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RESUMO

Calculo de Faixas de Parametro para o Ajuste Robusto
do Ganho de Controladores de Sistemas de Poténcia

O presente trabalho propde uma ferramenta computacional
para auxiliar engenheiros de sistemas de poténcia no ajuste
em campo de controladores de amortecimento e reguladores
automaticos de tensdo. A abordagem proposta gera faixas de
valores de pardmetros para o ajuste em campo dos controla-
dores do sistema. As faixas de valores geradas teoricamente
garantem a estabilidade para o sistema em malha fechada.
Estas faixas de valores s@o dadas na forma de valores limites
para os ganhos estdticos dos controladores de interesse, de
maneira que o engenheiro responsavel pelo ajuste em campo
dos controladores tenha garantia da estabilidade do sistema
durante o ajuste do ganho do controlador. Esta caracteristica
da abordagem proposta € altamente desejavel do ponto de
vista pratico, pois a etapa de comissionamento de controla-
dores de amortecimento e reguladores automaticos de tensio
sempre envolve algum reajuste dos ganhos dos controlares,
devido as diferengas entre o modelo nominal e o comporta-
mento real do sistema. Considerando essas diferencas como
incertezas no modelo, a ferramenta proposta é capaz de ga-
rantir estabilidade para o modelo incerto usando uma abor-
dagem baseada em desigualdades matriciais lineares. A me-
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todologia proposta pode ser também aplicada para o ajuste
de outros tipos de parametros de controladores de amorte-
cimento, assim como para o ajuste de outros tipos de con-
troladores (por exemplo, reguladores de velocidade). Dois
modelos de sistemas de poténcia tipicamente utilizados em
estudos de estabilidade sdo considerados para a aplicacdo e
avaliacdo da ferramenta proposta.

PALAVRAS-CHAVE: Dinamica e controle de sistemas de po-
téncia, estabilidade a pequenas perturbacdes, estabilizador de
sistemas de poténcia, regulador automéitico de tensdo, con-
trole robusto, desigualdade matricial linear.

ABSTRACT

This work proposes a computational tool to assist power sys-
tem engineers in the field tuning of power system stabiliz-
ers (PSSs) and Automatic Voltage Regulators (AVRs). The
outcome of this tool is a range of gain values for theses con-
trollers within which there is a theoretical guarantee of sta-
bility for the closed-loop system. This range is given as a set
of limit values for the static gains of the controllers of inter-
est, in such a way that the engineer responsible for the field
tuning of PSSs and/or AVRs can be confident with respect
to system stability when adjusting the corresponding static
gains within this range. This feature of the proposed tool is
highly desirable from a practical viewpoint, since the PSS
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and AVR commissioning stage always involve some read-
justment of the controller gains to account for the differences
between the nominal model and the actual behavior of the
system. By capturing these differences as uncertainties in
the model, this computational tool is able to guarantee stabil-
ity for the whole uncertain model using an approach based
on linear matrix inequalities. It is also important to remark
that the tool proposed in this paper can also be applied to
other types of parameters of either PSSs or Power Oscilla-
tion Dampers, as well as other types of controllers (such as
speed governors, for example). To show its effectiveness, ap-
plications of the proposed tool to two benchmarks for small
signal stability studies are presented at the end of this paper.

KEYWORDS: Power system dynamics and control, small
signal stability, power system stabilizer, automatic voltage
regulator, robust control, linear matrix inequality.

1 INTRODUCTION

The reliability and performance of power systems, in tran-
sient and steady-state conditions, strongly depend on the de-
sign and field tuning of the system controllers (stabilizers,
automatic voltage regulators, speed governors, and so on).
In most cases, power system controllers, even when designed
by methodologies that ensure some level of robustness with
respect to variations of the system operating conditions, re-
quire additional tuning during the commissioning stage in or-
der to provide an acceptable performance for the closed loop
power system. This retuning may be necessary, for example,
due to normal changes in the operating conditions of the sys-
tem. The topology and the typical daily load curve of power
systems may naturally change along the time, which lead to
the need for a field retuning of the controllers.

