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Abstract

The systematic assessment of cognitive performance of older people without cognitive complaints is controversial and
unfeasible. Identifying individuals at higher risk of cognitive impairment could optimize resource allocation. We aimed to develop
and test machine learning models to predict cognitive impairment using variables obtainable in primary care settings. In this
cross-sectional study, we included 8,291 participants of the baseline assessment of the ELSA-Brasil study, who were aged
between 50 and 74 years and were free of dementia. Cognitive performance was assessed with a neuropsychological battery
and cognitive impairment was defined as global cognitive z-score below 2 standard deviations. Variables used as input to the
prediction models included demographics, social determinants, clinical conditions, family history, lifestyle, and laboratory tests.
We developed machine learning models using logistic regression, neural networks, and gradient boosted trees. Participants’
mean age was 58.3 £ 6.2 years, 55% were female. Cognitive impairment was present in 328 individuals (4%). Machine learning
algorithms presented fair to good discrimination (areas under the ROC curve between 0.801 and 0.873). Extreme Gradient
Boosting presented the highest discrimination, high specificity (97%), and negative predictive value (97%). Seventy-six percent
of the individuals with cognitive impairment were included among the highest ranked individuals by this algorithm. In conclusion,
we developed and tested a machine learning model to predict cognitive impairment based on primary care data that presented
good discrimination and high specificity. These characteristics could support the detection of patients who would not benefit
from cognitive assessment, facilitating the allocation of human and economic resources.
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Introduction

According to the Global Burden of Diseases 2019,
dementia currently accounts for 1% of the total disability-
adjusted life years worldwide (1). Although this burden is still
lower in low- and middle-income countries (LMIC) (1), the
number of dementia patients in these countries is increasing
faster than in high-income countries, raising a red flag for
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policy makers (2). In clinical practice, cognitive assessment
is usually symptom-driven and based on cognitive com-
plaints. Although some agencies recommend early detection
of dementia in older adults (3,4), the systematic screening of
asymptomatic individuals is controversial due to uncertain-
ties regarding clinically meaningful effects and benefits of
current dementia therapies, and regarding the interventions
targeting caregiver burden and decision-making by patients,
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caregivers, and family (5,6). Moreover, in LMIC, time
constraints and limited resources and training are barriers
to cognitive assessment in primary care, precluding the
implementation of screening programs.

Several algorithms have been developed to predict
dementia in different populations, such as mid- and late-
life risk models that use classical statistical analysis or
machine learning (ML) (7,8). However, few of the existing
predictive models rely on information that is obtainable in
daily clinical practice and could be implemented in primary
care settings, without requiring extensive neuropsychologi-
cal batteries, neuroimaging, or genomics (9-13). Moreover,
the literature is scarce on models developed to predict
cognitive impairment based on data available in primary
care prior to cognitive screening. Reijmer et al. (14) found
that a model based on age, gender, education, systolic
blood pressure, body mass index, and total cholesterol
predicted future impairment in some cognitive domains in
middle-aged adults. A ML model was developed in South
Korea to predict future cognitive impairment in older adults
based on sociodemographic factors, health conditions,
functional ability, and subjective well-being (15).

As cognitive impairment results from the interaction of
biological, behavioral, and social processes throughout life
(2), it is a challenge to develop accurate predictive models
based on information obtainable in the primary care routine.
ML, a branch of artificial intelligence and computer science,
uses statistical algorithms that learn patterns from non-
linear, high-dimensional data and consider interactions
between multiple predictors (16). Therefore, we aimed to
develop ML models to predict cognitive impairment in
middle-aged and older adults without dementia, based on
medical history, lifestyle, social determinants of health, and
laboratory tests that can be obtained in primary care
settings with limited resources.

Material and Methods

Study design and population

This cross-sectional analysis is based on data from the
Brazilian Longitudinal Study of Adult Health (ELSA-Brasil),
a cohort of 15,105 active and retired civil servants from
five public universities and one research institution located
in six Brazilian states [Sdo Paulo (n=5,061), Rio de
Janeiro (n=1,784), Minas Gerais (n=3,115), Espirito Santo
(n=1,055), Bahia (n=2,029), and Rio Grande do Sul
(n=2,061)]. Baseline assessment, performed between
2008 and 2010, included participants aged between 35
and 74 years and free of dementia. Information on socio-
demographics, clinical history, lifestyle, cognitive status,
and occupational exposure were collected during visits
to the study centers. Anthropometric measurements and
laboratory and imaging tests were also obtained. The
present analysis excluded 6,454 individuals younger
than 50 years and 360 individuals with incomplete data
on cognitive tests. The final sample included 8,291
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participants. Further details of the study design and the
cohort profile can be found elsewhere (17,18). The study
was approved by the local ethical review boards and all
participants provided informed consent.

