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Abstract

The epidermis, the outermost layer of the skin, is the first barrier that comes into contact with the external environment. It plays
an important role in resisting the invasion of harmful substances and microbial infections. The skin changes with age and
external environmental factors. This study aimed to investigate epidermal stem cells during the process of aging. This study
enrolled 9 volunteers with benign pigmented nevus for clinical dermatologic surgery. The phenotypes associated with skin aging
changes such as skin wrinkles and elasticity of the unexposed/healthy parts near benign pigmented skin were measured, and
epidermal stem cells from this region were isolated for transcriptome sequencing. The results showed that epidermal stem cells
could be obtained by magnetic activated cell sorting (MACS) with high purity. Results of the transcriptome sequencing revealed
that aquaporin (AQP)5 significantly decreased in the epidermal stem cells with age, and further functional experiments revealed
that AQP5 could promote the proliferation and dedifferentiation of HaCaT, but did not influence cell apoptosis. In summary,
AQPS5 regulated the proliferation and differentiation of epidermal stem cells in skin aging, and it may play an important role in the
balance of proliferation and differentiation. However, further studies are needed to determine the mechanism by which AQP5

regulates the proliferation and differentiation of epidermal skin cells in aging.
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Introduction

The skin is the outmost barrier and is the organ with
the largest surface area of the body. It protects the body
from physical and chemical damage, invasion of patho-
genic microorganisms, and other environmental damage.
It also plays an important role in maintaining body tem-
perature and preventing water loss. However, with age,
symptoms of aging gradually appear on the skin, such as
wrinkles, thinning, and relaxation changes (1,2); further-
more, there are also changes in tissue structure (epider-
mal atrophy and epidermal cell layer reduction), and phys-
iological function degradation and loss (3). Together with
these symptoms, the skin’s reactivity is weakened, reduc-
ing its defense against mechanical and chemical damage,
microbial invasion, and regenerative healing ability, ulti-
mately leading to a series of skin-related diseases (4—6).

The skin is composed of the epidermis, dermis, and
subcutaneous tissue. The epidermis plays important roles
in defending the body from environmental damage, such
as UV exposure, which causes the skin to age via oxida-
tive stress, and smoking. The epidermis contains the basal
layer, spinous layer, granular layer, and stratum corneum.
Epidermal stem cells (ESCs), which are located in the
basal layer of the epidermis, have the ability of lifelong
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self-renewal, can maintain a constant number through
division, while continuing to differentiate into various layers
of skin tissue. Hence, the epidermis is in a state of
continuous proliferation, differentiation, and apoptosis (2).
ESCs are excessively depleted with aging, and no longer
maintain epidermal tissue homeostasis and repair
damaged tissues (7,8). For example, Wnt1 induces the
hyperproliferation of hair follicle cells and the rapid
exhaustion of stem cells (9), and p16™K4@ governs the
processes of stem cell self-renewal by inhibiting the G1/S-
phase transition of the cell cycle (10).

Aquaporins (AQPs) are a family of homologous water-
and glycerol-transporting proteins expressed in many mam-
malian epithelial, endothelial, and other types of cells.
AQPs have shown to play a role in transcellular perme-
ability in many organisms (11,12). For example, AQPs play
arole in secretory glands, such as salivary (13,14), lacrimal
(15), and sweat (16) glands, and pancreatic (17,18) glands,
and their role in secretory glands has been evaluated in
AQP-null mice. Reduced perinatal survival in knockout
mice and altered salivary function were found in AQP5-null
mice (19), and null mice also exhibited a 60% reduc-
tion in saliva formation after pilocarpine stimulation (20).
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The number of active sweat glands was dramatically
reduced after pilocarpine stimulation in AQP5 null mice
(16). AQP5 seems to play an important role in secretion of
some glands; however, no studies have reported the role of
AQPS5 in the epidermis.

These reports cited above indicate that the ESCs play
a vital role in skin function and aging. To further under-
stand the processes involved in skin aging, we studied
changes in the ESCs during skin aging. In this present
paper, we found that AQP5 may play an important role in
maintaining the pluripotency of epidermal stem cells.

Material and Methods

Collection of clinical phenotypes and biopsy

Nine healthy volunteers (men=4; women=>5; age=14—
75 years [44 + 22]) who underwent dermatoplastic surgery
for benign pigmented nevus between March and August
2019 at Huashan Hospital, Shanghai, were enrolled in this
study. After arrival and check-in procedures, subjects
were instructed to sit quietly to equilibrate to the 20 £ 2°C
room temperature and 50 £ 5% humidity for 30 min. Instru-
mental measurements were conducted on each subject at
a non-exposed site (abdomen, back, and thigh) surround-
ing the skin lesions. The skin wrinkles and elasticity were
measured and analyzed by the Skin-Visioscan (Courage
& Khazaka Electronic, Germany) and Cutometer® MPA
580 (Courage & Khazaka Electronic) individually. Samples
of normal skin (0.5 x 0.5 cm?) surrounding the skin lesions
were collected. All patients signed an informed consent to
participate in this study.

