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Abstract
Drought is a slow-moving hazard that occurs in virtually all countries of the world. In the light of this, several indices have 
been developed to improve the detection of  drought’s onset, as well as quantifying other features of this phenomenon. 
The Standardized Precipitation Index (SPI) is often used in order to characterize meteorological droughts. In addition, this 
index is largely used by Brazilian’s agricultural institutions. In order to add important information to the drought literature, 
this review article described a general definition of drought, evaluated it from a statistical point of view, and also described 
the SPI strengths and limitations. An adaptation of the SPI that aims to develop a probability-based agricultural drought 
index was also presented. The results obtained herein, associated with several studies carried out throughout the world, 
demonstrated that the SPI is not an agricultural index. It is just a mathematical approach developed to transforming 
skewed distributions into the Gaussian form. If this standardization cannot be achieved, the use of this index becomes 
meaningless. Therefore, a normality test should be used in establishing a temporal lower limit for the SPI computations. It 
was also verified that for periods in which the probability associated with the zero precipitation value is close to 0.5, the 
SPI may erroneously indicate the end of an existing drought (or a decrease in its severity) in the presence of a decrease 
in the actual evapotranspiration values.

Key words: standardized precipitation index, normality, evapotranspiration.

Revisão da definição probabilística de seca: qualidades, limitações e adaptação 
agrometeorológica
Resumo

A seca é uma adversidade que se desenvolve lentamente ao longo do tempo, ocorrendo em praticamente todos os países do 
mundo. Consequentemente, diversos índices tem sido desenvolvidos para melhorar a detecção de seu início, bem como para 
quantificar demais características desse fenômeno. O Índice Padronizado de Precipitação (SPI) é frequentemente empregado 
na caracterização da seca meteorológica. Em adição, este índice é frequentemente utilizado por instituições agrícolas brasi-
leiras. Objetivando adicionar relevantes informações à literatura relativa à referida adversidade, este trabalho descreveu uma 
definição geral de seca, avaliou a mesma sob o aspecto estatístico e ressaltou qualidades e limitações do SPI. Apresentou-
-se também uma adaptação desse modelo matemático que visa ao desenvolvimento de um índice probabilístico de seca 
agrícola. Os resultados, associados a diversos estudos desenvolvidos nas distintas regiões do Globo, demonstram que o SPI 
não é um índice de seca agrícola, sendo apenas uma abordagem matemática que visa transformar distribuições assimétricas 
para a forma Gaussiana. Uma vez que essa padronização não for atingida, o uso deste índice torna-se pouco consistente. 
Portanto, um teste de normalidade deve ser utilizado no estabelecimento de uma escala temporal mínima para seu cálculo. 
Verificou-se também que, em períodos em que a probabilidade associada ao valor zero de precipitação for próxima a 0,5, o 
SPI pode indicar uma melhora, ou até mesmo o fim das condições de um evento de seca mesmo existindo um déficit cres-
cente de evapotranspiração real. 

Palavras-chave: Índice Padronizado de Precipitação, normalidade, evapotranspiração.
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1. INTRODUCTION

The droughts events affect natural ecosystems as well as 
several human activities carried out throughout the world. 
In this last case, a prolonged and abnormally dry spell can 
severely impact from the subsistence farming systems to 
the most developed industrial activities. In fact, as many 
other natural hazards droughts events have plagued the 
civilization over the time (Heim Jr., 2002). However, in 
comparison to other phenomena such as floods and earth-
quakes, the aforementioned hazard is perhaps the most 
difficult to define. As described in Wilhite (2000) the 
great number of sectors affected by drought, its temporal 
distribution, its geographical diversity, and the increasing 
demand placed on water supply by the man-made sys-
tems make it difficult to develop a single and universal 
definition of drought. 

In order to overcome this difficulty, the scientific lit-
erature frequently recognizes three physical drought types: 
agricultural, meteorological and hydrological. As pointed 
out by Wilhite (2000) while a hydrological drought is 
associated with a deficiency in the volume of the water 
supply (e.g. reservoir storage), a meteorological drought 
can be seen as a result of a precipitation (PRE) shortage. 
An agricultural drought results from a shortage of avail-
able water for plant growth. Due to this lack of avail-
able soil moisture, the evapotranspiration losses are not 
properly replaced (WMO, 1975). The scientific literature 
also recognizes a fourth type of (non-physical) drought 
frequently referred to as a socioeconomic drought. As 
described in Keyantash and Dracup (2002), ‘unless so-
cietal demand consistently exceeds natural supply, a so-
cioeconomic drought will not occur without one or more 
of the other droughts’. 

