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Abstract
Nitrogen (N) management in wheat crop is one of the most studied agricultural practices in Brazil; however, there are few 
reports on its use efficiency. The objective of this study was to characterize 18 Brazilian wheat cultivars, which are representative 
and have been recently released to cultivation, for nitrogen use efficiency (NUE). The experiments were carried out in Pato 
Branco, Paraná, and Coxilha, Rio Grande do Sul, during the 2011 crop season. It was used a randomized block design with 
three replications, in factorial scheme (2 environments × 18 cultivars). Genetic variability was observed for nitrogen utilization 
efficiency by grains (NUtEg=47.6 to 81.1 kg kg–1) and nitrogen harvest index (NHI=71.3 to 84.6%) with significant effects relating 
to the environment of cultivation and performance of these traits. The evaluation of the protein concentration of grain by near 
infrared spectrometry (GPCN) produced equivalent results to the direct analytical method of Kjeldahl (GPCK), in Pato Branco 
(r=0.56) and Coxilha (RS) (r=0.80). However the CPGN overestimated the protein values by 16.85%. The GPC and protein yield 
were positively correlated with NUtEg and NHI. The best performance for the traits associated with NUE was observed for the 
following cultivars: Mirante, Quartzo, Fundacep Cristalino, Fundacep Raízes and CD 150. This is the first report of differences 
between Brazilian wheat cultivars for nitrogen use efficiency.
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Caracterização de cultivares de trigo em termos de eficiência do uso do nitrogênio

Resumo
O manejo do nitrogênio (N) na cultura do trigo é uma das práticas agrícolas mais estudadas no Brasil, entretanto ainda são 
poucos os relatos sobre a sua eficiência de uso. O objetivo deste estudo foi caracterizar 18 cultivares de trigo brasileiras 
representativas e recentemente disponibilizados para cultivo quanto à eficiência do uso do N (EUN). Os experimentos foram 
executados em Pato Branco, PR, e Coxilha, RS, na safra agrícola de 2011. O delineamento experimental utilizado foi em blocos 
casualizados em esquema fatorial (2 ambientes × 18 cultivares), em três repetições. Foi possível identificar variabilidade 
genética para a eficiência do uso do nitrogênio pelos grãos (EUNg = 47,6 a 81,1 kg kg–1 N) e índice de colheita de nitrogênio 
(ICN = 71,3 a 84,6%), com efeito do local de cultivo sobre o desempenho desses parâmetros. A avaliação da concentração 
proteica dos grãos por espectrometria de infravermelho próximo (CPGN) produziu resultados equivalentes ao método analítico 
direto de Kjeldahl (CPGK), em Pato Branco, PR (r = 0,56), e Coxilha, RS (r = 0,80), porém o CPGN superestimou os resultados em 
16,85%. A CPGK e o rendimento de proteína (RP) foram positivamente associados com a EUNg. As cultivares Mirante, Quartzo, 
Fundacep Cristalino, Fundacep Raízes e CD 150 apresentaram melhor desempenho para os caracteres associados à EUN. Esse 
é o primeiro relato que mostra diferenças de respostas para eficiência de uso do nitrogênio entre cultivares brasileiras de trigo.

Palavras-chave: Triticum aestivum L., rendimento de grãos, índice de colheita de nitrogênio, sedimentação em SDS, concentração 
de proteína nos grãos.
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1. INTRODUCTION

Nitrogen (N) is the nutrient with the highest extraction 
by crops of economic interest. The increase of grain yield in 
wheat in recent decades was largely due to the supply and 
use of nitrogen fertilizer. It is estimated that between 85 
and 90 million tons of nitrogen fertilizer is used around the 
world annually (Eickhout et al., 2006). However, the mere 
increase in the amount of N applied to crops may result in 
decreased N use efficiency (NUE), and may intensify losses 
and environmental contamination.

Nitrogen plays an important role in the biochemical 
processes of plants, including in proteins, DNA, RNA, 
enzymes, and chlorophylls (Andrews and Lea, 2013). The lack 
of this nutrient affects radiation use efficiency and biomass 
production, and also affects grain yield and its components 
(Xu et al., 2012). This element is also directly related to the 
grain protein concentration (GPC) (Gao et al., 2012) and 
consequently with bread quality (Campillo et al., 2010). 
As a result, wheat crops with adequate supplies of N are 
associated with efficient cultivars, and maximize grain yield 
and end-use quality.