The need for the treatment of the mentioned power sys-
tem characteristics has lead to the development of many ap-
proaches for the design and tuning of PSSs and damping con-
trollers (Bomfim et al., 2000; Zanchin and Bazanella, 2003;
Abdel-Magid and Abido, 2003; Zanetta and Cruz, 2005; Cai
and Erlich, 2005; de Oliveira et al., 2010a; Gurrala and
Sen, 2010; Jabr et al., 2010; Furini et al., 2011). However,
most design and tuning procedures based on robust control
techniques proposed up to now do not consider the need of a
field retuning of the designed controllers.

It is worth mentioning that the engineer who carries out the
controller (PSS, AVR, and so on) retuning in field tests is
not usually the same engineer who designed it. In this way,
the engineer responsible for the controller retuning may not
know the theoretical limits within which the controller pa-
rameters can be changed to ensure the desired small-signal
stability margin for the system. Furthermore, the commis-
sioning of power system controllers is typically an empiri-
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cal procedure which consists in introducing small changes in
the static gain of the controller and carefully monitoring the
power station dynamics in the control room until an accept-
able response is obtained.

In this context, this work proposes a tool to assist power
system engineers in retuning and/or commissioning of PSSs
and/or AVRs. This tool provides theoretical limits for the en-
gineer to carry out a safe field retuning, thus avoiding that the
new gain settings threaten the power system reliability and
stability. Using these theoretical limits, a range of values is
provided, in such a way that any value within this range can
be used in the retuning of the controller static gain, result-
ing in guaranteed closed loop stability from the theoretical
viewpoint. It is also important to remark that a certain small-
signal stability margin may be the chosen criterion for which
a theoretical guarantee must be sought, and this is indeed the
approach used in this paper, to comply with the typical prac-
tice in power system stabilizer design and assessment. This
guarantee is obtained using a formulation based on linear ma-
trix inequalities (LMIs).

The methodologies for the tuning of PSS usually supply fixed
values for the parameters to be tuned. Abdel-Magid and
Abido (2003), Cai and Erlich (2005), and Jabr et al. (2010),
for example, have presented procedures to determine fixed
values for the parameters of the PSS to be tuned (i.e., fixed
settings for the PSS parameter). Different from the typical
tuning approaches, this paper proposes a methodology that
provides continuous parameter ranges for the field tuning of
PSS. Besides, the approach proposed in this paper is also ap-
plicable to AVR and other kinds of power system controllers.

The paper is structured as follows. Section 2 depicts the
fundamentals employed in the formulation of the proposed
tool and Section 3 presents the computational tool itself. The
evaluation of the proposed tool is carried out by applying it
to two benchmark test systems in Section 4, and Section 5
presents the conclusions taken from this evaluation and from
the overall approach presented in this paper.

2 FUNDAMENTALS OF THE PROPOSED
TOOL

The development of the computational tool proposed in
this work was based on the theory of Affine Parameter-
Dependent Lyapunov Functions, particularly those that can
be put in the form of LMIs (Gahinet et al., 1996; Oliveira and
Peres, 2005). This section presents the fundamentals of this
development to enable a better comprehension of the overall
mechanism of the proposed tool.

Studies on power system dynamics are usually based on a set
of differential-algebraic equations of the form



%= £(%,1,2), (1)
0= g(iv ﬁv 2)7 2)
y =h(x,1,2), 3)

where X € R" is the system state vector, 1 € RP is the con-
trol input vector, y € R? is the measured output, andz € R™
is the vector with the algebraic variables. However, when it
comes to controller design and small signal stability studies
in power systems, models obtained from the linearization of
equations (1)-(3) are usually employed.