Primary epidermal stem cells isolation

The samples came from the non-exposed normal skin
tissues near the region that had the lesion removed by
dermatoplastic surgery for benign pigmented nevus. The
samples were washed with sterile PBS 3 times and the
tissues surrounding the epidermis were removed, espe-
cially the hypodermis. The remaining tissues were digested
overnight at 4°C with Dispasell (Roche, Switzerland), and
the entire epidermis, which was carefully peeled from the
dermis and washed with sterile PBS, was digested with
0.25% Trypsin-EDTA (Thermo, USA) at 37°C for 5 min.
After being sieved in 70- and 40-um filters (Merck Millipore,
USA), primary epidermal stem cells were isolated and
purified by magnetic activated cell sorting (MACS: Miltenyi
Biotec GmbH, Germany).

Cell culture

Isolated primary epidermal stem cells were cultured
with CNT medium (CELLnTEC, Switzerland) containing
10 uM of Y-27632 in 10-cm dishes pretreated with coating
matrix (Gibco, USA), and incubated at 37°C in air con-
taining 5% CO,. HaCaT cells (immortalized human kerati-
nocyte cell line) were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) with 10% FBS (fetal bovine
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serum) and penicillin-streptomycin, and cells were incu-
bated at 37°C with 5% CO,. AQP5 and the pCDH plasmid
were transfected into the HaCaT cell line via lentivirus by
Lipofectamine™ 2000 reagent (Invitrogen, USA).

Immunofluorescence staining

Cells were seeded onto coverslips, then fixed with
4% paraformaldehyde for 30 min at room temperature,
washed in phosphate-buffered saline (PBS), and then
blocked in 2% (w/v) bovine serum albumin (BSA) in PBS
for 30 min. The cells were stained overnight with primary
antibodies at 4°C, followed by incubation with secondary
antibody for 1 h at room temperature, then stained with
4’ 6-diamidino-2-phenylindole (DAPI) for 30 min. The
primary antibodies included anti-cytokeratin 14 antibody
(Abcam, UK), CD49f antibody (Abcam), anti-filaggrin anti-
body (Abcam), anti-P63 antibody (Abcam), and anti-Ki67
antibody (Abcam). The secondary antibodies included
anti-mouse 1gG (CST, USA) and anti-rabbit IgG (CST). For
the proliferation assay, immunofluorescence staining was
carried out according to the protocol of Cell-Light EAU
Apollo567 in vitro kit (RIBOBIO, China), and imaging and
analysis were performed using Harmony® 4.8 (Perkin
Elmer, USA).

RNA sequencing

Isolated primary epidermal stem cells were cultured
with CNT medium and used for RNA sequencing. RNA
libraries were processed according to the manufacturer’s
protocol, using lllumina NEB Next®™ Ultra™ RNA Library
Prep Kit (lllumina, USA). RNA purification, fragmentation,
primer hybridization, and sequencing reactions were per-
formed according to the manufacturer’s protocol. High-
throughput sequencing was performed on an lllumina
HiSeq 2000 platform. FPKM (fragments per kilobase of
transcript per million mapped reads) values for genes
were calculated via Cufflinks v1.2.1 (http://cole-trapnell-
lab.github.io/cufflinks/). Hierarchical cluster analysis, prin-
cipal components analysis (PCA), and volcano plot analysis
were performed using R software (www.r-project.org).

RT-gPCR

Total RNA was isolated from samples using Trizol
reagent (Invitrogen, USA), and the resultant cDNA was
reversely transcribed using PrimeScript TM RT Master
Mix (TaKaRa, Japan). PCR was performed using ChamQ
Universal SYBR qPCR Master Mix (Vazyme, China) on an
ABI7900 Real-Time PCR system (Applied Biosystems,
USA). GAPDH and p-actin were used as the internal
references, and mRNA expression was calculated using
the 2724CT method. Table 1 lists the primers used for the
RT-gPCR.

Statistical analysis
Statistical analyses were performed and statistical
graphs were obtained using GraphPad Prism 6.01 software
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Table 1. Primers used in RT-gPCR.