Outcome: global cognitive performance

A battery of neuropsychological tests was applied by
trained examiners in a single session, following a fixed order.
The word list memory test from the Brazilian version of the
Consortium to Establish a Registry for Alzheimer’s disease
was used to assess memory. Participants were exposed to a
list of ten unrelated printed words in three leaming trials and
were asked to remember the words after each trial. The sum
of correctly recalled words in each trial composed the
immediate memory score. After a 5-min delay, in which
participants were engaged in other tasks, the examiner gave
participants 60 s to recall the words and the number of
correctly recalled words composed the delayed memory
score. Finally, the number of correct recognitions of the 10
learned words among a list of 20 words composed the
recognition memory score (19). The phonemic and semantic
verbal fluency tests were applied to evaluate language and
executive function. Participants were asked to name as
many words starting with the letter F and as many animals as
possible in 60 s. The number of correctly given distinct words
and animals corresponded to the phonemic and semantic
verbal fluency scores, respectively (20,21). The trail making
test version B was applied to measure processing speed,
visuospatial ability, and executive function. Participants were
asked to draw lines connecting numbers to letters in an order
that alternated between increasing numeric values and the
alphabetical order. The score was composed of the total time
in seconds taken to complete the task (22).

The raw scores on each cognitive test (immediate
memory, delayed memory, recognition, phonemic and
semantic verbal fluency, and trail making test) were
transformed into z-scores by subtracting the test score of
each participant from the sample mean score and dividing
the difference by the sample standard deviation. Contrary to
the other tests, higher scores in the trail making test indicate
poorer performance. Therefore, we inverted the signal of the
trail making test z-scores to reflect above-average perfor-
mance when positive and below average performance when
negative. A global composite z-score was calculated by
averaging the z-scores on the six cognitive tests and then
standardizing each participant’s average using the sample
mean and standard deviation. Cognitive impairment was
considered when the global composite z-score was below 2
standard deviations since this cutoff is usually used to define
dementia (23). The global cognitive z-score was used to
define cognitive impairment since cognition is defined by
performance in multiple cognitive domains.

Predictors
Variables were selected based on the likelihood of
being obtained in primary care settings. Demographic
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characteristic assessed were age and sex. Data on social
determinants of health were education, maternal educa-
tion, self-reported race, marital status, employment status,
social and occupational mobility, health insurance status,
family and per capita income, social class, financial
problems, end of romantic relationship in the last year, role
as a caregiver, and religion. Clinical conditions included
diabetes, hypertension, dyslipidemia, cardiovascular,
thromboembolic, renal, rheumatic, hepatic and chronic
pulmonary diseases, neoplasia, headaches, bariatric sur-
gery, hospitalization in the last year, self-reported health
status, psychiatric morbidity, and use of the following
classes of drugs: insulin, oral hypoglycemic agents,
antihypertensives, lipid-lowering agents, platelet inhibitors,
antacids, antidepressants, benzodiazepines, and ophthal-
mic beta-blockers. We also assessed physical measure-
ments, such as body mass index, waist circumference,
waist-hip ratio, blood pressure, and postural hypotension.
Family history included coronary artery disease, stroke,
sudden death, and death in the last year. Lifestyle included
smoking status, alcohol consumption, physical activity, and
dietary habits. Finally, laboratory tests included electro-
cardiogram, fasting blood glucose, glycated hemoglobin,
serum creatinine, urea, sodium, potassium, transaminases,
gamma glutamy! transferase, uric acid, cholesterol, triglyc-
erides, thyroid hormones, insulin, and C-reactive protein.