The equation resulting from the linearization of (2) is typi-
cally eliminated by substituting it into the equations resultant
from (1) and (3). The resulting linearized model of a power
system can be represented by

% = Ax + Bu, 4
¥ = Cx + Du. )

In (4)-(5), x € R" corresponds to the deviation from an equi-
librium point X, of (1) and (3). In a similar way, u € R? and
y € R represent the deviations from u. and y., respec-
tively. Linear controllers for power systems can be repre-
sented by models in the form

).(c = Acxc + Bcua (6)
u = C.x,, (7

where x. € R® is the vector with the controller state vari-
ables. The closed-loop model of the controlled power sys-
tem, obtained from the connection of (4)-(5) with (6)-(7),
considering the controller parameter dependence, can be rep-
resented by

x = A(p)%, (®)

where X = [x x.]7 and

- [ A BC.(p)
A=1B.()C A.p) +B.(pDC.(p) |© ©

In (8), p € R is a vector with the controller parameters
to be tuned. The controller parameters are considered to be

time invariant (i.e., p = 0) in this work, given that the static
gains of power system controllers are usually fixed after
the commissioning stage. Matrix A (p) is affine parameter-
dependent, that is,

A(p)=Ao+Aipr + -+ Appp, (10)
where Ao, Al, cee A, are constant matrices. Since each Dis
fori =1,---,k,is associated with one of the controllers to

be commissioned or retuned, the coefficients of the matrix
A; describe the manner in which the ¢-th parameter affects
the dynamics of the whole system.

The developments in this paper are based on the assumption
that each parameter p; belongs to a known range defined by
its extreme limits 2 and p;, that is,

pi € [p, pil; (1D

where P, is the lower bound and p; is the upper bound for the
range of values of parameterp;. Both bounds are specified in
advance in order to define an acceptable uncertainty range for
the parameter of the controller to be tuned. These specified
bounds for the parameter vector describe an hyper-rectangle
in R*, whose the vertices are given by

v;%mWwMymeme. (12)

A quadratic Lyapunov function for (8) may be written as

V(%,p) =X"P(p)x, (13)
where P (p) is also an affine function given by
P(p) =Po+Pip1+ -+ Prpi. (14)

Sufficient conditions for stability of (8) can be written in the
form of LMIs. Defining

2! k+ Pk
pa’ug': 2 S 2 R

15)
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where pg,4 is the average value of the parameter vector, it is
possible to state (Gahinet et al.i 1996) that the system (8) is
affinely quadratically stable if A (pg.4) is stable and

Po+Pip1+---+Prpp =0, (16)

_ k
A()TP(p) +P(p)A(p) + sl =<0, (17)
ATP, +P,A; + ;I =0, (18)

forally € v, u; > 0andi = 1,--- | k. From (10) and (14),

inequality (17) may be rewritten as

APy +PoA,
Y
+ Z
+3
fori = 1,--- k. It is worth mentioning that the scalar p
is included in the LMI formulation to reduce control formu-

lation conservatism and to avoid numerical problems in the
solver employed to resolve the LMIs.

pi(ATP; + P,Ag + ATPy + PoA))
pipj(ATP +P;A; +ATP; +P;A))

p2(ATP, + P,A;) +Z P2l <0, (19)

From the controller tuning viewpoint, it is mandatory that the
variations in the operating conditions of the system are taken
into account. Therefore, to comply with the typical practice

J

in power systems, a number of linearized models (which can
be extracted from the daily load curves, for example) in the
form of (8) are employed in the formulation so the changes
in the operating conditions are properly addressed.

Taking multiple operating conditions into account, the sys-
tem (8) can be rewritten in the form

x=A;(p)x, (20)
where j =1,---, L,
A(p) _ A; B;Cc(p)
J Bc(p)C; Ac(p) +Be(p)D;Cc(p)
(21)

and L is the number of operating conditions considered to
generate the parameter range.

