determining differen-
tially expressed transcripts in well-controlled
experimental systems (12,13).

A detailed protocol can be obtained
through the SAGE home page from the Johns
Hopkins Oncology Center (http://www.
sagenet.org). The technology is patented by
Johns Hopkins University and licensed to
Genzyme Molecular Oncology (Framingham,
MA, USA) but freely available to academia
and nonprofit organizations for research pur-
poses.

One advantage of SAGE is that public
reference data are available. In order to pro-
vide a more efficient means for archiving
quantitative expression profiles, the Cancer
Genome Anatomy Project adopted SAGE
and has sponsored the Cancer Genome Ana-
tomy Project SAGE Project since 1998 (14-
16). Over 5 million transcript tags from more
than 100 human cell types are posted at

NCBI SAGEmap web site (http://www.ncbi.
nlm.nih.gov/SAGE). Recently, the Cancer
Genome Anatomy Project SAGE Project cre-
ated a web site for analysis and presentation
of SAGE data, including new informatics
tools for the analysis of data. This large
archive of SAGE data is viewed in an ana-
tomical context by gene or by comparing
profiles online at SAGE Genie (http://
cgap.nci.nih.gov/SAGE) (11) (Figure 2).

Confirmation approaches

After a gene expression profile has been
obtained on a set of RNA samples the ex-
pression differences need to be confirmed
and it is often useful to determine if the
observation is repeatable in independent
samples. Normally a small set of interesting
genes has been identified using DNA arrays
or SAGE, but several different techniques
are more efficient for assaying this smaller
set of interesting genes. In addition, each
gene expression technique has inherent er-
rors and an independent method is required
for validating the original expression levels.

Real-time polymerase chain reaction

Even though Northern blotting has been
the gold standard for gene expression analy-
sis for many years, real-time PCR, also called
“quantitative” or “fluorescent” PCR or “ki-
netic RT-PCR”, has gained popularity for
rapid follow-up and confirmation of profil-
ing data. Expression determination by real-
time PCR is based on continuous fluorescent
monitoring of PCR products from a cDNA
template (17,18). Under the right conditions,
the number of cycles required to PCR am-
plify a product to a certain level is directly
proportional to the amount as starting tem-
plate. There are a variety of methods for
detecting the accumulation of PCR products
during real-time PCR. A fluorescent DNA
indicator, such as SYBR green or ethidium
bromide, is included in each PCR, so that the
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Figure 2. Serial analysis of gene
expression (SAGE) anatomic
viewer results (http://cgap.nci.
nih.gov/SAGE). The gene ex-
pression profile of matrix metal-
loproteinase 1 (GenBank #
NM_002421) is shown in vari-
ous cells by their anatomic ori-
gin. MMP1 is highly expressed
in ovary cancer cells when com-
pared to the normal cells.
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product accumulation can be monitored at
each amplification cycle by a kinetic thermal
cycler. Alternatively, to increase sensitivity
and specificity of PCR product detection,
additional oligonucleotide can be employed
in the assays that hybridize to an internal
portion of the PCR product (TagMan Assay,
PE Biosystems; Hybridization Probes, Roche
and Molecular Beacons, Stratagene). Real-
time PCR allows for a quick and low-cost
assessment of the expression pattern of sev-
eral genes in many tumors and can be auto-
mated. However, real-time PCR data must
be interpreted with extreme caution since
there are several sources of error inherent in
any PCR-based technique.

Immunohistochemistry

To look for protein levels, a Western blot
or immunohistochemistry are reliable meth-
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ods for confirming expression changes. This
approach is advantageous, in particular when
the endpoint is knowledge of protein levels
rather than mRNA levels. However, to look
at protein levels of many samples simulta-
neously a tissue microarray system has been
developed (19,20). This system permits up
to one thousand small tissue samples ob-
tained with a narrow gauge biopsy needle to
be arrayed in a single block of tissue. This
block of tissue can then be used to produce
hundreds of slides that can be probed by
immunohistochemistry. In this way a stan-
dard set of the same samples can be probed
for expression levels of many different genes.
A digital imaging system is used to record
and read the data. The results must also be
scored in some fashion by signal intensity,
done manually at this point in technology
development. Finally, a good antibody is
needed for each gene of interest that will
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work in the normally available formalin-
fixed tissue. This approach has the potential
to be able to calculate gene expression corre-
lations with a vast archive of preserved tu-
mor material.

