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Transgenic animal models for
the functional analysis of
vasoactive peptides

Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, GermanyM. Bader

Abstract

The interplay of vasoactive peptide systems is an essential determinant
of blood pressure regulation in mammals. While the endothelin and
the renin-angiotensin systems raise blood pressure by inducing vaso-
constriction and sodium retention, the kallikrein-kinin and the natri-
uretic-peptide systems reduce arterial pressure by eliciting vasodilata-
tion and natriuresis. Transgenic technology has proven to be very
useful for the functional analysis of vasoactive peptide systems. As an
outstanding example, transgenic rats overexpressing the mouse Ren-2
renin gene in several tissues become extremely hypertensive. Several
other transgenic rat and mouse strains with genetic modifications of
components of the renin-angiotensin system have been developed in
the past decade. Moreover, in recent years gene-targeting technology
was employed to produce mouse strains lacking these proteins. The
established animal models as well as the main insights gained by their
analysis are summarized in this review.
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Introduction

Peptides such as angiotensins, kinins,
endothelins, vasopressin and natriuretic pep-
tides are the most important regulators in the
cardiovascular system. They are liberated
from larger precursor proteins by metaboliz-
ing enzymes and exert their actions by bind-
ing to receptors belonging to the class of
heptahelical membrane proteins coupled to
G-proteins (except the natriuretic-peptide
receptors, which represent membrane-bound
guanylate cyclases). These peptide systems
were originally thought to act mainly in an
endocrine manner since in most cases the
precursor proteins and the processing en-
zymes are produced in distinct tissues and
assemble in the circulation to produce the

active peptides, which interact with recep-
tors in cardiovascular target organs like heart,
vessel wall, and kidney. However, in recent
years the local production of peptides by
precursors and enzymes jointly synthesized
in several tissues has been detected and
important regulatory functions have been
ascribed to such tissue peptide systems. Es-
pecially in the case of short-lived peptides
like kinins and endothelins this functioning
mode seems to be more relevant than the
endocrine action as much higher concentra-
tions of the peptides can be reached at the
receptor when they are produced in its im-
mediate neighborhood. The functions of the
locally produced peptides may be largely
independent of the circulating systems espe-
cially at sites to which the circulating pep-
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tides have no access under normal circum-
stances, e.g., beyond the blood-brain and
blood-testis barriers.

While the circulating peptide systems
can be successfully studied using inhibitors
of the processing enzymes or receptor an-
tagonists, for the functional analysis of local
peptide systems such pharmacological meth-
ods are inappropriate because they lack tis-
sue specificity. The injection of specific
antibodies or antisense oligonucleotides
against components of peptide systems in
tissue exerts more local effects. However,
these procedures are hampered by low effi-
ciency, a short duration of action and side
effects elicited by the injection procedure
itself. Therefore, transgenic techniques have
been increasingly applied for the functional
analysis of local peptide systems. Trans-
genic techniques will be briefly described in
the following sections and the suitability of
the transgenic approach will be illustrated
by the description of transgenic animal mod-
els with targeted modifications in the renin-
angiotensin system.

Transgenic technology

Two different approaches can be used to
modify the genotype of an animal: 1) the
microinjection of DNA in the nucleus of a
fertilized oocyte, and 2) the targeted modifi-
cation of a gene in its chromosomal location
by homologous recombination in embry-
onic stem cells, which are subsequently in-
tegrated into early embryos. In both cases
the modified embryos develop into trans-
genic animals after transfer into foster moth-
ers.