The NUE can have several meanings in the agricultural 
context. Basically, we can consider that there are two 
main types of NUE: uptake efficiency of N residuals and 
chemicals by the roots (N absorption efficiency= NAE), and 
the translocation efficiency of N to grains (N utilization 
efficiency= NUtE) (Andrews and Lea, 2013; Gaju et al., 
2014; Moll et al., 1982; Weih et al., 2011). Identifying 
genotypes with high NUE has great value because it allows 
cultivation when the cost of this nutrient is high and/or when 
its application is limited due to unfavorable environmental 
conditions (Riar and Coventry, 2013).

Several studies indicate that the NUE of wheat is 
lower than 60%, and range from 31 to 264 kg N ha–1 
(Barraclough et al., 2010; Haile et al., 2012). The presence 
of genetic variability for NUE have been reported in 
many countries such as Mexico (Ortiz-Monasterio et al., 
1997), France (Górny et al., 2011), England (Foulkes et al., 
2009) Argentina (Velasco et al., 2012), and Australia 
(Hochman et al., 2013). Although the management of 
nitrogen in wheat is one of the most studied agricultural 
topics in Brazil, studies about its efficiency is still incipient.

The objective of this study was to characterize several 
Brazilian wheat cultivars, which are representative and have 
been recently released to cultivation, in terms of nitrogen 
use efficiency and their association with agronomic traits 
in two environmental conditions.

2. MATERIAL AND METHODS

In the 2011 growing season, experiments were carried 
out in two representative locations in southern Brazil: Pato 
Branco (26°09’ S and 52°42’W) and Coxilha (28° 13’S and 
52° 22’W) which are in the states of Paraná and Rio Grande 
do Sul, respectively. The sown date in Coxilha was outside 
typical agroclimatic recommendations. The soil type is 
classified as Typic red Hapludox in both locations. Data of 
cumulative monthly rainfall and variation of temperatures 
during the experiment period are shown in figure 1.

Randomized blocks in a factorial scheme (A × B) with 
3 replications were used. Factor A was represented by the 
18 wheat cultivars whereas factor B were represented by 
2 environment tests. The following cultivars, which are 
recently released and indicated for cultivation, were included 
in this study: BRS Guamirim, BRS Tangará, BRS 220, CD 

Figure 1. Cumulative monthly rainfall and temperature variation of temperatures for the trial period in the locations of Coxilha, Rio 
Grande do Sul state and Pato Branco, Paraná state. * Data were collected in Passo Fundo (RS) (the weather station nearest Coxilha). Source: 
Agricultural Institute of Paraná, Simepar and Embrapa Trigo.
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117, CD 122, CD 150, Fundacep Cristalino, Fundacep 
Horizonte, Fundacep Raízes, IPR Catuara, IPR 130, IPR 
144, Marfim, Mirante, Quartzo, Tbio Iguaçu, Tbio Itaipu, 
Tbio Pioneiro. They represented more than 70% of grown 
area in southern Brazil in the 2011 and 2012 crop seasons. 
Plots contained nine rows, 4.0 m in length and spaced 0.20 
m apart, with a seeding density of 350 per square meter. 
The useful area of the plot was formed by 7 central rows, 
totaling 5.6 m2 (4.0 x 1.4 m).

Base fertilization consisted of applying 300 kg ha–1 of 
NPK of commercial formulation 8-20-20 (NPK). In the 
beginning of tillering (Z22 stage, Zadocks et al., 1974) the 
fertilization was supplemented with 50 kg ha–1 of N in urea 
form (45% N). Control of weeds, insects and diseases were 
performed according to the requirements of each location, 
following the Brazilian technical recommendations of wheat .

After harvesting and cleaning the grain obtained from 
each plot, it was measured the test weight (TW) in kg hl–1, 
and grain yield (GY) that was determined by the harvest of 
the useful area of the plots. The GY was corrected according 
to humidity (assuming 13%, wet basis) and converted to 
kg ha–1. The harvest index (HI) was determined by dividing 
the GY by the total production of biomass above ground 
(biological yield). For that, at physiological maturity (Z 90, 
Zadocks) a 0.5 m2 sample was taken from each plot, and 
the HI was calculated according to the following formula: 
HI=GY/BY, where GY=grain yield and BY=biological yield.