Furthermore, the typical practice in small-signal stability
analysis and control of power systems dictates that a cer-
tain small-signal stability margin must be respected in the
overall closed loop system (Gomes et al., 2003), to avoid
that eigenvalues with very low damping ratio pose a threat
to system stability with respect to variations in the operating
conditions. The proposed tool can comply with this practice
by means of the regional pole placement technique (Chilali
et al., 1999; de Oliveira et al., 2010a). Using this technique,
LMIs (16)-(18) are transformed into

Po+Pip1 +---+Prpi = 0, (22)
sin 6 (j&(pr( >+P< 2 cost (P(AR), ~AWPE) | | S gaico o
cos6(A(p)TP(p) — p),)" sind (A(p)TP(p) + P(p)A(p),) =1
Az;Pl + PiAij + ;I >~ 0, 24)
[
fori =1,---,kandj =1,---,L. In(23), 0 = cos"'¢;, 3 DESCRIPTION OF THE PROPOSED

with (y being the minimal damping ratio for the response
modes of all power system models.

If a feasible solution to LMIs (22)-(24) is found, the resulting
parameter range ensures that the eigenvalues of all the con-
sidered power system models (with the inclusion of the tuned
controllers) will present damping ratios higher than (.
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COMPUTATIONAL TOOL

Classical phase compensation is the approach usually em-
ployed by the industry to design PSSs. The traditional struc-
ture of a phase compensator is shown in the block diagram in
Fig. 1, with the washout block added to ensure zero gain in
steady-state conditions. In Fig. 1, the subscript ¢ denotes the
i-th controller to be commissioned or retuned.



In this paper, two lead-lag blocks were used for each retuned
PSS, which corresponds to Fig. 1 with nc = 2. In this work,
y; corresponds to the speed deviation of the ¢-th system gen-
erator and wu; is the i-th stabilizing signal applied to the ref-
erence of the AVR. This stabilizing control loop is a decen-
tralized control loop, since it adopts a local measurement.

yi | STwi

T R T T

14sTulq wi
\1+ST2/

Figure 1: Block diagram of a typical PSS based on phase
compensation.

In order to include such a controller in the formulation (22)-
(24) (more specifically in matrix A(p) ;)» the block diagram
model showed in Fig. 1 was converted to its corresponding
state-space model (6)-(7) (Further details about such model
conversion may be found in de Oliveira et al. (2010a)).

The AVR has a significant impact on the small signal stability
margin of power systems (Kundur, 1994; Machowski et al.,
2008; Ramos, 2009). In this way, the tuning of this kind of
regulator is quite important for the stability and reliability of
power systems. In this study, the AVR is assumed as a first-
order regulator, whose block diagram is given in Fig. 2. In
this figure, Ke is the AVR static gain, Te is the AVR time
constant, F'rp is the voltage applied to the field circuit, V; is
terminal voltage, V;..; is the reference voltage for the AVR,
and w is the stabilizing signal from the PSS.

Vti
_AVR
yi PSS Kei } Erpi
1+STei | |

e

Figure 2: Block diagram of the AVR employed in power sys-
tem model.

The computational tool proposed in this paper is based on
the application of the fundamentals described in the previ-
ous section to the problem of generating a range of values
for the K, ; and/or K. ; static gains to be employed in the
commissioning or retuning of the controllers. The p param-
eter vector, presented in the formulation (22)-(24), is com-
posed by the static gains of the controllers (p; =
pi =K ;).

pss_i OF

These parameters were chosen because some operating con-
ditions of power systems demand a retuning of the static gain
of PSSs and/or AVRs to improve the system small-signal sta-

bility margin and avoid detrimental sustained oscillations in
the operation of the corresponding generators.

As previously mentioned, the range of parameter values gen-
erated by the proposed tool ensures that the eigenvalues of
each of the considered power system models with the retuned
controllers will exhibit damping ratios higher than a pre-
specified value ({p). To illustrate this feature, Fig. 3 presents
a hypothetical range of K, values guaranteeing a damping
ratio higher than 5% (Range A) for the eigenvalues of power
system models in medium and high loading conditions. If a
damping ratio higher than 10% is sought for the same condi-
tions, usually the corresponding range of K s values (Range
B) will be smaller than the previous one, as also illustrated
in Fig. 3 (although this is not a rule, given the nonlinear na-
ture of the power system model). According to Fig. 3, any
value of K55 = p belonging to the range A ([p, pal), for
example, provides a PSS tuning which ensures a damping ra-
tio higher than 5% for the eigenvalues of the power system
models in the adopted loading conditions. The lower and up-
per bounds for the parameter range (p and p, respectively)
are generated by the tool proposed in this paper.