Pre-processing, data splitting, and model building
Classification models were built to predict cognitive
impairment as a dichotomous variable. The code used to
perform all steps to develop the models is openly available
at https://github.com/labdaps/ELSACognitivePrediction.
Data were divided into training (70%) and test (30%)
sets, stratified according to the outcome. The training set
is used to define the parameters (input variables) and
hyperparameters (configurations that are external to the
model and that result in the most skillful prediction) of
the algorithm. The test set is new data (i.e., not used for
algorithm training), used to assess the performance of the
model on previously unseen data. Supplementary Table
S1 shows the missing percentage for each variable before
any preprocessing task. Missing variables were imputed
using the MICE technique, parameterized in the training
set, and applied in the test set. Because the outcome was
rare and the dataset was imbalanced, we applied an
oversampling technique (Synthetic Minority Oversampling
Technique) in the training set prior to model training (24).
Additionally, to avoid overfitting, a 10-fold cross-validation
(a resampling procedure) was performed on the training
set with Bayesian optimization to select hyperparameters.
We tested the most popular algorithms for the
prediction of structured data: logistic regression, neural
networks, and gradient boosted trees. Neural networks
are ML algorithms based on the functioning of the human
brain and are composed of an input layer (predictors), one
or more hidden layers (where nonlinear and high-
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dimensional patterns are learned), and an output layer
(prediction) (25). Gradient boosted trees provide a predic-
tion result using a sequential ensemble of decision trees
that are weak learners (26). These algorithms tend to have
high predictive performance for structured data, especially
their recent implementations like Extreme Gradient Boost-
ing (XGBoost), Light Gradient Boosting Machine
(LightGBM), and Catboost (27). While similar, they differ
in a few technical instances. XGBoost adds a new term to
the loss function to avoid overfitting, LightGBM grows
decision trees leaf-wise, and Catboost solves the expo-
nential growth of features by using the greedy method (28).
The list of hyperparameters and their final values for the
artificial neural network and the gradient boosted trees is
available in Supplementary Table S2.

The main metric used to select the best model was the
area under the receiver operating characteristic curve
(ROC-AUC) in the test set, which measures model
discrimination. A value of 0.50 is used as reference for a
random estimator and a value of 1.0 is used as reference of
a model with perfect discriminant ability. We evaluated the
ROC-AUC values for each step of the 10-fold cross-
validation technique during the training stage and no model
was overfitted (Supplementary Figure S1). Additionally, we
assessed the following metrics that depend on the
predictive probability thresholds of the model: sensitivity
(also named recall), specificity, positive predictive value
(also named precision), negative predictive value, and F1-
score (the harmonic mean between precision and recall).
We also applied isotonic calibration in the predictive models
to optimize their results. However, the calibration was
inefficient, not improving the ROC-AUC metric nor the
sensitivity of the model, so we opted not to maintain it.

Finally, to assess the contribution of each variable to
the best performing model, we used the Shapley Additive
exPlanations (SHAP) approach, which provides insight on
the predictive importance of each variable and on the
direction of individual values of the variable (29).

Results

Participants’ mean age was 58.3 (SD: 6.2 years), and
54.7% were female. Cognitive impairment was present
in 328 individuals (4.0%). The distribution of the main
sociodemographic characteristics, clinical conditions, and
lifestyle according to cognitive deficit status are shown in
Table 1. Participants with cognitive impairment were older,
predominantly male, of black/mixed skin color, had lower
education, were less active, had higher frequency of
current smoking, diabetes, hypertension, and coronary
artery disease, and had lower frequency of current alcohol
consumption.

Table 2 presents the predictive metrics results for each
of the algorithms on the test set. The highest ROC-AUC
and F1-score were achieved by the XGBoost (0.87 and
0.31, respectively). Among the 20% highest ranked
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Table 1. Characteristics of participants according to cognitive deficit (n=8291).
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Characteristic Without cognitive deficit With cognitive deficit P
(n=7963) (n=328)
Age (years), mean +SD 58.2+6.2 60.7 £6.7 <0.0012
Female, n (%) 4417 (55.5) 119 (36.3) <0.001°
Education, n (%) <0.001¢
<Middle school 533 (6.7) 182 (55.5)
Middle school 680 (8.6) 57 (17.4)
High school 2464 (30.9) 78 (23.8)
College or higher 4286 (53.8) 11 (3.3)
Self-reported race, n (%) <0.001°
Black 1198 (15.3) 99 (31.0)
Brown 2054 (26.2) 123 (38.4)
White 4286 (54.6) 79 (24.7)
Asian 218 (2.8) 11 (3.4)
Indigenous 90 (1.1) 8 (2.5)
Leisure-time physical activity, n (%) <0.001¢
Low 5979 (75.9) 272 (83.2)
Moderate 1245 (15.8) 46 (14.1)
High 650 (8.3) 9(2.7)
Smoking status, n (%) <0.001°
Previous 2924 (36.7) 115 (35.2)
Current 1033 (13.0) 67 (20.5)
Alcohol consumption, n (%) <0.001°
Previous 1574 (19.8) 109 (33.4)
Current 5485 (69.0) 160 (49.1)
Obesity, n (%) 1925 (24.2) 83 (25.3) 0.640°
Diabetes, n (%) 2055 (25.8) 128 (39.0) <0.001°
Hypertension, n (%) 3635 (45.7) 204 (62.4) <0.001°
Severe coronary artery disease, n (%) 314 (4.0) 20 (6.1) 0.052°
Global memory performance z-score, median (IQR) 0.20 (-0.60; 0.68) —2.20 (-2.70; -1.73) <0.001¢
Semantic verbal fluency z-score, median (IQR) 0.06 (-0.70; 0.63) —-1.27 (-1.65; -0.89) <0.001¢
Trail making test z-score, median (IQR) 0.32 (-0.16; 0.61) —2.17 (-3.66; —1.00) <0.001¢