Microinjection technique

The technique for the production of trans-
genic animal models by the integration of
foreign gene sequences into the genome of
mammals has been established for more
than 15 years (1-4). Most of the experiments

since then have been performed on mice
(reviewed in 5-8). However, the technique
has also been extended to species like rats
(9-12), rabbits (13,14), sheep (14,15), goats
(16), cattle (17), and pigs (13,14,18-20). The
development of transgenic technology for
the rat was especially important for cardio-
vascular research, in which the mouse only
plays a minor role mainly because of its
limited size. The most common method to
produce transgenic mammals is the microin-
jection of DNA constructs into the paternal
pronucleus of a fertilized oocyte (Figure 1).
The injected zygotes are implanted into the
oviduct of foster mothers and brought to
term. For mice and rats, about 20% of the
offspring integrate the transgene into their
genome and pass it to their offspring, thereby
establishing a transgenic line. Several copies
of the foreign DNA are integrated at one site
in a chromosome. The expression of the
transgene, however, does not only depend
on the copy number but also on the chromo-
somal environment at the integration site
and is therefore not absolutely predictable.
In most cases the goal is to overexpress the
gene of interest. The integration of the trans-
gene with its own regulatory elements leads
to an increased number of gene copies in the
genetically modified animal and to a higher
expression with conserved tissue specificity.
To overexpress a gene in a specific organ or
cell type, the respective cDNA is fused to a
tissue-specific promoter and this construct is
used for the production of transgenic ani-
mals. Table 1 summarizes examples of pro-
moters used for transgene expression in dif-
ferent tissues. Furthermore, inducible pro-
moter systems are available, which allow to
control transgene expression by the applica-
tion of substances to the genetically modi-
fied animals.

Recently, the microinjection technique
has also been applied to downregulate gene
expression in mice and rats. The method
used is the expression of antisense RNAs in
transgenic animals by the injection of con-
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1a. Microinjection of DNA
into zygotes

1b. Transfer of
injected zygotes into
the oviduct of a foster
mother

1c. DNA-analysis
of offspring

Male pronucleus
Injection
capillary with
DNA solution

Female
pronucleus

Zygote

Holding
capillary

Oviduct

Infundibulum

Medium with
zygotes

Tail-biopsy DNA

Southern blot

Figure 1 - Generation of trans-
genic rodents. A few copies of
the DNA construct are injected
into the male pronucleus (1a) of
a fertilized oocyte, which is then
transferred into the oviduct of a
pseudopregnant foster mother
(1b). The resulting offspring is
analyzed for the presence of the
transgene by Southern blotting
with a specific probe (1c).

Table 1 - Promoters of tissue-specific expression of transgenes.

Promoter Abbreviation Cell type of highest activity Reference

Neuron-specific enolase NSE Neurones (112)
Tubulin α1 T-α1 Neurones (113)
Glial-fibrillary acidic protein GFAP Astrocytes (25,114,115)
Myosin light chain-2 MLC2 Cardiomyocytes (116-118)
Preproendothelin-1 ET-1 Endothelial cells (119)
Tie tie Endothelial cells (120)
SM22α SM22α Vascular smooth muscle cells (121)
α1-Antitrypsin α1-AT Hepatocytes (91,122)
Albumin ALB Hepatocytes (123)
Side-chain-cleavage enzyme SCC Steroidogenic cells (124,125)
Kidney-androgen responsive protein KAP Renal proximal tubular cells (126)

Transgene
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structs in which a part of the cDNA of inter-
est has been fused in opposite orientation to
a strong promoter. This results in the synthe-
sis of an RNA complementary to the tran-
script from the gene of interest. The two
RNAs will form a duplex in cells, which
either blocks processing or translation of the
mRNA or is a target for double-stranded
RNA-editing enzymes (Figure 2). These en-
zymes covalently modify the mRNA in most
cases leading to their functional destruction
(21). Although the ablation of gene expres-
sion by antisense RNA is never complete,
several animal models with physiological
alterations have been successfully developed
using this method also in the cardiovascular
system (12,22-25) (see also below).