Bioinformatics and statistics

The huge amount of data produced by the
large-scale approaches described above poses
a significant problem for those trying to
extract useful information. Today, it is al-
most impossible to approach these datasets
without proper use of computational tools,
either locally or in a remote site. There are
two groups of researchers that use bioinfor-
matics tools on a daily basis: a larger group
composed of molecular biologists and bio-
chemists, among others, who use internet
sites of interest where services are provided,
and a second smaller group that is respon-
sible for the development of their own tools,
used for their own research but sometimes
made available to the community. Frequently,
this second group is responsible for the de-
velopment of sites that offer bioinformatics
tools to the first group. These two groups
differ dramatically regarding the methodol-
ogy they use and the expertise they have. The
former group is composed only of biologists
and has very limited computational skills.
Biologists, computer scientists, and math-
ematicians who have a very strong expertise
in computational science and programming
compose the latter group.

Programming is a crucial part of the rou-
tine of a bioinformatics laboratory. The most
used programming language is PERL (http:/
www.perl.org). The wide use of PERL in bio-
informatics is mainly due to some features of
its structure. Since PERL was developed to
help system administrators in their daily tasks,
the language deals very well with “strings”,
which makes it highly appropriate for analyses
involving DNA and protein sequences.

Relational databases are also very impor-
tant and used in almost every task in bioin-

formatics. There are several options avail-
able but the most used is MySQL (http://
www.mysql.com), which is relatively simple
and is available as an open source database.
An intriguing example of a relational data-
baseis AceDB (http://www.acedb.org/). This
relational database was developed exclu-
sively for the Caenorhabditis elegans ge-
nome project and since then has been widely
used by the bioinformatics community.

SAGE Genie (11) is a nice example of
how bioinformatics can have an impact on a
specific field. The raw data used in SAGE
Genie are publicly available and have been
used for other initiatives. SAGE Genie,
through its computational resources, brings
a new perspective to the problem of tag-to-
gene and gene-to-tag assignments by scoring
different databases according to the repre-
sentation of the 3' most SAGE tag. In addi-
tion, it incorporates data from EST data-
bases to identify transcript variants that would
generate a different 3' most SAGE tag.

Statistical tools have been extensively
used in analysis involving expression profil-
ing especially of microarrays. The identifi-
cation of patterns of gene expression and the
grouping of genes based on gene expression
classes requires a sophisticated statistical
analysis. Several methods have been used
for the clustering of gene expression data
including hierarchical clustering, mutual in-
formation and self-organizing maps. In many
ways, the computational analysis of gene
expression resembles the computational ap-
proaches adopted for phylogenetic studies.
In both cases, it is almost impossible to find
the “best” approach and the use of multiple
techniques is ideal to explore different as-
pects of the data.

A crucial problem nowadays is how to
integrate different types of data in a search-
able database. This is especially critical in
expression profiling studies since heteroge-
neous kinds of information are available,
like EST, SAGE, microarrays and all the
proteomic arsenal of techniques. We are still
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in a very early stage of defining formats and
nomenclature and ahead of us lies the most
important challenge that is to integrate all
the data with biology and medicine for the
development of testable hypotheses.

Advances in cancer research using
serial analysis of gene expression

The ability to evaluate the expression
pattern of thousands of genes in a quantita-
tive fashion, without prior sequence infor-
mation, is one of the most attractive features
of SAGE. In the past few years, SAGE anal-
ysis has been performed in patients with
brain, breast, colon, pancreatic, lung, blad-
der and ovarian cancers and has successfully
located new oncogenes, candidate tumor
suppressor genes, invasion-related genes,
growth-controlling genes, hypoxia-induced
genes, and tumor markers. Some of these
applications are described below.

Colon cancer

The first application of SAGE to human
tissues was to a colon cancer (21). Compar-
ing colon tumors to normal colon epithelium
showed that less than 1.5% of the transcripts
were differentially expressed. Many genes
elevated in colon cancer represented prod-
ucts known to be involved in growth and
proliferation, while genes found in normal
colon were often related to differentiation.
SAGE was used more recently to locate
candidate biomarkers for metastasis in colon
cancer (22).