At physiological maturity, 10 plants per experimental 
unit were collected to determine the nitrogen concentration 
in the straw and grains. The plants were dried in an oven at 
40 °C until they achieve constant weight; then they were 
crushed. The grains were previously cleaned and standardized 
to 13% moisture (wet basis) and milled. The resulting 
flour from this process was standardized using a 250μm 
mesh sieve. Subsequently, the samples were subjected to a 
chemical analysis to determine the nitrogen concentration 
using the Kjeldahl method as described by Tedesco et al. 
(1995). Grain protein concentration (GPC) was estimated 
by multiplying the N percentage of the kernels by the 
conversion factor 5.7 (GPC= N × 5.7). Additionally, GPC 
was also determined by near-infrared spectrometry (NIR) 
using an Infratec Foss 1240 device, according to the method 
nº 38-12 of the AACC (2000).

The NUE components were estimated according to the 
method described in Moll et al. (1982) and Weih et al. (2011):
•	 Nitrogen Efficiency Utilization by grains: 

( / ) =kg kg
GYNUtEg
 NS

where GY is grain yield and NS is nitrogen supply.
•	 Nitrogen Harvest Index:

(%)
NGC GYNHI  100

 (NGC NSC) BY
×

= ×
+ ×

where NGC is nitrogen grain concentration (%), GY is 
grain yield, NSC is nitrogen straw concentration, and BY 
is biological yield (grain+straw) in kg ha–1.

Statistics were calculated using the obtained data, and 
considering fixed effects to genotypes and random to the 
environments. All traits which were significant by F-test were 
grouped using the Scott and Knott test, at 5% significance 
level (p<0.05). Pearson’s correlation among the traits in both 
locations was estimated using the software Genes (Cruz, 
2013). The selective accuracy (SA) for genotypes was also 

calculated, using the following expression: 11= −
G

E

SA MS
MS

, 

where MSG is the mean square of genotypes and MSE is the 
mean square error. Graphs were created using Sigmaplot v.11.

3. RESULTS AND DISCUSSION

The weather scenario of the two environments shows 
no restriction on the development of plants (Figure 1). 
However, it is important to highlight that Coxilha (RS) was 
exposed to much higher rainfall (190 mm), particularly in 
the early phases of development, compared to Pato Branco 
(PR) (145 mm).

The significance (p≤0.05) of the genotype effect (cultivars) 
indicates the presence of genetic variability for all evaluated 
traits (Table 1). The genotype by environment interaction 
(G×E) was significant for all traits, except for harvest 
index (HI). These results are similar to those reported 
by Barraclough et al. (2010), Haile et al. (2012) and 
Suprayogi et al. (2011). The coefficients of variation ranged 
from 2.0 to 7.4%, indicating high experimental precision. 
The selective accuracy ranged from moderate (NHI= 0.51) 
to very high (GPCN= 0.90), and according to Resende and 
Duarte (2007), it also express the reliability of the dataset.

The variation of the grain yield (GY) was mainly due to 
the environmental effects in comparison with the genetic 
effects and interaction. The GY ranged from 4034 kg ha–1 
and 6445 kg ha–1 (Figure 2a), classifying the genotypes 
into four homogeneous groups in Pato Branco and three 
groups Coxilha by the Scott-Knott test (p≤0.05). The 
cultivars Mirante and Quartzo exhibited the highest yield 
in both locations. The overall mean of GY (Figure 2a) and 
test weight (TW) (Figure 2b) were statistically superior in 
Coxilha (5672 kg ha–1 and 84.5 kg hl–1, respectively) than 
in Pato Branco (5065 kg ha–1 and 77.2 kg hl–1, respectively). 
In Coxilha, it should also be highlighted that the cultivars 
TBIO Itaipu, Fundacep Horizonte, BRS 220, CD 150, and 
BRS Tangará exhibited similar yields, statistically. It was 
verified that the influence of the environment was crucial 
in the expression of grain yield of some cultivars (e.g., BRS 
220, BRS Tangará, and, IPR Catuara). However, it was not 
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Table 1. Analysis of variance of 11 agronomic traits and NUE components evaluated in eighteen wheat cultivars that were planted in the 
locations of Pato Branco (PR) and Coxilha (RS)

Traits
Sources of variation and mean squares

Mean CV 
(%) SA

Bloc./Env.(DF=4) Blocks (DF=2) Genotype (G)(DF=17) Environment (A)(DF=1) G × E (DF=17) Error (DF=68)