Gene targeting in embryonic stem cells
(knockout technology)

The total ablation of genes was made
possible by the recently developed knockout
technology. Two new methods are the basis
for this novel transgenic technique, the per-
manent culture of totipotent embryonic cells
able to build up a whole animal (26,27) and
the targeted disruption of a gene by homolo-
gous recombination (28,29). For homolo-

gous recombination a DNA construct con-
taining large parts of the respective gene
together with selectable marker genes is trans-
fected into embryonic stem (ES) cells. In
most cases the marker genes are used to
create a null mutation of the targeted gene;
however, also more subtle genetic alterations
are possible. The cells, in which the very rare
event of homologous recombination, i.e.,
the exchange of the endogenous gene with
the DNA construct has taken place, are se-
lected using the marker genes. The genotype
is confirmed by PCR and Southern blotting
and the mutated ES cells are microinjected
into or fused with early embryos. After trans-
fer to the uterus, the embryos are brought to
term by foster mothers. The resulting chime-
ras between the host embryo and the ES cells
are recognized by coat color and are used to
develop a line of homozygous animals carry-
ing the mutation in both alleles of the tar-
geted gene after two subsequent generations.
Such animals are the most powerful models
to study the function of a gene. However, the
method has also disadvantages: 1) the gene
is mutated throughout ontogeny and in all
organs of the animals. Thus, only the earliest
role played by an essential gene during on-
togeny can be detected in the knockout ani-

Ribosome
entry (2b)

A(n)AA
AAA(n)

A(n)AA

A(n)AA

Pre-mRNA

A(n)AA
Antisense RNA Splicing (2a)

mRNA
AAA(n)

Translation (2c)

Protein

Covalent modification (A→I )
and unwinding by unwindase (2d)

Modified mRNA
Translation
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Figure 2 - Mechanisms of anti-
sense RNA action. Antisense
RNA covering two exons can in-
hibit splicing of the target pre-
mRNA in the nucleus (2a). In the
cytoplasm it can inhibit ribosome
binding to the cap structure
(closed circle) and the 5'-un-
translated part of the mRNA (2b)
or it can block the elongation of
the nascent protein chain (2c). In
addition, the extended double-
stranded RNA formed by the an-
tisense RNA and its target
mRNA represent a substrate for
double-stranded RNA editing en-
zymes (unwindase), which mod-
ify both RNAs by deaminating
adenosine residues (21). The re-
sulting inosine bases form base
pairs with guanine leading to the
synthesis of mutated proteins
from such altered mRNAs (2d).

AAA(n)

AAA(n) +
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mals. Its function in adulthood cannot be
studied since in many cases the homozygous
animals will not reach this stage. To solve
this problem conditional knockout techniques
have very recently been designed and al-
ready successfully employed using the Cre-
loxP system, a recombination system of bac-
teriophage P1, which allows the tissue-spe-
cific or developmental stage-dependent ab-
lation of a gene (30). 2) Thus far, the tech-
nique is only available for the mouse and
even in the mouse only cells derived from
one strain (129/Sv) are routinely used for
such experiments. A lot of effort has been
devoted to the development of ES cells from
other species, e.g. the rat (31), for the rea-
sons already state above. However, germline-
competent ES-cells could not be established
from any other animal and there is no par-
ticular reason to explain this failure. The
application of a novel technique on the basis
of transgenic animals, which allows the se-
lection of totipotent cells during the devel-
opment of ES-cell lines may help solve this
problem.

Transgenic and knockout animal
models for the renin-angiotensin
system

The generation of active angiotensin pep-
tides is achieved by a small number of pro-
teins all of which have been already overex-
pressed as well as inactivated by transgenic
technology. The sole precursor angiotensin-
ogen, synthesized mainly in the liver, is
cleaved by renin produced by the juxtaglo-
merular cells of the kidney resulting in the
liberation of the inactive decapeptide angio-
tensin I. The active peptide angiotensin II is
generated by the proteolytic ablation of the
two carboxyterminal amino acids of angio-
tensin I by the endothelium-associated an-
giotensin-converting enzyme (ACE). Angio-
tensin II elicits its effects via two different
receptor subtypes, AT1, which is expressed
in all main target organs like kidney, heart,

brain, adrenal cortex, and vessel wall and
represents the receptor responsible for nearly
all known actions of the peptide, and AT2,
which is mainly restricted to certain brain
regions and the adrenal medulla. In the fol-
lowing section transgenic animals with
changes in the expression of the genes for
components of the renin-angiotensin system
as well as the conclusions drawn from these
models will be discussed.