Ovarian cancer

Ovarian cancer treatment would benefit
from early detection markers, since most
ovarian cancers have metastasized prior to
detection. SAGE analyzed a total of 385,000
transcripts from ten different ovarian librar-
ies with the purpose of discovering ovarian
cancer markers (23). From these data, tran-
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scripts were identified that were high in all
three primary ovarian cancers and low in all
three nonmalignant specimens. A total of 27
genes were identified that met these criteria
and that were overexpressed more than 10-
fold in ovarian tumors. Interestingly, a ma-
jority of those genes were predicted to en-
code membrane or secreted proteins, mak-
ing them candidates for biomarkers for tu-
mor targeting. Many of these secreted genes
encoded protease inhibitors.

Brain cancers

SAGE has been used to study the most
common adult malignant brain tumor, glio-
blastoma multiforme (GBM). The first SAGE
analysis of GBM compared over 200,000
transcript tags from primary GBM and nor-
mal brain cortex (14). Approximately 1% of
the genes detected were differentially ex-
pressed and included angiogenesis factors
such as vascular endothelial growth factor
(EGF), cell cycle regulators and transcrip-
tion factors. These data were also used by
the Cancer Genome Anatomy Project to help
start the public SAGEmap database and are
available online at this site. Cancer-induced
genes mined from these data were further
tested using real-time PCR and Western and
Northern blotting to see if candidate tumor
markers could be identified (18). Most of the
tumor overexpressed genes predicted by
SAGE could be confirmed in a subset of
glioblastomas. In general, a particular anti-
gen was only highly expressed at most in
about one third of the GBM tested, probably
due to the molecular heterogeneity of this
cancer. However, in combination, 75% of
the tumors had at least one antigen that was
strongly expressed, and not present in a panel
of normal neural tissues. Two antigens were
located that coded for cell surface proteins,
and may be useful for targeting gliomas with
antibody-based therapy.

Brain tumors other than GBM have been
studied by expression profiling. SAGE has
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also been used to analyze medulloblasto-
mas, the major malignant pediatric brain
tumor (24). Detailed SAGE expression pro-
files are also available for medulloblastomas
and a variety of gliomas at the Cancer Ge-
nome Anatomy Project SAGE Genie web
site (11).

Hypoxic malignant cells

Brain tumors have one of the highest
rates of new blood vessel growth of any
cancer and one of the stimuli of new vessel
growth is hypoxia. To obtain a blood supply
and protect against cellular damage and death,
oxygen-deprived tumor cells alter gene ex-
pression, resulting in resistance to therapy.
SAGE was used to locate genes specific for
hypoxic cells that could contribute to angio-
genesis or other pathological effects of tu-
mor hypoxia. A human GBM cell line was
used as a model to compare the expression
profile of hypoxic glioblastoma cells to the
same cells grown under normal oxygen con-
ditions (25). Ten new genes, not previously
known to be hypoxia-responsive were lo-
cated, including an angiopoietin-related gene,
Angiopoietin-Like 4. Transcription from these
genes, in general, was elevated by hypoxiain
other types of malignancy, and the transcript
or protein was found specifically for some of
the genes in hypoxic regions of solid tumors.

Tumor vascular endothelium

Endothelial cells provide the blood sup-
ply and support the critical growth of solid
tumors. Targeting tumor antigens located in
tumor endothelial cells may provide a strat-
egy for antitumor therapy (26-28). SAGE
was used to identify genes differentially ex-
pressed between the endothelial cells from
either normal colon or colon adenocarci-
noma (29). The study detected 79 different
genes differentially expressed between these
tissues, including 46 that were 10-fold or more
elevated in tumor-associated endothelial

cells. Of the top 25 tags more differentially
expressed, six were previously recognized
as markers of angiogenic vessels and at least
seven encoded proteins involved in extracel-
lular matrix formation or remodeling. These
matrix-related processes are likely to be cru-
cial to the growth of new vessels. In addi-
tion, 14 SAGE tags elevated in the tumor
corresponded to novel, noncategorized genes.
To validate the expression pattern of these
genes, we focused on nine genes that were
named tumor endothelial marker (TEM), and
designated TEM-1 to TEM-9. On the basis
of these results, it was suggested that endo-
thelium growing in a tumor is more like
developing endothelium, and that these dif-
ferences may be clinically relevant. Further
experiments confirmed the tumor endotheli-
um-specific expression of these genes, not
only for colorectal tumors but also for other
major tumor types. These TEM or other
genes identified in this study may become
targets of antiangiogenic therapies.