IQR: interquartile range; SD: standard deviation; ®Student’s t-test; bChi-squared test; °Fisher exact test; “Wilcoxon rank-sum test.

Table 2. Predictive metrics results for each of the machine learning algorithms of the test set.

Model ROC-AUC Sensitivity Specificity PPV NPV F1-score 20% ranked highest®
(95%Cl)

XGBoost 0.873 (0.839-0.906) 0.316 0.969 0.298 0.972 0.307 76.53%

LightGBM 0.860 (0.821-0.898) 0.398 0.967 0.331 0.975 0.361 72.44%

Logistic Regression 0.805 (0.762-0.847) 0.235 0.964 0.209 0.969 0.221 61.22%

ANN 0.801 (0.755-0.845) 0.204 0.967 0.200 0.967 0.202 66.32%

Catboost 0.805 (0.762-0.847) 0.102 0.989 0.270 0.964 0.148 61.22%

ROC-AUC: area under the receiving operating characteristic curve; ANN: Artificial Neural Networks; LightGBM: Light Gradient Boosting
Machine; NPV: negative predictive value; PPV: positive predictive value; XGBoost: Extreme Gradient Boosting Machine. ®Ranking of

participants with higher probability of cognitive deficit according to each machine learning model.

individuals by this algorithm, 76.5% of the total individuals
with cognitive impairment were included. This algorithm
was able to identify negative cases with high predictive
performance (specificity=0.97 and negative predictive
value=0.97). The graph presenting the distribution of the
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ROC curves from each model is presented in Figure 1 and
shows the consistent overperformance of the XGBoost
and LightGBM throughout different threshold distributions.

Figure 2 presents the results of variables’ importance
according to the Shapley values for the best performing
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Figure 1. Distribution of the receiver operating characteristic curves of the different machine learning algorithms on the test set.
ANN: Artificial Neural Network; AUC: area under the receiver operating characteristic curve; LightGBM: Light Gradient Boosting
Machine; LR: Logistic Regression; XGBOOST: Extreme Gradient Boosting Machine.

algorithm (XGBoost). The most relevant predictor was
education. Having at least a college degree had a
negative impact on the overall risk of cognitive impairment
(higher Shapley values in blue), while education lower
than middle school had a positive impact on the risk of
cognitive impairment (higher Shapley values in red). Other
important predictors were social class, age, and lack of
occupational mobility.

Discussion

Using ML techniques, we developed and tested a
predictive model for cognitive impairment based on
several variables that can be assessed in primary care.
The best model was developed using the XGBoost
algorithm and showed high discriminant ability and
specificity, which are important features to select indi-
viduals with high risk of cognitive impairment that would
benefit from a detailed neuropsychological assessment.

Dementia is the main cause of disability in high-
income countries, and it is among the top ten causes of
disability in LMIC (30). Therefore, early detection of
cognitive impairment is crucial for better health manage-
ment of individual patients, as well as better allocation of
resources in health systems. Currently, the diagnosis of
dementia is time-consuming since it requires a detailed
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clinical history and physical examination, followed by an
objective cognitive assessment. Dementia is secondary to
neurodegenerative and cerebrovascular diseases, which
are strongly related to aging. With the accelerated aging
process that is taking place worldwide, performing cog-
nitive screening in every older adult would be impractical
(5,6). Therefore, it is important to develop new strategies
to identify individuals at higher risk of cognitive impairment
that would benefit from a full cognitive assessment.