GY (kg ha–1) 99525 12717 1284541** 9982423** 513353** 80725 5368 5.2 0.75
TW (kg hl–1) 1.06 0.71 9.73** 1425.72** 5.29** 1.09 80.86 2.2 0.66
BY (kg ha–1) 282804 122871 11477760** 19972640** 3712757** 814411 12090 7.4 0.73
HI 0.001 0.001 0.00575** 0.00775** 0.00059ns 0.01 0.45 4.5 0.73
NCB(%) 0.02 0.04 0.42** 0.053ns 0.14** 0.03 2.83 6.4 0.72
GPCK (%) 0.68 1.18 8.67** 0.12ns 2.99** 0.75 12.43 6.9 0.70
GPCN (%) 0.64 0.60 9.76** 1.64ns 0.44** 0.10 14.95 2.0 0.90
PY (kg ha–1) 2091.6 3748.4 13592.1ns 309401.2** 9987.1** 1851.2 798.2 5.3 0.61
NHI 0.01 0.01 0.003** 0.0078* 0.0028** 0.01 0.77 3.4 0.51
NUtEg (kg kg–1) 24.67 1.07 181.07* 3706.09** 77.11** 11.56 62.58 5.4 0.63
SDS (ml) 1.06 0.16 39.13** 78.11** 4.85** 1.38 17.95 6.5 0.81
** and * are values significant at 1% (p≤0.01) and 5% (0.01p<0.05) level of probability by F test; ns: not significant (p< 0.05); DF: degrees of freedom; CV: coefficient of variation, 
SA: selective accuracy; GY: grain yield; TW: test weight; BY: biological yield (total biomass); HI: harvest index; NCB: Nitrogen concentration in the total biomass; CPGK: grain 
protein concentration determined by the Kjeldahl method; CPGN: grain protein concentration determined by NIR; PY: protein yield; NHI: nitrogen harvest index; NUtEg: 
nitrogen utilization efficiency by grains; SDS: sedimentation test of proteins in sodium dodecyl sulfate.

Figure 2. Mean comparison of grain yield (a), test weight (b), biological yield (c), and harvest index (d) measured in 18 cultivars that 
were planted in two representative locations of south Brazil. Uppercase letters indicate significant differences among locations for the same 
cultivar, while lowercase letters indicate significant differences between cultivars in a particular location, according to Scott Knott test at 
5% probability of error.
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observed in the cultivars Tbio Iguaçu, Fundacep Cristalino 
and Fundacep Raízes.

The harvest index (HI) represents the ratio of GY 
(Figure 2a) to biological yield (BY) (Figure 2c). A variation 
from 0.37 to 0.52 was observed for this trait, depending on 
location and cultivar (Figure 2d). The highest values of HI 
were achieved in Coxilha, with overall mean of the 0.45. 
However, only the cultivars Marfim and Fundacep Raízes 
differed statistically between the two locations. In Pato 
Branco, the mean HI was slightly lower (0.43), whereas large 
values were observed for the cultivars CD 150, Marfim and, 
BRS Guamirim. Barraclough et al. (2010) observed a higher 
variation of HI (0.37 to 0.76) than observed in this study.

The BY ranged from 8877 to 15613 kg ha–1, with a 
mean of 12090 kg ha–1, and exhibited highly significant 
effects with regard to genotype, environment and G×E 
interaction (Figure 2c). The cultivars Fundacep Horizonte 
(14890 kg ha–1), Quartzo (13940 kg ha–1), and Mirante 
(13856 kg ha–1) were statistically ranked in the top group 
of BY in both environments. The association between BY 
and GY was equal to 0.85** and 0.82** in Pato Branco and 
Coxilha, respectively (Figure 3a). These results agree with 
Rodrigues et al. (2007), who found that the genetic gain for 
GY was more associated with BY than HI in Brazil (r=0.79**). 
However, this contradicts other studies which point out 
that the HI is the main responsible for pushing forward the 
genetic potential of grain yield in wheat (Cox et al., 1988). 
In the current study there was no significant association 
between HI and GY (Figure 3b). The BY was negatively 
correlated with the HI (Figure 3c) with a significant effect 
only in the location of Pato Branco (r=–0.59**). Wheat 
cultivars with high biomass production are often more 
efficient in the use of environmental resources (Kant et al., 
2011) and interception of photosynthetically active radiation 
(Acreche et al., 2009) resulting in a positive effect on GY.