Tumor invasion and the extracelullar matrix

EGF receptor (EGFR) and EGFRvIIT have
been implicated in invasion and the higher
virulence of tumors. In brain, the expression
of EGFRVIII mutant protein enhances the
malignant phenotype of gliomas in vivo by
increasing cell proliferation and decreasing
cell death (30). To better understand the role
of EGFRVIII in tumor progression, we looked
for downstream transcriptional targets by
SAGE and DNA array analysis (31) using a
glioblastoma cell line as a model. Thirty-
eight genes for which EGFRVIII elevated
transcript levels were identified. The highly
expressed genes included extracellular ma-
trix components, metalloproteases, collagen,
and a serine protease. The blockade of EGFR
showed that the transcript targets were in-
hibited in a concentration- and time-depend-
ent manner. The targets of EGFRVIII identi-
fied in our study provide insight into the
molecular mechanism of EGFRvIII-enhanced
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invasion and are potential tumor markers for
the screening of drugs for EGFR inhibition.

Cancer-related pathways

SAGE was used to identify many genes
whose expression is believed to mediate p53-
induced apoptosis (12). Many of these genes
were novel and were predicted to encode
proteins involved in oxidative stress, thus
providing a new paradigm for the mechan-
ism of p53-mediated apoptosis. Similarly,
SAGE was used to identify downstream tar-
gets of the APC/B-catenin pathway, a path-
way activated in the vast majority of colon
cancers (13).

Using a different approach, estrogen-re-
sponsive breast cancer cells were treated
with estrogen and analyzed by SAGE for
expression changes leading to the identifica-
tion of many possibly useful estrogen-regu-
lated genes (32).

There is no doubt that gene profiling
techniques will play a major role in the dis-
section of the myriad of molecular pathways
important in human cancer. The examples
given above represent a small fraction of the
efforts that have already been dedicated to
this goal.

Future directions

SAGE is a useful method for profiling as
many of the expressed transcripts in a cell
population as is currently possible within a
reasonable amount of time. It provides one
of the best means to obtain a quantitative
profile of expressed transcripts present in a
particular tissue, but the technique is time
consuming and laborious. There is a large
archive of public SAGE data that can be
readily accessed (11) and used to help build
a database of information necessary to ad-
dress a particular question. Data obtained by
SAGE not only improve our understanding
of tumor development and progression but
also might be helpful to better understand
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growth regulatory pathways and to identify
new diagnostic and prognostic markers that,
either alone or in combination, can improve
the accuracy of cancer diagnosis and can be
used as a potential target for drug therapy.

Improved bioinformatics and computa-
tional methods allow the data to be queried
more easily, but much progress is still neces-
sary to be able to integrate SAGE and other
sources of molecular information in a mean-
ingful standard format.

Validation of candidate biomarkers at
the RNA level is now much quicker with the
use of real-time PCR techniques. The appli-
cation of in situ hybridization or immunohis-
tochemistry can be used to determine if all
cells within a tumor are expressing the marker
- or if there is some small population of
normal cells that highly expresses the gene
of interest. When it is necessary to screen
large sample sets for protein levels, immu-
nohistochemistry using tissue microarrays
can provide a rapid approach (19). Various
improvements in proteomic technology may
also eventually provide a means to assay
proteins at a level as comprehensive as cur-
rently available for mRNA (33).

A general conclusion that can be drawn
from gene expression profiling of cancer is
that tumors, even with identical histopathol-
ogy, are highly heterogeneous at the expres-
sion level. This makes it challenging, but
still possible, to classify tumors at the molec-
ular level. It is also difficult to locate tumor-
specific markers, and a combination of mark-
ers or therapeutic targets will probably be
necessary for what we now call a single
tumor type based on histology.

The rate-limiting step for tumor marker
application or discovery is still the work
required to show that the marker will be
clinically useful. It is therefore important
that the best candidate markers or antigens
can be predicted with some degree of accu-
racy from gene expression data. It still re-
mains to be seen if the candidate markers or
antigens discovered initially by SAGE will
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produce useful clinical tests or therapies.
Although this process will take several years,
it seems appropriate to use the most compre-
hensive data sets possible and careful vali-

clinical use.
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