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Abstract

Chemotherapy response rates in patients with cholangiocarcinoma remain low, primarily due to the development of drug
resistance. Epithelial-mesenchymal transition (EMT) of cancer cells is widely accepted to be important for metastasis and
progression, but it has also been linked to the development of chemoresistance. Salinomycin (an antibiotic) has shown some
potential as a chemotherapeutic agent as it selectively kills cancer stem cells, and has been hypothesized to block the EMT
process. In this study, we investigated whether salinomycin could reverse the chemoresistance of cholangiocarcinoma cells to
the chemotherapy drug doxorubicin. We found that combined salinomycin with doxorubicin treatment resulted in a significant
decrease in cell viability compared with doxorubicin or salinomycin treatment alone in two cholangiocarcinoma cell lines (RBE
and Huh-28). The dosages of both drugs that were required to produce a cytotoxic effect decreased, indicating that these two
drugs have a synergistic effect. In terms of mechanism, salinomycin reversed doxorubicin-induced EMTof cholangiocarcinoma
cells, as shown morphologically and through the detection of EMT markers. Moreover, we showed that salinomycin treatment
downregulated the AMP-activated protein kinase family member 5 (ARK5) expression, which regulates the EMT process of
cholangiocarcinoma. Our results indicated that salinomycin reversed the EMT process in cholangiocarcinoma cells by inhibiting
ARK5 expression and enhanced the chemosensitivity of cholangiocarcinoma cells to doxorubicin. Therefore, a combined
treatment of salinomycin with doxorubicin could be used to enhance doxorubicin sensitivity in patients with cholangiocarcinoma.
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Introduction

Cholangiocarcinoma is a highly malignant tumor of
the bile duct that arises from epithelial cells (1,2). It is
the second most common primary hepatic carcinoma and
accounts for 10–20% of primary liver cancers (1,2). Due
to its high malignant potential and rapid development,
as well as the absence of associated chronic liver disease,
early diagnosis of cholangiocarcinoma remains difficult (3).
Therefore, many patients are at the advanced or terminal
stage when diagnosed. For those patients who are able to
undergo radical resection, the risk of recurrence remains
high, with a 5-year survival rate of less than 30% (4–7).
While some recent breakthroughs in liver transplantation
have occurred, few cholangiocarcinoma patients are
suitable for, or have access to this expensive treatment
option (8–10). In addition, liver transplantation is not the

best treatment method for cholangiocarcinoma, as it does
not prevent recurrence.

In this respect, chemotherapy may provide more
sustained benefits in cholangiocarcinoma patients. How-
ever, the response rate to chemotherapy response remains
low, primarily due to the development of drug resistance
(chemoresistance) (11). Therefore, novel strategies to
overcome chemoresistance are urgently required.

Many studies have shown that epithelial-mesenchymal
transition (EMT) is involved in the development of chemo-
resistance (12–16). For example, the chemotherapy drug
doxorubicin was shown to induce EMT in different types
of cancer cells, including breast cancer, hepatocellular
carcinoma (HCC), and pancreatic cancer (17–19), although
the mechanism of doxorubicin-induced EMT is unclear.
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The EMT process has also been shown to be involved in
maintaining cancer stem cell (CSC) properties, such as
the ability for self-renewal and differentiation (20). There-
fore, the role of CSCs as tumor-initiating cells and in
recurrence following chemotherapy has attracted attention.

Salinomycin is an ionophore antibiotic that can selec-
tively kill CSCs, and thus may be useful in cancer chemo-
therapy (21–23). Salinomycin may also target the EMT
process in cancer cells (23). Indeed, this antibiotic was
previously shown to suppress ZEB1, an important activator
of EMT, and to reverse the EMT process in mantle
cell lymphoma (24). It is also important to note that poor
prognosis of cholangiocarcinoma is related to high expres-
sion of ZEB1, likely due to its ability to activate EMT (25).
Furthermore, salinomycin treatment was previously shown
to suppress the proliferation, invasion, and metastasis
of mesenchymal-type endometrial CSCs (26). Based on
these data, we hypothesized that salinomycin may be
useful in cholangiocarcinoma therapy.

In this study, we aimed to investigate the efficacy
of salinomycin in the treatment of cholangiocarcinoma,
and to determine if it could reverse chemoresistance to
doxorubicin.

Material and Methods

Cell culture
Two cholangiocarcinoma cell lines, RBE and Huh-28,

were purchased from the Chinese Academy of Science
Cell Bank (China). RBE cells were maintained in RPMI-
1640 medium (Gibco, USA) with 10% fetal bovine serum
(FBS; Gibco), while Huh-28 cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Gibco)
with 10% FBS (Gibco).