Qo (%)

System operating
conditions: Medium|

and high loading
Range B
10 £
P Range A
Kpssi= pi
(pu.)
0 ‘ 4 G P -
pr Pe P Pr
Figure 3: lllustrative example of the proposed parameter

ranges for hypothetical retuning of a single PSS.

This proposed formulation allows two retuning strategies:
the retuning of only one controller gain at a time or the si-
multaneous retuning of multiple controller gains. In the for-
mer strategy, the parameter range is calculated only for one
controller, considering a multimachine system model with all
the other controllers unchanged. This is the most common
situation, where the controller of a single plant is being com-
missioned or retuned while the others are under operation,
and is also the situation illustrated in Fig. 3.

The proposed formulation also allows the simultaneous cal-
culation of parameter ranges for the retuning of multiple con-
trollers at once. This corresponds to a less usual situation
in which two or more controllers have to be commissioned
at the same time. Fig. 4 illustrates hypothetical parameter
ranges generated for two PSS gains to be retuned at once.
Any value of K., belonging to parameter box A, for exam-
ple, results in the fulfillment of a 5% minimum damping ratio
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criterion for all eigenvalues of each of the considered power
system models.

As described in the previous section, these parameter ranges
or boxes are calculated by means of an algorithm which in-
volves LMIs (22)-(24). Roughly speaking, the algorithm
consists in finding a feasible solution to the mentioned LMIs
after setting the bounds for p; parameters ([pl_ pi]), choos-
ing the system operating points of interest, and defining the
desired minimum damping ratio for the eigenvalues of all
power system models.

The algorithm begins with the choice of the controllers to be
tuned, system operating conditions of interest, and desired
minimum damping ratio. Given that commissioning or re-
tuning of PSS/AVR gains are the problems being addressed
in this paper, the nominal values of the parameter to be tuned
(Kpsso_i = Pi{o} /Keo i = Pi{o}) are given in advance by the
outcome of the PSS/AVR design problem. The limits forp;
parameters ([p; p;]) are determined by means of small param-
eter changes (Ap) as the algorithm iterates. The algorithm
employs positive and negative changes with magnitude Ap
with respect to the nominal value of the p; parameter (p;{})
in order to determine the new limits of the safe parameter
range (p, 1 = Py qy — Apand iy = Pigk-1y + Ap).
The value of Ap may be chosen as a percentage of the nom-
inal value of the p; parameter.

Klzpsil):pl System operating conditions:
_ Medium and high loading
Pai
Pei
Pei
= Box B-£:=10%
Pai Kpssi+1=pi+1
o Box A-G=5% (pu)
O pAM sz~1 ﬁﬁliﬂ ‘ﬁA:A o
Figure 4: lllustrative example of the proposed parameter

ranges for hypothetical retuning of two PSSs at once.

The algorithm iterates until the solver employed to resolve
the LMIs (22)-(24) fails to find a feasible solution to the
problem. It is worth mentioning that for the vast majority
of LMI solvers available to carry out this algorithm, failure
to reach a solution to LMIs (22)-(24) does not necessarily
imply the non-existence of a feasible solution for them.