In spite of the existence of these different types of 
drought, there is a common feature associated with all 
of them. Already having been referred to as a ‘creeping 
phenomenon’ (Gillete, 1950), drought is a slow-moving 
hazard that occurs in virtually all climatic regimes (Hayes 
et al., 2011). According to Mishra et al. (2007), the ef-
fects of a drought often accumulate slowly over a period 
of time. Consequently, the need of properly detecting 
the onset of a drought is a common goal for all drought 
monitoring systems (DMS). In the light of this, several 
indices have been developed to improve the detection of 
a drought’s onset as well as quantifying other features of 
this creeping phenomenon, such as its intensity and dura-
tion. A review of drought indices developed during the 
twentieth century can be found in Heim Jr. (2002). The 
reading of this important study is strongly recommended 
since ‘knowing the history of drought index development 

helps take the confusion out of the complex issue of 
drought monitoring, drought impacts, and drought defi-
nitions’ (Heim Jr., 2002). Moreover, a critical step of 
nationals drought strategies should be the development 
(or the improvement) of comprehensive DMS capable of 
providing an early warning of drought’s onset, as well as 
determining its spatial extent and severity. In addition, a 
DMS have to convey all these information to decision-
making groups in a timely manner (Hayes et al., 2011).

After all these considerations, the follow-
ing recommendations, obtained from The Lincoln 
Declaration on Drought Indices(1), may be highlight-
ed: (1) ‘The National Meteorological and Hydrological 
Services around the world are encouraged to use the 
Standardized Precipitation Index (SPI; McKee et al., 
1993) to characterize meteorological droughts and 
provide this information on their websites, in addition 
to the indices currently in use. […]. (2) A comprehen-
sive user manual for the SPI should be developed that 
will provide a description of the index, the computa-
tion methods, specific examples of where it is currently 
being used, the strengths and limitations, mapping ca-
pabilities, and how it can be used’.

In Brazil, the SPI is largely used in operational mode 
by governmental agricultural institutions, such as Empresa 
Brasileira de Pesquisa Agropecuária (EMBRAPA), 
Instituto Agronômico (IAC) and, Instituto Nacional de 
Meteorologia (INMET). Thus, in order to add relevant 
information to the use of the SPI as well as to the drought 
literature, this review article is organized as follow: Section 
2 describes a general definition of drought, evaluates it 
from a statistical point of view and also describes the SPI 
calculation algorithm highlighting its strengths. From 
the definition of agricultural drought, section 3 describes 
some limitations of the probabilistic approach inherent to 
the use of the SPI (especially those observed at short time 
scales). Section 4 describes an adaptation of the SPI that 
aims to develop a probability-based agricultural drought 
index capable of monitoring the deficits of actual evapo-
transpiration in a standardized way. General conclusions 
are given in section 5. 

2. A GENERAL DEFINITION OF DROUGHT 

Considering the three types of physical drought, it 
becomes reasonable to accept that, ‘generally de-
fined, drought is a deficiency of precipitation relative 
to what is expected that, when extended over a sea-
son or a longer period of time, results in the inabil-
ity to meet the demands of human activities and the 

(1) This Inter-Regional Workshop was focused on developing standards for drought indices and guidelines for drought early warning 
systems (Hayes et al., 2011). The reader is referred to www.wmo.int/pages/prog/wcp/agm/meetings/wies09/documents/Lincoln_Declara-
tion_Drought_Indices.pdf, for further information.
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environment’ (Hayes et al., 2011). From a statistical 
point of view, the expression ‘what is expected’ can be 
understood as being the precipitation amounts, ac-
cumulated over a particular period of time, associated 
with cumulative probabilities close to the 0.5 value. 
Consequently, the expression ‘deficiency of precipi-
tation’ may be described by cumulative probabilities 
lower than this median value. 