The N concentration in the total biomass (NCB) ranged 
from 2.05% to 3.33% (Figure 4a), and agreeing with the 
reports of Barraclough et al. (2010) and Haberle et al. (2008) 
who found values of percentage of N in grains ranging 
from 1.52 to 2.87%. This trait was not influenced by an 
environmental component. Besides, the major aspect of 
variation observed was due to genetic effects (Table 1). The 
cultivars Fundacep Cristalino, BRS Tangará, IPR Catuara, 
BRS Guamirim and CD 122 presented high values of NCB. 
Some cultivars, such as Mirante and Quartzo, showed low 
values of NCB, but also exhibited high GY, indicating a 
high efficiency of N remobilization from the biomass to 
the grains.

The percentage of N in grains multiplied by 5.7 results in 
the value of the grain protein concentration (GPCK) (Anon, 
1991; Lopez-Bellido et al., 2004). Another way to measure 
the protein concentration is through the indirect method of 
near infrared spectrometry (GPCN). The values GPCN were 
higher than GPCK for all genotypes and in both locations 

(Figure 4b, c). The overall mean values of GPCN and GPCK 
were respectively 14.95% and 12.43%, indicating that the 
indirect method by spectrometry overestimated the values 
of protein in the grain 16.85% higher than the standard 
method of Kjeldahl (Table 1). The highest values of GPCN 
and GPCK were obtained by the cultivars CD 122, Fundacep 
Cristalino, Marfim, BRS Tangará, and BRS Guamirim with 
no statistical difference in performance among locations. 
Additionally, it was observed that genotypes with the lowest 

Figure 3. Pearson’s correlation coefficients between the traits grain 
yield, biological yield and harvest index of 18 cultivars evaluated in two 
representative locations of south Brazil. * and ** indicate significant 
values of correlation to 1 and 5% level of probability respectively, 
by t-test (GL-2).
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values of GPC were the same as those that showed high 
values of GY. This result corroborates other studies which 
have also reported negative associations between these traits 
(Barraclough et al., 2010; Monaghan et al., 2001).

Despite the differences between the methods to determine 
GPCN and GPCK, both were significantly correlated with 
each other (r=0.56* in Coxilha and 0.80** in Pato Branco, 
Figure 6a). Note that environmental effects are included 
within these correlations, so it means that is difficult to 
make precise inferences about the association between the 
two methods, especially in Coxilha. Nonetheless, the GPCN 
has many advantages over GPCK for performing rapid and 
non-destructive analysis: GPCN can process a higher volume 
of samples and sub-samples and is also independent of errors 

associated with reagents and operators. Faměra et al. (2004) 
highlighted the near infrared spectrometry method as the 
most accurate due to low coefficients of variation.

The protein yield (PY) is an index obtained through 
multiplication of GY by the GPCK and is expressed as 
protein production per hectare. In the present study, this 
trait ranged from 535 to 862 kg ha–1 (Figure 4d). The higher 
values of PY stood out especially for the cultivars Fundacep 
Cristalino (762 and 728 kg ha–1), BRS 220 (702 and 862 kg 
ha–1), BRS Tangará (578 and 808 kg ha–1) and CD 122 (626 
and 774 kg ha–1), in Pato Branco and Coxilha, respectively 
(Figure 4d). The PY is an important trait because it can be 
directly associated with baking quality (Monaghan et al., 
2001) and NUE components (Haile et al., 2012). In addition, 

Figure 4. Mean comparison for the traits grain protein concentration by Kjeldahl method (a) and by near infrared spectrometry NIR (b); 
N percent of the total biomass (c), and protein yield (d) of 18 cultivars evaluated in two representative locations of south Brazil. Uppercase 
letters indicate significant differences among locations for the same cultivar, while lowercase letters indicate significant differences between 
cultivars in a particular location, according to Scott Knott test at 5% probability of error.
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there was a positive and significant association between PY 
and nitrogen utilization efficiency by grains (NUtEg) in 
both locations (Pato Branco=0.60** and Coxilha=0.52*) 
(Figure 6e).

The nitrogen harvest index (NHI) quantifies the 
percentage of remobilization of N from plant biomass to 
the grains (Weih et al., 2011). In the present study, the NHI 
ranged from 0.71 to 0.84 (Figure 5a). It was characterized as 
existing low amplitude variation in Brazilian wheat cultivars 
compared to the results obtained by Barraclough et al. 
(2010) and Suprayogi et al. (2011), who found values 
of NHI to varying from 0.69 to 0.98. The cultivars with 
greater NHI in Pato Branco were IPR 130 (0.79), Mirante 
(0.82), Quartzo (0.80), TBIO Pioneiro (0.82), Fundacep 
Raízes (0.80), and BRS Tangará (0.79). In Coxilha the 
highest values were observed for Fundacep Raízes (0.84) 
and Fundacep Cristalino (0.82) (Figure 5a). The NHI was 
positively correlated with GPCK (0.49*) only in Coxilha 
(Figure 6f ), agreeing partially with the results reported by 
Haile et al. (2012), who found correlations between NHI 
and NUtEg (0.76) and GPCN (0.42 ). Genotypes with higher 
values of NHI enable superior performance of GY and high 
GPC (Hawkesford, 2012). This is because around 95% of 
the proteins in the grains are derived from amino acids that 
are exported to the seed after degradation of proteins in the 
leaves (Xu et al., 2012).

