Acessibilidade / Reportar erro
Brazilian Journal of Medical and Biological Research, Volume: 53, Número: 5, Publicado: 2020
  • Impact of cigarette smoke and aerobic physical training on histological and molecular markers of prostate health in rats Research Article

    Veras, A.S.C.; Baptista, D.B.; dos Santos, N.J.; Thorpe, H.H.A.; Seraphim, P.M.; Florido Neto, A.R.; Teixeira, G.R.

    Resumo em Inglês:

    Recent evidence suggests that aerobic physical training may attenuate the deleterious effects of cancer risk factors, including smoking. We investigated the effects of cigarette smoke inhalation and aerobic physical training on the expression of steroid receptors and inflammatory and apoptotic proteins in the prostate. Forty male Wistar rats were distributed in four groups: control (CO), exercise (EXE), cigarette smoke exposure (CS), and cigarette smoke exposure with exercise (CS+EXE). For eight weeks, animals were repeatedly exposed to cigarette smoke for 30 min or performed aerobic physical training either with or without the cigarette smoke inhalation protocol. Following these experiments, we analyzed prostate epithelial morphology and prostatic expression of androgen (AR) and glucocorticoid receptors (GR), insulin-like growth factor (IGF-1), B-cell lymphoma-2 (BCL-2), BCL-2-associated X protein (BAX), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-κB) via immunohistochemistry. Cigarette smoke exposure stimulated the expression of AR, IGF-1, BCL-2, and NF-κB while downregulating BAX, IL-6, and TNF-α labeling in the prostate. In contrast, aerobic physical training attenuated cigarette smoke-induced changes in AR, GR, IGF-1, BCL-2, IL-6, TNF-α, and NF-κB. This suggests that cigarette smoke stimulates inflammation and reduces apoptosis, culminating in increased prostatic epithelial and extracellular matrices, whereas physical training promoted beneficial effects towards maintaining normal prostate morphology and protein levels.
  • Alanyl-glutamine protects the intestinal barrier function in trained rats against the impact of acute exhaustive exercise Research Article

    Freitas, A.K.L.; Silva, M.T.B.; Silva, C.M.S.; Prata, M.M.G.; Rodrigues, F.A.P.; Siqueira, R.J.B.; Lima, A.A.M.; Santos, A.A.; Havt, A.

    Resumo em Inglês:

    Strenuous exercise triggers deleterious effects on the intestinal epithelium, but their mechanisms are still uncertain. Here, we investigated whether a prolonged training and an additional exhaustive training protocol alter intestinal permeability and the putative effect of alanyl-glutamine (AG) pretreatment in this condition. Rats were allocated into 5 different groups: 1) sedentary; 2 and 3) trained (50 min per day, 5 days per week for 12 weeks) with or without 6 weeks oral (1.5 g/kg) AG supplementation; 4 and 5) trained and subjected to an additional exhaustive test protocol with or without oral AG supplementation. Venous blood samples were collected to determine gasometrical indices at the end of the 12-week protocol or after exhaustive test. Lactate and glucose levels were determined before, during, and after the exhaustive test. Ileum tissue collected after all experimental procedures was used for gene expression analysis of Zonula occludens 1 (ZO-1), occludin, claudin-2, and oligopeptide transporter 1 (PepT-1). Intestinal permeability was assessed by urinary lactulose/mannitol test collected after the 12-week protocol or the exhaustive test. The exhaustive test decreased pH and base excess and increased pCO2. Training sessions delayed exhaustion time and reduced the changes in blood glucose and lactate levels. Trained rats exhibited upregulation of PEPT-1, ZO-1, and occludin mRNA, which were partially protected by AG. Exhaustive exercise induced intestinal paracellular leakage associated with the upregulation of claudin-2, a phenomenon protected by AG treatment. Thus, AG partially prevented intestinal training adaptations but also blocked paracellular leakage during exhaustive exercise involving claudin-2 and occludin gene expression.
  • MALAT1 is involved in type I IFNs-mediated systemic lupus erythematosus by up-regulating OAS2, OAS3, and OASL Research Article

    Gao, Fei; Tan, Yuan; Luo, Hong

    Resumo em Inglês:

    Systemic lupus erythematosus (SLE) is an autoimmune disease associated with an aberrant activation of immune cells partly due to the dysfunction of cytokines such as type I interferons (IFNs). Long non-coding RNA MALAT1 has been found to play a pathogenic role in SLE; however, the underlying mechanisms are still poorly understood. Bioinformatics analysis showed the up-regulation of type I IFN downstream effectors OAS2, OAS3, and OASL (OAS-like) in CD4+ T cells, CD19+ B cells, and CD33+ myeloid cells in patients with active SLE compared to healthy participants. In this study, peripheral blood mononuclear cells (PBMCs), CD19+ B, and CD4+ T cells were isolated from active SLE patients and healthy participants. PCR was performed to quantify MALAT1, OAS2, OAS3, and OASL expression in immune cells. MALAT1, OAS2, OAS3, and OASL were knocked down in CD4+ T cells to investigate the regulatory effect of MALAT1 on the effectors and their involvement in type I IFNs-mediated inflammation. Results showed higher OAS2, OAS3, and OASL expression in active SLE patients. MALAT1 expression was positively correlated to OAS2, OAS3, and OASL expression in CD19+ B or CD4+ T cells. MALAT1 knockdown decreased OAS2, OAS3, and OASL expression. Treatment with IFN-α-2a increased the expression of TNF-α, IL-1β, and IFN-α in CD4+ T cells. However, knockdown of MALAT1, OAS2, OAS3, and OASL alone inhibited the effect of IFN-α-2a on TNF-α and IL-1β. This study suggested the involvement of MALAT1 in type I IFNs-mediated SLE by up-regulating OAS2, OAS3, and OASL.
  • MicroRNA-4290 suppresses PDK1-mediated glycolysis to enhance the sensitivity of gastric cancer cell to cisplatin Research Article

    Qian, Yan; Wu, Xu; Wang, Haixiao; Hou, Guowei; Han, Xiao; Song, Wei

    Resumo em Inglês:

    The development of chemotherapy resistance significantly impairs the efficiency of chemotherapy, but the underlying mechanisms of chemotherapy resistance in gastric cancer (GC) are complicated and still need to be further explored. Here, we aimed to reveal the effects of miR-4290/PDK1 (pyruvate dehydrogenase kinase 1) axis on chemotherapy resistance of GC in vitro. The expression patterns of miR-4290 in GC tissues and cell lines were determined by real-time quantitative PCR. Kaplan-Meier was used to assess the relationship between miR-4290 expression levels and patients' overall survival. CCK-8 and flow cytometry technologies were applied to detect cell proliferation and apoptosis. The luciferase gene reporter assay was used to evaluate the interaction between miR-4290 and PDK1. miR-4290 was lowly expressed in GC tissues and cell lines, which was closely associated with the shorter overall survival of GC patients. miR-4290 mimics significantly inhibited cell proliferation and induced cell apoptosis, as well as induced a significant reduction in the expression of PDK1. Moreover, miR-4290 significantly inhibited glycolysis and decreased the IC50 value to cisplatin in SGC7901 cells, whereas these effects were abolished and cell apoptosis was promoted when PDK1 was overexpressed. In conclusion, this study revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin.
  • Tissue fusion technology versus suture and staple in porcine bowel anastomosis: an in vivo study Research Article

    Pan, Hong; Leung, Kevin K.C.; Ng, Enders Kwok Wai

    Resumo em Inglês:

    The aim of this study was to make a comparison between the tissue fusion technique and conventional methods for sealing bowel anastomosis. Eighteen female domestic pigs (Suidae, Sus) were used in our study. Tissue-fused anastomoses (LigaSure groups) were made in 13 animals (5 anastomoses per animal), which were subdivided into 4 groups according to different manufacturing settings: “LigaSure-L-1” and “LigaSure-L-2”, with low energy output level with 1 or 2 device-activated tissue sealing times, and “LigaSure-M” and “LigaSure-H”, with medium or high energy output level. As controls, automatically stapled (GIA group) and hand-sewn (suture group) anastomoses were utilized in 3 and 2 animals, respectively. There was no statistical difference in the overall leakage rate between the GIA group (6.7%) and the LigaSure groups (15%) (P=1.000). There was less proliferating epithelium covering the anastomosis gap in the LigaSure groups compared with the other two groups. The gap between the two extremities of muscular layers of the anastomosis in the LigaSure groups was filled with collagen fibers. More proliferating cell nuclear antigen (PCNA)-positive cells were found in the anastomoses of the LigaSure groups compared with the other two groups (P=0.010). Our results showed that the tissue fusion technology was a feasible and safe method for anastomoses.
  • Indomethacin attenuates mechanical allodynia during the organization but not the maintenance of the peripheral neuropathic pain induced by nervus ischiadicus chronic constriction injury Research Article