After McKee et al. (1993) we may indicate that 
the time scale over which this deficiency of precipi-
tation accumulates is extremely important and func-
tionally separates different types of (physical) drought. 
Moreover, also according to McKee et al. (1993), we 
may accept that if the precipitation data could be seen 
as coming from a normal distribution, the difference 
between an observed precipitation amount (Pt) and its 
mean historical value (Pi), divided by its standard de-
viation [SDi; DIi=(Pt-Pi)/SDi] would be taken as a stan-
dardized drought indicator. By varying the time scale 
associated with DI calculations, we would be (function-
ally) addressing different types of physical droughts. 
From this hypothetical assumption, DI would be taken 
as a temporally and spatially invariant drought index. 
Since each DI value would have been obtained from 
a normal distribution, a particular DI value would 
always be associated with the same rarity of a given 
deficiency of precipitation occurred in any region, dur-
ing any period, and accumulated over any time scale. 
However, it is well known that precipitation is usually 
not normally distributed. Furthermore, the parameters 
of such zero-bounded distributions vary widely among 
different areas and among different periods (Figure 1). 
Therefore, DI cannot be taken as a temporally/spatially 
invariant drought index. A particular DI value is not 
easily comparable among different regions and among 
different periods. 

In spite of the great variability of the precipita-
tion distributions over the time-space domain, the 
SPI was designed to be a spatially/temporally invari-
ant drought indicator capable of representing drought 

and flood events in a similar probabilistic way, even 
when different precipitations regimes are being eval-
uated (Wu et al., 2007). As described in Guttman 
(1998) the SPI calculation stars by determining a 
probability density function (pdf ) capable of prop-
erly describing the long-term observed precipita-
tion. Although the gamma 2-parameter distribution 
(Gam) is frequently employed, Guttman (1999) in-
dicates that the Pearson type III distribution (PE3; a 
3-parameter function) is the best universal model for 
SPI calculations. Kumar et al. (2009) also suggest-
ed that the PE3 distribution may be a better choice 
than the Gam distribution, on SPI calculations. By 
using monthly precipitation data of Mexico, Soto 
et al. (2005) concluded that the differences between 
SPI final values, obtained from both PE3 and Gam, 
were non significant and averaged zero. According 
to Wu et al. (2007) the Gam distribution can affect 
the confidence in the SPI results, because its pdf has 
(only) two free parameters, which would not give the 
best goodness-of-fit for a given (precipitation) series. 
Also according to Wu et al. (2007), other alternative 
distributions, such as PE3, are worth to be studied. 
Blain (2011a) recommends the use of the PE3 in the 
SPI calculation algorithm in the State of São Paulo, 
Brazil. Zang et al. (2009) used the lognormal distri-
bution in the SPI calculation algorithm in the Pearl 
River Basin, China. 

Once a pdf is chosen, the cumulative probability 
[H(PRE)], associated with a given precipitation amount, 
are obtained from the cumulative density function  
 

∫=
x

dttpdfxcdf
0

)()( (the lower limit is due to the fact 
that the precipitation distributions are zero-bounded). 
H(PRE) is then estimated from the following mixed dis-
tribution:  )()]/(1[)/()( xcdfNmNmPREH -+= , 
where m is the number of zeros in a dataset composed 
by N observations. As described in Wu et al. (2007) the 
final step of this equiprobability transformation are based 
on the following rational approach (Abramowitz and 
Stegun, 1965).
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Figure 1. Changes in the precipitation distributions over the time-space domain. Campinas (22º54’S, 47º05’W; Instituto Agronômico) 
and Pelotas (31º45’S, 52º21’W; Universidade Federal de Pelotas).
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A drought event starts when the SPI first fall below 
zero and ends when a positive value follows a value of 
SPI≤-1 (Table 1). As can be noted from equations 1 and 
2, the SPI is essentially an equiprobability transformation 

of the precipitation distributions (Wu et al., 2007). 
Therefore, conceptually, a particular value of this drought 
index will always be associated with a particular H(PRE) 
no matter where or when it was obtained (Figure 2). 
Consequently, based on the general definition of drought, 
described at the beginning of this section, and assum-
ing that the equiprobability transformation of the pre-
cipitation distribution was (really) achieved, a particular 
negative SPI value will represent a particular severity of 
drought no matter where or when this natural hazard is 
being monitored. Thus, in spite of the fact that the pre-
cipitation distributions vary widely over the time-space 
domain, the SPI is easily comparable among different re-
gions and among different periods.