Angiotensinogen

The angiotensinogen gene of mice (32),
rats (33,34), and humans (11,35,36) has been
expressed in transgenic mice (32,33,35,36)
and rats (11) under the control of its own
(11,32,34-36) or of the mouse metallothio-
nein (mMT-1) promoter (33). All rodents
transgenic for human angiotensinogen re-
mained normotensive even though some of
them exhibited very high levels of the human
protein in plasma. This finding corroborated
previous biochemical studies showing that
human renin and angiotensinogen do not
interact with their rodent counterparts (37,
38). Only when the animals carrying the
human angiotensinogen gene are crossbred
with human-renin transgenic rats or mice do
the animals produce an excess of angio-
tensin II and become hypertensive (39-43;
see below). The only transgenic animal car-
rying solely an angiotensinogen gene and
being hypertensive was produced by Kimura
et al. (34) by the introduction of the rat
homolog into the mouse genome. Despite
exhibiting equally high levels of circulating
angiotensin II, the transgenic mouse model
harboring the rat angiotensinogen gene un-
der the control of the mMT-1 promoter is
normotensive (33). The reason for this dis-
crepancy may be the different tissue-speci-
ficity of expression of the two transgenes:
while the foreign promoter leads to ectopic
expression, the rat angiotensinogen promoter
directs the production of additional angio-
tensin II to sites which are responsive to this
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peptide. A tissue in which the correct site of
expression is especially important is the brain.
Using another transgenic animal model we
could show that angiotensinogen in the brain
plays an important role in blood pressure
regulation. We produced a transgenic rat
expressing an antisense RNA against angio-
tensinogen (44) exclusively in the brain with
the help of the promoter for the glial-fibril-
lary associated protein (GFAP). High ex-
pression of this antisense RNA led to a brain-
specific downregulation of angiotensinogen
protein, a decrease in blood pressure (25),
and a mild diabetes insipidus (45).

The decrease in blood pressure in these
rats was comparable to the decrease ob-
served in mice carrying only one functional
angiotensinogen allele (46). They were pro-
duced in a gene-titration experiment together
with mice having zero, two, three, and four
alleles of this gene. Circulating angiotensin-
ogen levels as well as blood pressure corre-
lated strongly with the gene dose, supporting
the important role of this protein in blood
pressure regulation at least in rodents. Very
low blood pressure levels were measured in
angiotensinogen-knockout mice which were
produced by three groups independently (46-
48). Depending on the genetic background
the targeted ablation of this protein even
produced a lethal phenotype, the cause of
which is not yet clarified but may be related
to morphological alterations observed in the
kidney. Several groups have rescued the phe-
notype of these knockout mice by cross-
breeding them with transgenic mice express-
ing the rat angiotensinogen gene (49) or the
human renin and angiotensinogen genes (50).
The latter experiment resulted in mice in
which the only active renin-angiotensin sys-
tem is derived from human genes.

Renin

Transgenic mice (33,40,43,51-57) and
rats (9,11) carrying renin genes from rats
(33), mice (9,54-57), and man (11,40,43,51-

53) have been generated. The first animal
models were designed to analyze the pattern
of differential expression of mouse renin
genes. The mouse is the only species ana-
lyzed so far with more than one renin gene.
There are strains with one renin gene, Ren-
1c, and strains bearing two genes, Ren-1d and
Ren-2, closely linked on chromosome 1 since
they originate from an evolutionarily recent
gene duplication. The genes are differen-
tially expressed and transgenic experiments
showed that DNA sequences in the promoter
as well as in the transcribed regions are
required for a correct tissue specificity of
expression. Transgenic mice with the whole
Ren-2 gene including 5.3 (54) or 2.5 kb
(55,56) of the promoter region and all exons
and introns or with a 4.6-kb promoter frag-
ment and the SV40 T-antigen as a reporter
gene express the transgene correctly (58-
61), while animals with only 2.5 kb of the
promoter and the same reporter gene show
ectopic expression (62). Thus, there seems
to be a redundancy of tissue-specific ele-
ments in the promoter and in the transcribed
region as 2.5 kb of promoter are only suffi-
cient for correct expression in concert with
all exons and introns, while longer 5'-flank-
ing regions are independent of other parts of
the Ren-2 gene. Recent studies have revealed
possible candidates for such tissue-specific
elements in the distant promoter (63) as well
as in intron I of the gene (64-66). Compa-
rable results have also been published for the
Ren-1d gene as 5 kb of the promoter led to the
correct expression in transgenic mice only in
the presence of the whole transcribed region
but not fused to a chloramphenicol acetyl-
transferase (CAT) reporter gene (57).