Chemical reagents
Doxorubicin and salinomycin were purchased from

Sigma-Aldrich (USA). E-cadherin, Vimentin, ARK5, and
GAPDH primary antibodies for western blotting were
purchased from Abcam (USA). ARK5 siRNA was obtained
from Santa Cruz (USA). The anti-CD133 (FITC) antibody
used for flow cytometric analysis was purchased from
eBioscience (USA).

Cell viability assays
Cells were seeded onto 96-well plates at a density of

3000 cells/well with 100 mL cell culture medium. After 24 h,
the medium was replaced with medium containing 10%
FBS and different concentrations of doxorubicin (0, 0.0625,
0.125, 0.25, 0.5, or 1 mg/mL) or salinomycin (0, 2.5, 5, 10,
20, or 40 mM), and cultivated in a 37°C, 5% CO2 incubator
for 48 h. Cell viability was subsequently measured at 3 h
using the Cell Counting Kit-8 (Dojindo Laboratories,
Japan) according to the manufacturer’s instructions. Absor-
bance at 450 nm was measured by an MRX II microplate
reader (Dynex, USA).

Western blot analysis
A total of 2� 105 cells were seeded onto 6-well plates.

Cells were washed with ice-cold PBS and then lysed using
RIPA buffer (Sigma, USA). The protein concentration was
quantified using the BCA Protein assay kit (Thermo, USA).
Proteins (40 mg/lane) were separated by SDS-PAGE
and transferred to polyvinylidene difluoride membranes
(PVDF; Millipore, USA) for western blotting. Antibodies
against ARK5, E-cadherin, vimentin, and GAPD were
used for detection of proteins at 1:1000 dilution.

RNA interference
RBE and Huh-28 cells were transfected with ARK5

siRNA using Lipofectamine 2000. Opti-MEM transfection
medium was replaced with complete culture medium 6 h
after transfection, and the RBE or Huh-28 were incubated
for the indicated times. All experiments were performed 72 h
after transfection. Transfected cells were plated onto 96-well
plates at a density of 3000 cells/well, allowed to adhere
overnight, and then treated with doxorubicin (0, 0.0625,
0.125, 0.25, 0.5, or 1 mg/mL) or salinomycin (0, 2.5, 5, 10,
20, or 40 mM) prior to the subsequent experiments.

Flow cytometric analysis of CD133 expression
RBE cells were trypsinized and analyzed by flow

cytometry (Cytomics FC500, Bechman Coulter, USA)
using the anti-CD133 antibody (FITC).

Statistical analysis
Prism 5.0 software was used for statistical analysis.

The experimental data were assessed by a two-tailed
Student t-test and are reported as mean±SD. Statistical
significance was accepted if Po0.05.

Results

Salinomycin increased doxorubicin chemosensitivity
in cholangiocarcinoma cells

First, we investigated whether salinomycin could
increase the sensitivity of cholangiocarcinoma cells to
doxorubicin chemotherapy using a cell viability (CCK-8)
assay. When using doxorubicin alone, the IC50 for RBE
and Huh-28 cells were 3.703 and 1.841 mg/mL, respec-
tively (Table 1). Salinomycin was not effective at inhibiting
the viability of cholangiocarcinoma cells unless high doses
were used; the IC50 was 132 mM for RBE cells and 80.31 mM
for Huh-28 cells. However, combined salinomycin with
doxorubicin treatment for 48 h resulted in a significant
decrease in cell viability compared with doxorubicin or
salinomycin treatment alone in RBE and Huh-28 cells
(Figure 1). In addition, the combination index values for
these two cholangiocarcinoma cell lines after 48 h were
0.261 and 0.43, respectively, indicating that doxorubicin
and salinomycin displayed synergism when used together
(Table 1). Therefore, salinomycin treatment increased the
sensitivity of cholangiocarcinoma cells to doxorubicin.
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Salinomycin reversed doxorubicin-induced EMT of
cholangiocarcinoma cells

To investigate the influence of salinomycin on the EMT
process induced by doxorubicin treatment, we examined
morphological changes and the expression of epithelial
and mesenchymal markers in cholangiocarcinoma cells
before and after doxorubicin treatment. Initially, both the
RBE and Huh-28 cells were closely connected, polarized
epithelial cells. However, after treatment with doxorubicin,
both RBE and Huh-28 cells transformed into a diffuse
fibroblast-like morphology. However, when treated with
salinomycin alone, both RBE and Huh-28 cells maintained
their original morphology. Furthermore, salinomycin treat-
ment converted the diffuse fibroblast-like morphology
observed with doxorubicin back to the closely connected,
polarized morphology (Figure 2).