As described in Hayes et al. (1999), from this nor-
mality assumption, a SPI value of less than -3.0 will occur 
once in 200 years; values of less than -2.0 will occur two 
to three times in 100 years and values less than -1.0 will 
occur 16 times in 100 years. It is also worth emphasiz-
ing that the equiprobability transformation also allows 
the SPI to determine the precipitation amount, as well as 
its probability of occurrence, required to end a drought 
event. As can be noted, the SPI assumes that the droughts 
events occur with the same frequency for any location in 
which the normality assumption is met. Thus, the SPI was 
not designed for identify regions that are more ‘drought-
prone’ than others (Hayes et al., 1999).

After all these considerations, associated with the 
equiprobability transformation of the precipitation dis-
tributions, it becomes worth mentioning that accord-
ing to Wu et al. (2007) the SPI is now widely accepted 

Table 1. Standardized Precipitation Index (SPI) values and the 
associated drought categories (Mckee et al., 1993)

SPI values Drought Category
0 to -0.99 mild drought

-1.00 to -1.49 moderate drought
-1.50 to -1.99 severe drought

≤-2.00 extreme drought
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Figure 2. Equiprobability transformation of precipitation amounts obtained from the weather station of Campinas (22º54’S, 47º05’W; 
Instituto Agronômico).
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throughout the world in both operational and research 
modes because it is, conceptually, normalized to a loca-
tion and is normalized in time. For instance, Hayes et al. 
(1999) evaluated the performance of the SPI in monitor-
ing the 1996 drought in the Southern plains and south-
western United States. Based on SPI time series, Mishra 
and Desai (2005) developed mathematical models in 
order to forecast droughts in Kansabati River basin, 
India. Mishra et al. (2007) employed the SPI to evalu-
ate the transition probabilities of drought events also in 
the Kansabati River basin. Livida and Assemakopoulos 
(2007) used this drought index to evaluate several fea-
tures of the drought events detected in Greece (1951 to 
2000). After have applied the SPI in Nebraska, USA, 
Tadesse et al. (2005) indicated that most occurrences 
of drought events (1950 to 1999) was preceded, among 
others oceanic-atmospheric parameters, by positive values 
of the Southern Oscillation Index (SOI; related to the El 
Niño/southern oscillation). By using the SPI calculated at 
several time scales throughout the Europe (1901-2000), 
López-moreno and Vicente-serrano (2007), evaluated 
the ‘responses of droughts’ to the positive and negative 
phases of the Wintertime North Atlantic Oscillation. 
Manatsa et al. (2010) used the SPI to address several 
features of agricultural droughts in Zimbabwe, Africa. 
In order to evaluate the ability of the SPI for estimating 
the upland rice yield in the location of Goiâna (State of 
Goiás, Brazil), Fernandes et al. (2010) addressed impor-
tant limitations of the use of the SPI as an agricultural 
drought indicator. Khan et al. (2008) used the SPI to 
track droughts and assess the impacts of precipitation 
variability on shallow groundwater in Murray-Darling 
Basin, Australia. According to these authors, the SPI can 
successfully capture dry as well as wet periods and also 
can identify historical droughts over the century scale. 
According to Blain and Kayano (2011), the standardized 
treatment of the precipitation amounts achieved through 
the SPI calculation algorithm makes it an interesting al-
ternative in investigating the conditioning/modulating 
climatic forcing of a given region. Indeed, considering the 
results obtained from the global wavelet power spectrum 
(GWP; Figure 3), a variance peak above the 5% signifi-
cance level (4-yr band) is observed only for the SPI signal. 
No significant variance peak is observed in the GWP of 
the precipitation signal. 

Given that the SPI requires only precipitation data 
for its calculation, the difference between figure 3a,b 
seems to be a consequence of the fact that a particular SPI 
value represents the same climatic condition (concern-
ing drought as well as flood events) no matter the month 
from which it was obtained. However, as previously dis-
cussed (Figure 1), there is no guaranty that a particular 
value of the residual precipitation represents (from a sta-
tistical point of view) the same climatic condition when 
it is obtained from different months or locations. At this 

point, it is worth highlighting a statistical consideration 
extracted from Grinsted et al. (2004): ‘Our experience 
with continuous wavelet transforms of geophysical time 
series shows that series far from normally distributed 
produces rather unreliable and less significant results’. 
Consequently, we may assume that the equiprobability 
transformation of the precipitation distributions may be a 
very helpful step in climate variability investigations.