The use of predictive models for cognitive impairment
that incorporates variables that are measured in primary
care settings can identify patients at risk. Some of these
models used traditional statistical approaches (logistic
regression, Cox proportional-hazards, and linear mixed
effects) to predict dementia or cognitive decline (9-
11,13,14,31,32). Most models that were based only on
sociodemographic characteristics, anthropometric param-
eters, clinical history related to cardiovascular diseases
or risk factors, lifestyle, and mental health symptoms, and
did not incorporate cognitive performance as a predictor,
presented fair discrimination (ROC-AUC ranging from
0.68 to 0.78) (9,11,14). The only exception was the
Cox proportional-hazards model developed by Walters
et al. (13), which achieved good discrimination (ROC-
AUC=0.84) to predict the 5-year risk of dementia in
older adults. However, neither the statistical modeling
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Figure 2. Importance of variables according to the Shapley values for the Extreme Gradient Boosting algorithm on the test set. The
vertical axis lists the input variables and the horizontal axis measures their contribution in classifying cognitive deficit. The color red
represents higher values and blue lower values. SHAP: Shapley Additive exPlanations.

techniques, study design, or outcomes assessed in these
studies could be compared to our approach.

ML models are natural extensions of traditional
statistical approaches that can handle large volumes of
multi-dimensional and multi-variety data, discover trends
and patterns that would not be apparent to humans, are
based less on human assumptions, and can improve their
performance by learning from new data (16). Few ML
models have been developed to predict cognition based
on variables accessible in the primary care setting (15,33).
Barnes et al. (33) developed and tested different
classifiers to predict unrecognized dementia in commu-
nity-dwelling older adults based on age, sex, medical
diagnoses, healthcare utilization, vital signs, and medica-
tions. Like our study, gradient boosting achieved good
discriminant ability (ROC-AUC=0.81). Na (15) developed
and tested a gradient boosting machine to predict
cognitive impairment in Korean older adults that achieved
excellent discriminant ability (ROC-AUC=0.92). Different
from our work, cognitive impairment was assessed with a
screening test, the Mini-Mental State Examination, and
cognitive performance was included as a feature in the
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model. In our study, we aimed to develop a classifier that
did not rely on cognitive performance to identify individuals
who would not benefit from cognitive screening and spare
resources.

In the present study, sociodemographic characteristics
were among the main contributors to the predictive power
of the model. Education, social class, and lack of
occupational mobility (which probably reflected both social
class and educational level) were among the top 5
variables according to the Shapley values for the XGBoost
on the testing set. Social determinants of health are strong
predictors of cognitive performance, particularly in LMIC,
where social inequalities are rampant (34,35). Although our
aim was to identify individuals at higher risk of cognitive
impairment and not to determine causal risk factors, it is
well-known that socioeconomic variables, particularly edu-
cation, are proxies of cognitive reserve (36).

Our ML algorithm can be used to identify individuals
who are at higher risk of cognitive impairment. Seventy-
six percent of the individuals with cognitive impairment
were included among the 20% highest ranked individuals
by the algorithm, which opens the opportunity for
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comprehensive screening and targeted interventions in
a relatively small number of patients, which could save
time and resources in busy primary care settings. Even
more important for screening purposes was the fact
that the algorithm also identified with high predictive
performance the negative cases (specificity of 0.97 and
negative predictive value of 0.97). Therefore, our algo-
rithm will be very useful to exclude individuals with normal
cognitive function, who would not benefit from clinical and
neuropsychological evaluations.

Our study had some limitations. First, we performed
the model validation in a test set with participants from the
ELSA-Brasil, who were not included in the training set.
Although this is a valid approach, the algorithm needs to
be tested in other populations before it can be used in
clinical practice. Second, we developed a predictive
model for cognitive impairment using cross-sectional data.
Future studies with longitudinal data from the ELSA-Brasil
will allow the development of a predictive model for
cognitive decline. Third, we did not use normative scores
for cognition that would account for age and education
effects. Instead, we preferred to use these variables as
predictors since they have shown strong effects on
cognitive performance (37). In addition, the ELSA-Brasil
sample does not represent the Brazilian population since
participants are public servants with higher education and
income than the general Brazilian population. However, it
is important to highlight that the participants’ cardiovas-
cular risk profile is similar to the general population (18).
Our study strengths include the large sample size with a
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