While for none of these mouse models
blood pressure values have been reported,
the arterial pressure of mice carrying the rat
renin gene under the control of the mMT-1
promoter was determined and found to be
normal, which may be explained by species
specificity of the renin-angiotensinogen in-
teraction (33). When these mice were crossed
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with mMT-1-angiotensinogen transgenic ani-
mals (see above) the double transgenic mice
became hypertensive. The same holds true
for double transgenic mice and rats with the
human renin and angiotensinogen transgenes
also because of the species specificity of the
enzyme-substrate reaction (39,40, 42,43).
These “humanized” rodent models independ-
ently developed by several groups are useful
tools to study the local production and action
of angiotensin II in tissues and to test human
renin inhibitors, which cannot be tested in
normal rodents because of species specificity
(11,67). In addition, such animals may help
elucidate the cause for specific forms of preg-
nancy-induced hypertension (68).

Another important model for the study of
tissue-based renin-angiotensin systems is a
transgenic rat carrying the murine Ren-2 gene,
TGR(mREN2)27 (9). These animals develop
severe hypertension and cardiovascular hy-
pertrophy despite low levels of circulating
angiotensin II. However, the generation of
this peptide is massively enhanced in several
tissues, like adrenal glands and brain, lead-
ing to numerous physiological changes (69-
90). These changes as well as the very high
circulating levels of prorenin, the inactive
precursor of renin, may contribute to the
hypertensive phenotype of  TGR(mREN2)27,
although its etiology has not been fully clari-
fied. Veniant et al. (91) have shown that
prorenin  when expressed in the liver of
transgenic rats with the use of the α1-anti-
trypsin promoter and reaching similarly high
circulating levels can cause a degree of car-
diovascular hypertrophy comparable to that
observed in TGR(mREN2)27 probably be-
cause it can be activated in peripheral tis-
sues. Others have presented evidence that
elevated angiotensin levels in brain (73,77,
78), kidney (69,76,77), and adrenal gland
(74,75,77,89) of TGR(mREN2)27 also play
important roles in the development of hyper-
tension. Studies using the specific down-
regulation of the renin-angiotensin system in
single organs like the one presented above

(25) may help elucidate the relative impor-
tance of the local angiotensin-generating sys-
tems in the pathogenesis of hypertension in
TGR(mREN2)27.

As mentioned above, ES cells are almost
exclusively from strain 129/Sv, which con-
tains two renin genes. Although both genes
have been separately inactivated by gene
targeting, a total renin-knockout by simple
crossbreeding is precluded by the close link-
age of the two genes. The Ren-2 knockout
mice are healthy and normotensive and only
exhibit increased active renin and reduced
prorenin levels in plasma (92). Animals lack-
ing Ren-1d have been produced by two groups
independently (93,94). While the resulting
animals were normotensive in one experi-
ment (93), in the other study, they showed
morphological alterations in the kidney ex-
emplified by a lack of secretory granules in
the juxtaglomerular cells and hypertrophy of
the macula densa as well as enhanced circu-
lating prorenin levels, and the females be-
came slightly hypotensive (94). The quite
mild phenotype of both knockout models
argues in favor of a high redundancy of the
two renin genes, i.e., the presence of one
gene can largely compensate for the lack of
the other.