We monitored the expression of EMT markers in RBE
and Huh-28 cells via western blotting. Expression of the
epithelial marker E-cadherin was lower when cells were
treated with doxorubicin. However, when salinomycin was
combined with doxorubicin treatment, E-cadherin expres-
sion increased. Similarly, doxorubicin treatment upregu-
lated the expression of the mesenchymal marker vimentin
in RBE and Huh-28 cells compared to the untreated
control, whereas salinomycin reversed the doxorubicin-
induced expression changes of vimentin (Figure 3A).
Finally, we showed that after doxorubicin treatment, the

expression of CD133 (a marker of CSCs) on RBE cells
was increased, and when doxorubicin was combined with
salinomycin, CD133 expression on RBE cells decreased
(Figure 3B). Therefore, salinomycin reversed the doxorubicin-
induced EMT of cholangiocarcinoma cells.

To further confirm that salinomycin could increase
doxorubicin sensitivity toward cholangiocarcinoma cell
lines through reversing EMT progress, we used twist siRNA
to interfere in RBE and Huh-28 cells first, then treated both
cells with doxorubicin or doxorubicin+ salinomycin combina-
tion. We found that there was no significant difference
between the two treatment methods (Figure 3C).

Salinomycin reversed doxorubicin-induced EMT
through regulating ARK5

Overexpression of the AMP-activated protein kinase
family member 5 (ARK5), a novel human AMP-activated
protein kinase family member (27), was previously shown
to decrease the sensitivity of HCC cells to doxorubicin.
ARK5 promotes doxorubicin resistance in hepatocellular
carcinoma via epithelial–mesenchymal transition (28).
Therefore, we examined the expression of ARK5 in RBE
and Huh-28 cells treated with doxorubicin, doxorubicin
plus salinomycin, or salinomycin alone for 48 h. Doxoru-
bicin treatment significantly upregulated expression of
ARK5 in both cell lines, while combined doxorubicin
with salinomycin treatment decreased ARK5 expression

Table 1. Results of the cell viability assay (IC50 values) following treatment with doxorubicin (DOX) and/or
salinomycin (SAL) in RBE and Huh-28 cell lines.

Cell line IC50 of SAL (mg/mL) IC50 of DOX (mg/mL) Combination index

SAL SAL+DOX DOX SAL+DOX

RBE 132 4.772* 3.73 0.838# 0.261

Huh-28 80.31 1.968* 1.841 0.3452# 0.430

Data are reported as the mean. * Po0.05 vs SAL; # Po0.05 vs DOX. Statistical analysis was carried out
with the two-tailed Student t-test.

Figure 1. CCK-8 assay detection of the viability of RBE and Huh-28 cells following doxorubicin (DOX) and/or salinomycin (SAL)
treatment. Salinomycin enhanced the effects of doxorubicin treatment on the cell viability of cholangiocarcinoma cells.
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(Figure 4). Salinomycin treatment showed no obvious
effects when used alone.

We then investigated whether ARK5 is involved in the
doxorubicin-induced EMT process. We used ARK5-siRNA
to downregulate ARK5 expression in RBE and Huh-28
cells, and then monitored the expression of the EMT

markers, E-cadherin and vimentin. In both cells lines,
the epithelial marker E-cadherin was upregulated while
expression of the mesenchymal marker vimentin decreased
significantly (Figure 5A). Thus, salinomycin treatment
may reverse doxorubicin-induced EMT by decreasing
ARK5 expression.

Figure 2. Morphological changes that occur when RBE and Huh-28 cells are cultured with doxorubicin (DOX) in the presence or
absence of salinomycin (SAL) observed under bright field microscopy. Salinomycin reversed the effects of doxorubicin treatment on the
morphology of cholangiocarcinoma cells.

Figure 3. Salinomycin (SAL) reversed doxorubicin-induced epithelial-mesenchymal transition in cholangiocarcinoma cells. A, Western
blot detection of E-cadherin and vimentin expression in control, doxorubicin- (DOX), doxorubicin plus SAL-, or SAL alone-treated
cholangiocarcinoma cells. GAPDH was used as an internal control. B, Expression of CD133 detected by flow cytometry in RBE cells
treated with DOX in the presence or absence of SAL. C, CCK-8 assay of the viability of RBE and Huh-28 cells following DOX and/or SAL
treatment after twist siRNA interference.