Forward Primer (5'-3')

Reverse Primer (5'-3')

AQP5 TCTCTCTGGGACAGACCTCA TGGGATCCCTTCAGCTCTTG
ARC AGTCTTTGCTGCTGTGCT CAGCCGACTCCTCTCTGTAG
AIRE AGTGCTGAGAAGGACACCTC CTGTTTACAGCCGAGCACTG
KLF2 ACCTACACCAAGAGTTCGCA CACAGATGGCACTGGAATGG
EPPK1 ATCTATGAGGCCCGATGCAA CACATCAGGCCCAATGACAG
ID4 GTGAGTAGTACCGGGAGTGG TCCTAGTCACTCCCTTCGGA
KRT1 AGAGTGGACCAACTGAAGAGT ATTCTCTGCATTTGTCCGCTT
KRT5 AGGAGTTGGACCAGTCAACAT TGGAGTAGTAGCTTCCACTGC
KRT10 GACGTAATGTACAAGCTCTGGA TGGGCCTGAATCTGTGAGAG
KRT14 TGAGCCGCATTCTGAACGAG GATGACTGCGATCCAGAGGA
LOR CATTGCCAGCATCTTCTCTCCT AGAGGTCTTCACGCAGTCCA
p-actin ACTCTTCCAGCCTTCCTTCC CAATGCCAGGGTACATGGTG
GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC
9-
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Figure 1. Skin wrinkles and elasticity in the young and elderly groups (A). Images of the abdomen from a male and a female, of the
young group (YG, 0—40 years) and elderly group (EG, 41-80 years). Number (B) and depth (D) of wrinkles on the skin according to age
of volunteers, and according to age groups (C and E). Panel B: The data for two volunteers overlapped (7.12 and 7.11). Skin elasticity
value for every volunteer (F) and comparison of the skin elasticity between age groups (G). *P <0.05, **P <0.01, ***P <0.001 (t-test).

Data are reported as mean + SD.
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(USA). Student’s t-test was used to compare the two
groups. P<0.05 was considered significant.

Results

Skin aging phenotype in young and elderly groups

To investigate the effect of age on skin phenotypes
and epidermal stem cells, we divided the sample into two
group: young group (YG, <40 years) and elderly group
(EG, =41 years). Images of normal skin tissue are shown
in Figure 1A. The number (Figure 1B) and depth (Figure
1D) of wrinkles increased with age, and there was a
significant difference in the number of wrinkles (Figure 1C)
and depth (Figure 1E) between the YG and EG, indicating
that skin wrinkles increase, deepen, and become rough
with age. The results also showed that skin elasticity
decreased with age (Figure 1F and G).

100 pm

CDa9f

4/8

Isolation of epidermal stem cells

To further study changes in the epidermis during skin
ageing, we isolated epidermal stem cells from normal
tissue using MACS. The cell purity was 84.50 £ 1.95% and
cell activity was 81.06+£3.56% (data not shown). To
confirm that the isolated cells were ESCs, ESC markers
were used for immunofluorescence staining, and the
isolated cells were positive for the ESC markers K14,
P63, and CD49f. Moreover, Ki67 staining indicated that the
isolated cells had the potential for proliferation and were
negative for the differentiation marker filaggrin (Figure 2).

Differential expression of genes in two age groups
To investigate changes in the YG and EG groups, RNA
sequencing was carried out. The heatmap illustrated differ-

entially expressed genes (DEGs) (Figure 3A). PCA showed
two significant clusters in the two groups (Figure 3B),

DAPI

DAPI

DAPI

Merge

DAPI

Figure 2. Immunofluorescence staining of K14, CD49f, filaggrin, P63, and Ki67 in epidermal stem cells sorted by magnetic activated cell
sorting. Blue represents Hoechst-stained cells. Magnification bar: 100 pm.
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Figure 3. Differentially expressed genes (DEGs) between the young group (YG) and elderly group (EG) groups identified by RNA-seq
analysis. A, Heatmap and hierarchical clustering analysis. The colors red to green represented the gene expression level. B, Results of
the principal component analysis: orange dots represent samples of the YG group (n=4) and the cyan dots represent the EG group
(n=5). C, A volcano plot of DEGs. Up- and downregulated DEGs with P <0.05 and a fold change >2 are represented in red and blue,
respectively. D, The heatmap shows the top 50 DEGs with significant differential expression from panel C.

indicating that the similarity of the samples belonging to
the same group was higher than that belonging to a
different group. A total of 443 DEGs exhibited a fold
change >2 and a P value <0.05 (Figure 3C), of which 89
were upregulated and 354 were downregulated. The top
50 DEGs are illustrated in Figure 3D.