The NUtEg indicates how many kilograms of grain are 
produced for each pound of N fertilizer used during the crop 
cycle (Weih et al., 2011). In the current study, the values of 
NUtEg ranged from 47.6 to 81.1 kg kg–1 of N (Figure 5b), 
with significant differences between environments. The 
cultivars Quartzo (81.1 kg kg–1) and Mirante (79.9 kg kg–1) 
exhibited the highest values of NUtEg in Pato Branco and 
Coxilha. However, in Coxilha they did not differ statistically 
to Tbio Itaipu, Fundacep Horizonte, BRS 220 and CD 
150. This indicates that these cultivars maximize the use of 
N for grain production. Barraclough et al. (2010) reported 
values of NUtEg ranging from 31 to 264 kg kg–1 of N, 
depending on the cultivar and growing environment. The 
environmental effect was predominant in the expression 
of NUtEg, but some cultivars showed stability to this trait 
among the test locations (e.g., BRS Tangará, CD 122, CD 
117, and IPR Catuara).

The test of sedimentation in sodium dodecyl sulfate (SDS) 
is an indirect estimate of the protein concentration present in a 
given flour sample. There was a significant difference between 
the locations for this trait (Table 1), with higher means in 
Pato Branco (18.8 ml) compared to Coxilha (17.1 ml). In 
the current study, the environmental effects were greater 
than the genetic effects when determining the phenotypic 
variation of SDS trait. This result contradicts Oelofse et al. 
(2010), who observed that the genetic component was 
responsible for over 80% of the variation. In general, the 
highest values of SDS were obtained by Fundacep Cristalino, 

Figure 5. Mean comparison of nitrogen harvest index (a), nitrogen 
efficiency utilization by grains (b), and SDS sedimentation test (c) of 
18 cultivars evaluated in two representative locations of south Brazil. 
Uppercase letters indicate significant differences among locations for 
the same cultivar, while lowercase letters indicate significant differences 
between cultivars in a particular location, according to Scott Knott 
test at 5% probability of error.
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BRS Guamirim, TBIO Pioneiro, IPR Catuara, and Marfim. 
The SDS sedimentation test was positively associated with 
GPCK (0.63**) and GPCN (0.79**) (data not shown).

The N concentration in the total biomass (NCB) was 
positively correlated with GPCK (Pato Branco=0.96** and 
Coxilha= 0.89**) and GPCN (Pato Branco=0.79** and 
Coxilha=0. 45*) (Figure 6b and 6c). However, the NCB 
was not associated with GY (Figure 6d), suggesting that 

the GY is independent of N content in plant biomass for 
the evaluated cultivars. Similar results were reported by 
Gaju et al. (2014).

In this context, it can be stated that the identification of 
cultivars that optimize the use of N can be of great importance 
to maximize grain yield to economic sustainability and 
environmental preservation. In addition, breeding for NUE 
is an approach that allows the creation of cultivars that enable 

Figure 6. Pearson’s correlation coefficients between agronomic traits and NUE components of 18 cultivars evaluated in two representative 
locations of south Brazil. * and ** indicate significant values of correlation to 1 and 5% level of probability respectively, by t-test (GL-2).
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the reduction in use of chemical fertilizers, minimizing losses 
and environmental impacts. Cormier et al. (2013) reported 
high heritability of NUE, allowing selecting for these traits 
in wheat breeding programs.

4. CONCLUSION

Genetic variability was identified for nitrogen efficiency 
utilization by grains and nitrogen harvest index in Brazilian 
wheat cultivars. The cultivars Mirante, Quartzo, Fundacep 
Cristalino, Fundacep Raízes, and CD 150 were efficient in the 
use of nitrogen and also presented high yield performance. 
Protein yield and nitrogen efficiency utilization of grains 
were positively associated with one another, constituting a 
promising selection criteria for wheat breeding programs.
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