Braz J Med Biol Res | doi: 10.1590/1414-431X20176147

Salinomycin reverses doxorubicin-induced EMT of cancer cells 4/7

http://dx.doi.org/10.1590/1414-431X20176147


Furthermore, in order to prove that ARK5 is involved in
doxorubicin resistance, we downregulated the ARK5
expression with ARK5 siRNA in both cells, then treated
with doxorubicin. The results showed that in RBE cells,
the IC50 for doxorubicin was 1.820 mg/mL after ARK5
siRNA interference, which was significantly lower com-
pared to negative siRNA interference (Po0.05). Similarly,
the IC50 for doxorubicin in Huh-28 cells was 0.485 mg/mL
with ARK5 siNRA interference, which was also signifi-
cantly down regulated compared to negative siRNA inter-
ference (Po0.05; Figure 5B).

Discussion

Cholangiocarcinoma remains difficult to detect in its
early stages, which leaves patients with limited treat-
ment options due to the late diagnosis and high rates of
metastasis. In addition, response rates to chemotherapy
in cholangiocarcinoma patients remain low, primarily due
to the development of drug resistance (11). Chemoresis-
tance (e.g., to doxorubicin) remains a big problem in the
clinic, and may result from the induction of EMT in cancer
cells. Indeed, the EMT process has previously been

Figure 4. Salinomycin (SAL) reduced the doxoru-
bicin-induced expression of AMP-activated
protein kinase family member 5 (ARK5) in chol-
angiocarcinoma RBE and Huh-28 cells after
treatment with doxorubicin (DOX), doxorubicin
plus SAL, or SAL alone.

Figure 5. AMP-activated protein kinase family member 5 (ARK5) knockdown reverses epithelial-mesenchymal transition. A, Expression
of E-cadherin and vimentin in RBE and Huh-28 cells following ARK5 suppression with siRNA. B, CCK-8 assay results of the viability of
RBE and Huh-28 cells following doxorubicin (DOX) treatment after ARK5 siRNA interference.
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associated with invasion, metastasis, and chemoresis-
tance in many malignancies, including cholangiocarci-
noma (29–31). Likewise, our present study showed that
treatment with doxorubicin induced the transformation of
epithelial type cholangiocarcinoma cells into a mesenchy-
mal type. Therefore, understanding how to reverse this
EMT process at a mechanistic level to avoid chemoresis-
tance is crucial for improving the outcome for cholangio-
carcinoma patients.

Previous studies have reported that salinomycin could
be useful in cancer chemotherapy (21–23), with one study
indicating that it participates in the EMT process of cancer
cells (23). Here, we demonstrated that treating cholangio-
carcinoma cells with a combined therapy of doxorubicin
and salinomycin enhanced the effect of the chemotherapy.
The dosages of both drugs that were required to produce
a cytotoxic effect decreased, indicating that these two
drugs have a synergistic effect. In addition, salinomycin
could reverse doxorubicin-induced EMT, as shown mor-
phologically, as well as through the detection of EMT
markers on cholangiocarcinoma cells. Moreover, we found
that twist knockdown could block the synergistic effect of
salinomycin and doxorubicin. Twist is considered an
important transcription factor involved in EMT progress
in cholangiocarcinoma (32), which is also essential in

doxorubicin induced EMT (33). These results suggest
salinomycin could enhance the effects of doxorubicin
chemotherapy through reversing the EMT process.

As further evidence, we examined the effects of
salinomycin and doxorubicin on ARK5 expression. ARK5
has previously been proven to be associated with
invasion, metastasis and poor prognosis in breast cancer,
colorectal carcinoma, non-small cell lung cancer, and
cholangiocarcinoma (34–37). We found that after treat-
ment with doxorubicin, cholangiocarcinoma cells had
higher expression of ARK5, while salinomycin treatment
could reserve this effect. Furthermore, ARK5 appears
to regulate the expression of the EMT related markers
E-cadherin and vimentin in cholangiocarcinoma cells; in
particular, downregulation of ARK5 increased the expres-
sion of E-cadherin and decreases the expression of
vimentin.

In conclusion, our study indicated that ARK5 expres-
sion may influence doxorubicin sensitivity through regulat-
ing the EMT process in cholangiocarcinoma cells.
Furthermore, salinomycin could reverse the EMT process
in cholangiocarcinoma cells by inhibiting ARK5 expres-
sion. Therefore, a combined treatment of salinomycin with
doxorubicin could be used to enhance doxorubicin
sensitivity in patients with cholangiocarcinoma.
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