    Medeiros, P.; dos Santos, I.R.; Medeiros, A.C.; da Silva, J.A.; Ferreira, S.H.; de Freitas, R.L.; Coimbra, N.C.

    Resumo em Inglês:

    The neurochemical mechanisms underlying neuropathic pain (NP) are related to peripheral and central sensitization caused by the release of inflammatory mediators in the peripheral damaged tissue and ectopic discharges from the injured nerve, leading to a hyperexcitable state of spinal dorsal horn neurons. The aim of this work was to clarify the role played by cyclooxygenase (COX) in the lesioned peripheral nerve in the development and maintenance of NP by evaluating at which moment the non-steroidal anti-inflammatory drug indomethacin, a non-selective COX inhibitor, attenuated mechanical allodynia after placing one loose ligature around the nervus ischiadicus, an adaptation of Bennett and Xie's model in rodents. NP was induced in male Wistar rats by subjecting them to chronic constriction injury (CCI) of the nervus ischiadicus, placing one loose ligature around the peripheral nerve, and a sham surgery (without CCI) was used as control. Indomethacin (2 mg/kg) or vehicle was intraperitoneally and acutely administered in each group of rats and at different time windows (1, 2, 4, 7, 14, 21, and 28 days) after the CCI or sham surgical procedures, followed by von Frey's test for 30 min. The data showed that indomethacin decreased the mechanical allodynia threshold of rats on the first, second, and fourth days after CCI (P<0.05). These findings suggested that inflammatory mechanisms are involved in the induction of NP and that COX-1 and COX-2 are involved in the induction but not in the maintenance of NP.
  • Effect of Camellia sinensis teas on left ventricular hypertrophy and insulin resistance in dyslipidemic mice Research Article

    Ferreira, M.C.L.; Lima, L.N.; Cota, L.H.T.; Costa, M.B.; Orsi, P.M.E.; Espíndola, R.P.; Albanez, A.V.; Rosa, B.B.; Carvalho, M.G.S.; Garcia, J.A.D.

    Resumo em Inglês:

    The control of dyslipidemia using plants is an important subject of studies since it has numerous benefits in cardiovascular protection. The objective of this study was to evaluate the effect of three Camellia sinensis L. teas (green, red, and white) on left ventricular hypertrophy and insulin resistance in low-density lipoprotein receptor knockout (LDLr-/-) mice fed a high-fat diet. The LDLr-/- mice were divided into four experimental groups: Group C: standard feed; Group CT: standard feed and three teas, Group HL: high-fat feed; HLT Group: high-fat feed and three teas. The three types of tea (green, red, and white) originated from different processing of the Camellia sinensis L. plant, and were administered associated once a day at a dose of 25 mg/kg by gavage for 60 days. The teas partially prevented hyperlipidemia, the decrease of the serum levels of high-density lipoproteins (HDL), insulin resistance, and increased C-reactive protein (CRP) levels, and completely prevented left ventricular hypertrophy in LDLr -/- mice of the HLT group. In conclusion, the three Camellia sinensis L. teas used to control genetic dyslipidemia associated with a high-fat diet can be used as an auxiliary treatment associated with the control of lipid intake, thus promoting cardiac protection against hyperlipidemia.
  • Enhanced anti-tumor efficacy of 5-aminolevulinic acid-gold nanoparticles-mediated photodynamic therapy in cutaneous squamous cell carcinoma cells Research Article

    Chi, Yu-fei; Qin, Jing-jing; Li, Zhi; Ge, Qin; Zeng, Wei-hui

    Resumo em Inglês:

    The objective of this study was to investigate whether the conjugation of gold nanoparticles (GNPs) to 5-aminolevulinic acid (5-ALA) could enhance the anti-tumor efficiency of photodynamic therapy (PDT) in epidermoid carcinoma cells. The mRNA and protein expression levels were determined by quantitative real-time PCR and western blot, respectively. Cell viability, apoptosis, invasion, and migration were determined by MTT assay, flow cytometry, transwell invasion assay, and migration assay, respectively. Singlet oxygen generation was detected by the singlet oxygen sensor green reagent assay. Our results showed that PDT with 5-ALA and GNPs-conjugated 5-ALA (5-ALA-GNPs) significantly suppressed cell viability, increased cell apoptosis and singlet oxygen generation in both HaCat and A431 cells, and PDT with 5-ALA and 5-ALA-GNPs had more profound effects in A431 cells than that in HaCat cells. More importantly, 5-ALA-GNPs treatment potentiated the effects of PDT on cell viability, cell apoptosis, and singlet oxygen generation in A431 cells compared to 5-ALA treatment. Further in vitro assays showed that PDT with 5-ALA-GNPs significantly decreased expression of STAT3 and Bcl-2 and increased expression of Bax in A431 cells compared with PDT with 5-ALA. In addition, 5-ALA-GNPs treatment enhanced the inhibitory effects of PDT on cell invasion and migration and Wnt/β-catenin signaling activities in A431 cells compared to 5-ALA treatment. In conclusion, our results suggested that GNPs conjugated to 5-ALA significantly enhanced the anti-tumor efficacy of PDT in A431 cells, which may represent a better strategy to improve the outcomes of patients with cutaneous squamous cell carcinoma.
  • miR-378a-5p and miR-630 induce lens epithelial cell apoptosis in cataract via suppression of E2F3 Research Article

    Gao, Weiwei; Zhou, Xiaoqing; Lin, Ruihua

    Resumo em Inglês:

    Cataract, an eye disease that threatens the health of millions of people, brings about severe economic burden for patients and society. MicroRNA (miR)-378a-5p and miR-630 were recognized as essential regulators in multiple cancers. However, the exact functions of miR-378a-5p and miR-630 in cataract are still unclear. The expression of miR-378a-5p, miR-630, and E2F transcription factor 3 (E2F3) in tissues and cells was measured by quantitative real-time polymerase chain reaction. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was used to evaluate cell viability. Flow cytometry was conducted to analyze cell apoptosis. The interaction between E2F3 and miR-378a-5p or miR-630 was confirmed by dual-luciferase reporter assay. The expression of proteins E2F3, B cell lymphoma (Bcl-2), Bcl-2 associated X (Bax), and cleaved caspase 3 was detected by western blot assay. The expression of miR-378a-5p and miR-630 was up-regulated whereas E2F3 was down-regulated in human cataract lens tissues compared with normal lens tissues. Depletion of miR-378a-5p or miR-630 enhanced proliferation and reduced apoptosis of human lens epithelial cells. Interestingly, up-regulation of E2F3 exhibited the same trend. Next, dual-luciferase reporter assay validated the interaction between E2F3 and miR-378a-5p or miR-630. The rescue experiments further revealed that E2F3 knockdown could recover miR-378a-5p, and miR-630 inhibitor induced promotion of cell proliferation and inhibition of apoptosis in cataract. miR-378a-5p and miR-630 repressed proliferation and induced apoptosis of lens epithelial cells by targeting E2F3 in cataract, representing a prospective alternative therapy for cataract.
  • Expression of CHPF modulates cell proliferation and invasion in lung cancer Research Article

    Cao, Chengsong; Liu, Yong; Wang, Qun; Zhao, Jing; Shi, Ming; Zheng, Junnian

    Resumo em Inglês:

    Lung cancer is the most common malignancy worldwide and is characterized by rapid progression, aggressive behavior, frequent recurrence, and poor prognosis. The TCGA database indicates that chondroitin polymerizing factor (CHPF) is overexpressed in human lung cancer tissues compared with normal tissues and this overexpression corresponds to shorter overall survival in lung cancer patients. In this study, to investigate the function of CHPF in lung cancer, lentiviral vectors expressing CHPF shRNA were stably transduced into A549 and H1299 cells. Compared to shCtrl cells, CHPF knockdown cells had significantly reduced proliferation. Furthermore, the silencing of CHPF in A549 and H1299 cells resulted in apoptotic induction, which led to decreased colony formation. Wound healing and transwell invasion assays revealed that CHPF could positively regulate the migration of lung cancer cells. The tumorigenic role of CHPF was also validated in nude mouse xenograft models. Affymetrix gene chip analysis indicated that CHPF regulated the proliferation and invasion of lung cancer cells through CDH1, RRM2, MKI67, and TNFRSF10B. We thus highlight CHPF as a novel target for lung cancer treatment.
  • miR-22 and cerebral microbleeds in brainstem and deep area are associated with depression one month after ischemic stroke Research Article