The SPI has also been used on scientific studies fo-
cused on the detection of climate trends. Based on the 
SPI, Zhang et al. (2009) observed changes in the events 
of drought and wetness in Pearl River Basin; China 
(1960-2005). Zhai et al. (2010) demonstrated that the 
SPI can be used to describe possible trends in the dry-
ness and wetness conditions in the regions of China, as 
well as in other countries. Li et al. (2008) observed that 
the values of the SPI computed over southern Amazon 
region decreased in the period of 1970 to 1999 by 0.32 
per decade. According to these authors this result in-
dicates an increase trend in dryness conditions. It is 
worth mentioning that a natural consequence of the 
aforementioned equiprobability transformation is the 
removal of the seasonality usually observed in meteoro-
logical data. Consequently, at least conceptually, trend 
analyses applied to SPI time series are not affected by the 
presence of this aforementioned component. However, 
concerning climate change studies, Dubrovsky et al. 
(2008) concluded that the Palmer Drought Severity 
Index (Palmer, 1965) is more suited than the SPI for 
assessing the potential impacts of the Global Warming 
on future droughts. A similar indication can be found in 
Brázdil et al. (2009). After have evaluated the variabili-
ty of droughts observed in Czech Republic from 1881 to 
2006, they assumed that the SPI is not suited for evalu-
ating long-term drought trend, because it is based only 
in precipitation data.
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From the definition of agricultural drought, present-
ed in section 1, it becomes clear that the soil moisture (or 
parameters related to it) is a key variable for the evaluation 
of this type of drought. After Sims et al. (2002) have stud-
ied the use of the SPI for estimating soil moisture, they 
indicated that this drought index appears to be suited for 
estimating soil moisture deficit. However, these authors 
also indicated that the SPI gives some erroneous spikes 
when it is calculated at short time scales. According to 
Sims et al. (2002) this suggests that there can be a tem-
poral lower limit for the derivation of a meaningful rela-
tionship between the SPI and soil moisture parameters. 
Indeed, as will be shown in section 3, it seems that there 
is a temporal lower limit for the calculation of meaningful 
SPI values. 

3. LIMITATIONS

After Guttman (1994) has investigated the effect of the 
length of the data records on precipitation distributions, 
he stated that at least 40-60 years are required for param-
eter estimation stability in the central part of the distri-
butions. Furthermore, Guttman (1994) also stated that 
about 70-80 years of records are required for achieving 
the stability in the tails of the precipitation distributions. 
Since an extreme drought is a rare event, the tails of the 
precipitation distributions are extremely important in the 
use of the SPI (Wu et al., 2005). Consequently, the ideal 
length of precipitation records required for the SPI calcu-
lation cannot be met in several parts of the world. In addi-
tion, Wu et al. (2005) stated that inconsistent results may 
be obtained when different time lengths of data records 
are used in the calculation of the SPI. Nevertheless, these 
inconsistent results are observed only in the presence of 
a temporal change in parameters of the pdf used for de-
scribing the precipitation series (Wu et al., 2005). 

This last feature can be algebraically evaluated from a 
particular precipitation total (10 mm) and by considering 
the results obtained from the study of Blain et al. (2009), 
which show a significant temporal change in the parameters 
of the gamma distribution (α and β) during the months of 
May in the location of Campinas, State of São Paulo. In 
this case, it can be observed remarkable changes in the SPI 
values when different time spans are used in its calculation: 
1890-2006, α=1.3, β=46.9, SPI(10mm)=-1.27; 1890-1928, 
α=1.18, β=44.45, SPI(10mm)=-1.08; 1929-1967, α=1.3, 
β=46.9, SPI(10mm)=-0.80; 1968-2006, α=1.64, β=45.07, 
SPI(10mm)=-1.64. It is worth emphasizing that consider-
ing the period of 1929-1967 the SPI(10mm) has indicated 
a near normal condition (table 1). However, for the pe-
riod of 1968-2006, the SPI(10mm) has indicated severely dry 
conditions. Consequently, ‘the SPI user should be aware 
that inconsistent conclusions could be obtained if differ-
ent time lengths of precipitation record are involved in the 
SPI calculation’ (Wu et al., 2005). Therefore, by following 
these last authors, it is recommended that a DMS adopt a 
common period of records for calculating the SPI among 
different locations. The aforementioned time span should 
be as long as possible.