ACE

Transgenic rats overexpressing ACE pre-
dominantly in the heart have recently been
produced and the phenotype has been par-
tially reported (95). Despite very high levels
of ACE activity in the heart there are no
morphological alterations of this organ un-
less it is pressure overloaded by aortic band-
ing. This treatment results in a significantly
higher hypertrophic response in ACE-trans-
genic rats than in control animals, support-
ing the important role of angiotensin II in
this process postulated by earlier pharmaco-
logical and transgenic (see below) studies.

Transgenic mice were generated to ana-
lyze the testis-specific promoter in intron 13 of
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the ACE gene responsible for the production
of a shorter but still active protein in this organ
(96-99). ACE seems to play an important role
in the testis since male ACE-knockout mice
are infertile (100). Furthermore, the animals
are hypotensive and develop kidney abnor-
malities comparable to those of the angioten-
sinogen knockout animals (101). In a very
recent experiment the same phenotype could
be shown for mice in which only the mem-
brane anchor of the ACE-protein was deleted
by knockout technology (102). These animals
have still normal circulating ACE levels but
lack the membrane-bound form, which, ac-
cording to this report, is the only functionally
important isoform of the enzyme.

Angiotensin receptors

The only reported transgenic animal mod-
els overexpressing AT1-receptors have tar-
geted its expression to the heart by the use of
the α-myosin-heavy chain promoter (103,
104). However, the phenotypes of the trans-
genic mouse and the transgenic rat thus gen-
erated were dramatically different. The mice
exhibit a drastic cardiac hypertrophy and die
of severe bradycardia early in life (103),
whereas the rats appear absolutely normal
unless the heart is pressure overloaded by
aortic banding which, as is the case for ACE-
transgenic rats, leads to a more pronounced
hypertrophy than in control animals (104).
The difference might be related to the differ-
ent source of the AT1 receptor: while for the
transgenic mouse the murine AT1A-cDNA
receptor was used, the rat overexpressed the
human homolog.

When the AT2 receptor is overexpressed
in the heart the resulting transgenic mice
show no obvious morphological alterations
but they are less sensitive to angiotensin-II
induced blood-pressure elevation indicating
that the AT2 receptor counteracts the AT1
receptor at least in this respect (105).

Several groups have inactivated the AT1
receptor by gene targeting in mice (106-

108). Like for the renin gene, these studies
are hampered by the existence of two differ-
ent genes coding for AT receptors in this
species and also in rats, AT1A and AT1B.
The knockout experiments revealed, how-
ever, that the AT1A receptor is the more
important isoform since the gene-targeted
mice showed a comparably severe pheno-
type as angiotensinogen- or ACE-knockout
animals. Furthermore, mice lacking AT1B
show no obvious phenotype (109). Double
knockout animals will elucidate whether the
slightly less severe kidney alterations ob-
served in AT1A-deficient mice compared to
mice lacking angiotensinogen are due to a
compensatory action of AT1B receptors in
this organ.

The AT2 receptor has also been inacti-
vated by two groups independently (110,
111). In addition to behavioral abnormali-
ties, AT2 deficiency results in a more pro-
nounced pressor response to angiotensin-II
infusion, corroborating the antagonism be-
tween AT1 and AT2.

Conclusions

The transgenic animal models for the
renin-angiotensin system established so far
have provided novel information concern-
ing the function of this peptide system active
in cardiovascular regulation. The most im-
portant finding is the importance of tissue-
based angiotensin generation in contrast to
the circulatory system. Tissue-specific abla-
tion of the renin-angiotensin system by anti-
sense RNA expression or conditional knock-
out technology will facilitate the study of
these functionally important peptide systems,
e.g., in the brain, adrenal gland, vascular
wall, heart, and kidney. Existing as well as
future animal models will increase our un-
derstanding of the basic cardiovascular regu-
lation and of the mechanisms involved in the
development of hypertension and may be of
help to design new therapeutic strategies for
the therapy of cardiovascular diseases.
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