    Hu, Jia; Zhou, Wei; Zhou, Zhiming; Yang, Qian; Xu, Junfeng; Dong, Wanli

    Resumo em Inglês:

    In this study, we aimed to explore the relationship among miR-22, deep cerebral microbleeds (CMBs), and post-stroke depression (PSD) 1 month after ischemic stroke. We consecutively recruited 257 patients with first-ever and recurrent acute cerebral infarction and performed PSD diagnosis in accordance with the Diagnostic and Statistical Manual IV criteria for depression. Clinical information, assessments of stroke severity, and imaging data were recorded on admission. We further detected plasma miR-22 using quantitative PCR and analyzed the relationship among miR-22, clinical data, and PSD using SPSS 23.0 software. Logistic regression showed that deep (OR=1.845, 95%CI: 1.006-3.386, P=0.047) and brain stem CMBs (OR=2.652, 95%CI: 1.110–6.921, P=0.040), as well as plasma miR-22 levels (OR=2.094, 95%CI: 1.066–4.115, P=0.032) were independent risk factors for PSD. In addition, there were significant differences in baseline National Institutes of Health Stroke Scale scores (OR=1.881, 95%CI: 1.180–3.011, P=0.007) and Widowhood scores (OR=1.903, 95%CI: 1.182–3.063, P=0.012). Analysis of the receiver operating curve (AUC=0.723, 95%CI: 0.562–0.883, P=0.016) revealed that miR-22 could predict PSD one month after ischemic stroke. Furthermore, plasma miR-22 levels in brainstem and deep CMBs patients showed an upward trend (P=0.028) relative to the others. Patients with acute ischemic stroke, having brainstem and deep cerebral microbleeds, or a higher plasma miR-22 were more likely to develop PSD. These findings indicate that miR-22 might be involved in cerebral microvascular impairment and post-stroke depression.
  • Evaluation of the cytotoxic and genotoxic effects by melamine and cyanuric acid co-exposure in human embryonic kidney 293 cells Research Article

    Xu, Xianrong; Lu, Jing; Sheng, Hongqiang; Zhang, Long; Gan, Tieer; Zhang, Jianyun; Xu, Yuying; Zhu, Xinqiang; Yang, Jun

    Resumo em Inglês:

    The melamine and cyanuric acid (CA) complex has been suggested to cause the toxic effects observed in melamine-contaminated food or milk. However, the cytotoxic and genotoxic effects of co-exposure to melamine and CA are not fully clear. Therefore, the cytotoxic effects of melamine and CA were first examined by co‐exposure in human kidney 293 cells using the MTT assay. During a 24-h period for the three concentrations tested (0.5, 1, and 5 mg/mL), neither melamine nor CA alone showed significant toxic effects on 293 cells at 0.5 mg/mL, while higher concentrations led to decreased in cell viability. However, co-exposure to several combinations of melamine and CA [100:1, 10:1, 1:10, and 1:100 (v:v), at a final concentration of 0.5 mg/mL] did cause cytotoxicity with higher levels of CA leading to higher cytotoxicity. By contrast, while neither melamine nor CA alone induced phosphorylated-H2AX (γH2AX) foci formation, melamine and CA at a 100:1 ratio induced γH2AX foci 24 h post-treatment. The alkaline comet assay also revealed the presence of DNA damage following melamine and CA co-exposure. In vivo assay also revealed the presence of melamine-CA complex in the kidney. These data indicated that the cytotoxic and genotoxic effects of melamine and CA co-exposure differ from those of melamine or CA alone.
Associação Brasileira de Divulgação Científica Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto SP Brazil, Tel. / Fax: +55 16 3315-9120 - Ribeirão Preto - SP - Brazil
E-mail: bjournal@terra.com.br