Considering the information presented in section 2, 
we may infer that being normally distributed is the ba-
sic feature of the SPI. In the light of this, an important 
limitation of its use comes from the definition of drought 
adopted by this probability-based index. As can be easily 
verified from its calculation algorithm, the SPI indicates 
the presence of a drought only if the observed precipita-
tion amount is associated with H(PRE)<0.5. Although 
this feature is consistent with the idea that a drought event 
is triggered by a deficiency of precipitation; in regions (or 
periods) in which the zero precipitation value is climato-
logically expected [H(PRE=0)≈0.5], the SPI might not be 
capable of assuming negative values. In other words, the 
SPI will ever be able to indicate a drought condition. In 
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order to evaluate this last statement, Figure 4 depicts the 
SPI calculated for the Months of July (1961-2009) and 
the SPI values obtained during 2002 from the weather 
station of Goiânia-Go, Brazil. 

After analyzing figure 4a it becomes worth mentioning 
that the frequency of occurrence of PRE=0 for the Months 
of July in the location of Goiânia is approximately 57%. 
Consequently, the minimum possible value of H(PRE) will 
always be greater than 0.5. Thus, no negative value will be 
obtained from equations 1 and 2. Under these circumstanc-
es, commonly observed in locations with a distinct dry sea-
son, the SPI (especially at short time scales) fails to evaluate 
a drought condition (Wu et al., 2007). Under this high fre-
quency of PRE=0, the equiprobability transformation of the 
precipitation distributions might not be achieved. The SPI 
will not be normally distributed. Consequently, under these 
circumstances, there is no guaranty that the SPI is indeed 
an invariant drought indicator capable of representing pre-
cipitations deficits/excess, obtained from different precipita-
tions regimes, in a similar probabilistic way. At this point, we 
strongly recommend the reading of the great study of Wu 
et al. (2007), that aims to reveal the effects of arid climates 
and dry seasons on SPI values. These authors used a normali-
ty test to investigate whether the values of this drought index, 
obtained from several locations, are capable of representing 
dry and wet periods in a similar (invariant) way. This test is 
described as follow: ‘A (SPI) distribution is considered non-
normal when its variables related to the distribution meet 
three criteria simultaneously: (1) Shapiro–Wilk statistic, W, 
less than 0.96; (2) p-values less than 0.10; and (3) the abso-
lute value of the median greater than 0.05. Otherwise, the 
distribution is normal’ (Wu et al., 2007). 

Finally, it is well known that the monitoring of an agri-
cultural drought needs to be carried out at short time scales 
(Heim Jr., 2002), since the temporal distribution of the 
precipitations events within a year or even within a month 
is one of the key factors for several agricultural activities 
(Ramos and Casasnovas-Martínes, 2006; Blain and 
Brunini, 2007a; and Blain, 2011b). However, a short 
time scale increases the precipitation variability (Wu et al., 
2007) as well as the probability associated with PRE=0. 
Therefore, ‘the SPI may fail to properly detect a shortage of 
available water for plant growth’ (Blain, 2011c). 

4. PROBABILITY-BASED AGRICULTURAL 
DROUGHT INDEX

In order to develop a probability-based agricultural drought 
index, Blain and Brunini (2007b) adapted the SPI cal-
culation algorithm to evaluate ten-day values of actual 
evapotranspiration (AE). This adaptation was called as the 
Standardized Actual Evapotranspiration Index (IPER) and 
was carried out under the climate conditions of the State of 
São Paulo. Similar to the SPI, the IPER calculation starts by 