AQPS5 regulated the proliferation and differentiation in
HaCaT cells

To further investigate the genes that changed between
the two groups, we validated DEGs from the RNAseq
results (Figure 4A). Further confirmation showed that
AQP5, KLF2, EPPK1, and ID4 were markedly decreased
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in the EG group, but the ARC and AIRE genes did not
significantly differ. Therefore, as the AQP5 gene was the
most significantly expressed gene in this study, we investi-
gated its function in HaCaT cells. We first constructed
a plasmid overexpressing AQP5 with stable expression
in HaCaT cells, and measured the differentiation genes
in the epidermis by RT-qPCR (Figure 4B). The results
showed that KRT5 and KRT14, the basal layer expression
genes, were upregulated, and KRT1 and KRT10, the
spinous layer expression genes, did not change. Further-
more, the granular expression gene loricrin was under-
estimated. Immunofluorescence staining indicated that
the AQP5 gene can promote cell proliferation when it is
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Figure 4. AQP5 regulated the proliferation and differentiation in HaCaT cells. A, Validation of differentially expressed genes based on
the RNAseq results. B, The mRNA expression levels of AQP5, KRT1, KRT5, KRT10, and KRT14 in HaCaT cells were assessed by real-
time gqRT-PCR after cells were infected with an AQP5 overexpression vector. C and D, Immunofluorescence staining to quantify the
proliferation in the AQP5 overexpression cell line and compare it to the control (magnification bar: 50 um). Red represents positive cells,
blue represents DAPI. E, Apoptosis in the AQP5 overexpression cell line compared to the control. Data are reported as mean + SD.

*P<0.05, **P<0.01, **P <0.001 (t-test). ns: not significant.

overexpressed (Figure 4C and D), and flow cytometric
results revealed that AQP5 cannot influence cell apopto-
sis (Figure 4E). The results indicated that AQP5 could
control the proliferation and differentiation in HaCaT cells,
but it had no effect on apoptosis.

Discussion

In the present study, we observed the following: 1)
ESCs were successfully isolated and RNAseq sequencing
was performed to identify the DEGs between two different
age groups; and 2) AQP5 could regulate the prolifera-
tion and differentiation of HaCaT cells and may play an
important role in maintaining the potential of ESCs.

Skin aging is divided into extrinsic and intrinsic aging
(4). Extrinsic aging occurs due to various environmental
factors such as UV exposure and smoking. Photoaging is
caused by UV light and can lead to deep wrinkles, loss of
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skin elasticity, and skin pigmentation (3). Histological
changes, thickening of the epidermis, and uneven distri-
bution of melanocytes have also been observed in photo-
damaged skin (3). The primary mechanism of damage is
UVA and can cause the generation of reactive oxygen
species (ROS), which damage the DNA, lipid, and protein
(21). However, intrinsic aging mainly manifests as non-
exposed skin features such as wrinkles, skin sagging,
and dryness (6,22), these features may be caused by
hormonal changes, estrogens, and androgens (23-25).
ROS are another cause of intrinsic aging (26), similar
to extrinsic aging. ROS are continuously produced as
byproducts in the electron transport chain of mitochondria
during aerobic metabolism, and the abundant generation
of superoxide anions may harm cellular function, leading
to cellular senescence (8). Therefore, we measured wrin-
kles and elasticity in the skin at a non-exposed site
(abdomen, back, and thigh) of volunteers, as these results
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could reflect the intrinsic aging state of the skin epidermis
to some extent. The phenotype results of intrinsic aging
revealed an increase in the number of wrinkles and
decrease in skin elasticity with age, reflecting aging of the
skin. Based on the RNAseq heatmap (Figure 3) results,
the cluster could be divided into two groups using 40 years
as the threshold; therefore, we divided the sample into two
groups: a young group (1-40 years) and an elderly group
(41-80 years). The number of skin wrinkles and depth
showed a marked increase and the skin elasticity notably
decreased in the EG (Figure 1B-G), showing intrinsic
aging of the skin.

Isolated cells from the non-exposed normal tissues
were stained using immunofluorescence staining for the
markers K14, filaggrin, Ki67, CD49f, and P63. The isolat-
ed cells were positive for K14 and CD49f (basal layer cell
markers (27)) and negative for filaggrin (granular layer cell
marker). To further confirm that the isolated cells were
ESCs, cells were tested by immunofluorescence staining
of the stem cell marker P63 (28) and were found to
be positive. Furthermore, immunofluorescence staining of
Ki67 indicated that the isolated cells have high prolifera-
tion potential (Figure 2). In conclusion, we successfully
isolated ESCs from the epidermis, which could be studied
further.

Previous studies have reported AQP1, AQP3, AQP9,
and AQP10 expression in the epidermis (29-31). AQP3 is
located in the basal and spinosum layers (29), and dele-
tion of the AQP3 gene in mice resulted in dry skin (32).
Furthermore, AQP3 can regulate keratinocyte migration,
proliferation, and differentiation, which is associated
with decreased metabolism. Previous reports have re-
vealed that AQP5 increased keratinocyte chemoattractant
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