determining a probability density function (pdf) capable of 
properly describing the long-term observed EA data. Once 
a pdf is chosen, the H(EA) values are obtained from the 
cumulative density function [cdf(EA)]. The inverse normal 
function (Equations 1 and 2) is then applied to H(EA), re-
sulting in the IPER. Although Blain and Brunini (2007b) 
have recommended the use of the 2-parameter beta dis-
tribution in the IPER calculations, we decided to use the 
general extreme value distribution (GEV). Based on EA se-
ries (1970-2010) obtained from the locations of Campinas 
(22º54’S; 47º05’W), Jaú (23º17’S; 48º38’W), Ribeirão 
Preto (21º11’S; 47º48’W), Mococa (21º28’S; 51º05’W), 
Pindorama (21º13’S 48º56’W) and Ubatuba (23º27’S 
45º04’W) and by considering soil water availability equal 
to 50, 100 and 150mm, it was verified that in comparison 
to other distributions, such as gamma 2-parameters, log-
normal, normal and beta, this 3-parameter function was 
the only one capable of providing normally distributed 
IPER datasets for each one of the 36 ten-day periods (in all 
locations). The normally assumption was evaluated by fol-
lowing Wu et al., (2007). Since the parameters of the GEV 
were estimated using all available data, the Kolmogorov-
Smirnov/Lilliefors test (KS-L) were used to verify the fit of 
the EA datasets to the aforementioned parametric distribu-
tion (Steinskog et al., 2007; Vlcek and Huth, 2009). 
The statistical simulations required for calculating the KS-L 
test were based on the procedure called “non-uniform ran-
dom number generation by inversion”. It were generated 
100000 synthetic data samples for each ten-day period. 
The KS-L has indicated that the GEV distribution can be 
used to describe the probability structure of the EA series. 
More information about the KS-L can be found in Wilks 
(2006). Given that the equiprobability transformation of 
the EA distributions was achieved, we may assume that a 
particular negative IPER value will represent a particular 
severity of EA deficit for any one of these six locations on 
any ten-day period of the year. 

Before analyzing figure 5 it is worth mentioning that 
during the Winter Months the location of Campinas 
presents strongly skewed precipitation distributions, in 
which a PRE=0, at a ten-day scale, is highly expected. For 
instance, the frequency of occurrence of PRE=0 obtained 
during the 2nd ten days of the Month of August (1948-
2010; the apex of the local dry season) is approximately 
55%. As can be seen in Figure 5a the SPI values increase 
from the 1st ten days of June to the 1st ten days of July 
even though no precipitation has been observed. This 
increase of the SPI is due to the increase of H(PRE=0) 
as we get closer to the apex of the dry season. Evidently, 
this unreal change to wetter conditions in the presence of 
no precipitation event is physically inconsistent and also 
indicates that the SPI may fail to properly track an agri-
cultural drought. As can be noted (Figure 5b), there is, in 
fact, a decrease in both EA and IPER from the 1st ten days 
of May to the 1st ten days of July.
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Given that Blain and Pires (2011) described the 
presence of temporal persistence in ten-day EA series, 
it becomes worth emphasizing that a parametric sum-
marization of a dataset, in which the presence of serial 
correlations cannot be neglected, may result in loss of 
information (Maia et al., 2007). Even though the afore-
mentioned cdf summary is used only as a step for achiev-
ing the equiprobability transformation of the EA distri-
butions (in which the time span between two subsequent 
values is one year), further investigations are required for 
verifying the effect of this component in the IPER values. 
It also has to be emphasized that the KS-L test is only 
appropriated for evaluating the central part of the distri-
butions (Sansigolo, 2008). However, as described at the 
beginning of this section, special focus should be given for 
the lower tail of the distributions. Thus, further investiga-
tions are still required in order to verify the confidence of 
the IPER values obtained from the GEV function (other 
pdf are worthy to be evaluated). In other words, further 
studies are required for establishing a standard IPER cal-
culation algorithm. It is also recommended that future 
studies evaluate the possibility of employing a crop coef-
ficient in the IPER calculation algorithm.

5. CONCLUDING REMARKS

 In spite of its use in agricultural institutions, the SPI 
is not an agricultural drought index. It is just a math-
ematical approach developed to transforming skewed 
precipitation distributions into the Gaussian form. If this 
equiprobability transformation cannot be achieved, the 

use of this standardized drought index becomes mean-
ingless. As demonstrated herein, choosing an appropriate 
temporal lower limit is a critical step for the calculation 
of this probability-based model and, consequently, for 
achieving the normality assumption inherent to its use. 
Therefore, I strongly recommend that the operational use 
of this drought index, especially those carried out by ag-
ronomic institutions, should be preceded by a normality 
test. The results obtained from this test should be used 
for establishing the temporal lower limit required for the 
calculation of meaningful SPI values.

It was demonstrated that for periods in which the 
cumulative probability associated with the zero precipi-
tation value is close to or greater than 0.5, the SPI may 
indicate the end of an existing drought (or a decrease in 
its severity) in the presence of no precipitation. Under this 
circumstance, it was verified an increase in the SPI values 
in the presence of a decrease in the actual evapotranspira-
tion values.
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