As an empirical strategy to explore the nature of the PSS
and AVR retuning problem, in order to search for a wider
range of safe parameter values, the algorithm initially ap-
plies negative changes with respect to the nominal value of
the p; parameter. After finding a lower bound on the pa-
rameter range (p, ( k}), positive changes are applied until the

upper bound of the parameter range (p;{}) is found in a sim-
ilar manner. The algorithm searches for the lower bound of
the parameter range first due to the practical importance of
this bound in the PSS adjustment, since the border between
the acceptable and unacceptable small-signal stability mar-
gin for the system is usually reached with the lowest accept-
able value of the PSS gain. On the other hand, the upper
bound of the parameter range is usually chosen with the ob-
jective of avoiding saturation of the controller output and un-
desired amplification of high-frequency dynamics. Fig. 5 il-
lustrates this strategy. This example considers the retuning
of only one PSS gain and a desired minimum damping ratio
of 10%. In Fig. 5, p;{oy is the nominal value of the param-
eter (i.e., nominal value of the static gain of the i-th PSS
to be tuned), 2 (2= lower} is the lower bound of the gener-
ated parameter range, p;{ Final—upper}is the upper bound of
the generated parameter range. In other words, Pito=tower}
and p;{ Final—upper} are the lowest and highest values for the
static gain that formally assure a damping ratio of 10% for
the response modes of the power system with the tuned con-
trollers.

Under the previously stated context, the computational tool
for PSS and AVR gain retuning proposed in this paper con-
sists in the following algorithm:

Step 1: Choose the controllers to be tuned, the operating
conditions of interest, and the minimum damping ratio
for the close loop system with the tuned controllers;

Step 2: Initialize the parameter bounds using the nominal
value of the parameter (Bi{o} = Pi{0} = Pi{0});

Step 3: Set k:=0 and choose the value of Ap to be employed
in the calculation of the parameter bounds (p, (i1} and

Pifk+1});
Step 4: Set k=k+1 and determine the k-th update on the pa-

rameter bounds by p, .\ = p, .,y — Apand piry =

Pi{k—1} (note that the upper bound is kept constant in
this step);

Step 5: Minimize u subject to LMIs (22)-(24);
Step 6: If a feasible solution was found in Step 5, return to
Step 4; Otherwise, set 2 o1} = Bi{final min};

Step 7: Set k=k+1 and determine the k-th parameter bounds
by piry = Pig-1y T Apand p, .\ = p, (0t
that the lower bound is kept constant in this step);

Step 8: Minimize u subject to LMIs (22)-(24);

Step 9: If a feasible solution was found in Step 8, return to
Step 7;
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Step 10: Set pi{r—1} = Pi{ final_max} and stop; The result-
ing range of parameter values to be employed in the
commissioning or retuning of the controllers is given

by [Bi{final_ min}’ ﬁi{final_ max}]'

0 (% . .
C ) Last iteratio

3" iteration

10} &=

o ey

\\\;fj/
1" iteration
Kpssi= pi
27d jteration P (p.u.) p
0L— 1 | ‘ ! -
Pic-owes  Piy P Piy PitFinal=uppery

Figure 5: lllustration of the iterative process employed in the
calculation of the range of parameter values.

4 TESTS AND RESULTS

A number of tests have been performed to validate and eval-
uate the outcomes of the proposed tool. The tests were
carried out based on two power system models which are
benchmarks for small signal stability studies (Kundur, 1994;
Rogers, 2000). After evaluating the convergence properties
of the proposed algorithm, the robustness of the resulting
ranges of parameter values with respect to the desired small-
signal stability margin were validated by means of linear and
non-linear analyses.

In the system representation used for these tests, the genera-
tors were described by a two-axis model (Kundur, 1994; An-
derson and Fouad, 2003; Machowski et al., 2008). As afore-
mentioned, the AVR is discribed by a first-order model. The
transmission system was modeled as a passive circuit and
the system loads were represented by constant impedances.
The state-space model of the synchronous generator, with its
AVR, as well as the model of the PSS are presented in the ap-
pendix. However, it is important to emphasize that the pro-
posed approach is general enough to cope with other kinds
of system models, with no modifications in the overall algo-
rithm of the computational tool.

In the test, due to practical considerations, the algorithm is fi-
nalized when the upper bound of the parameter range reaches
values higher than 50 p.u. for the PSS gains and higher than
400 p.u. for the AVR gains, since high values of static gains
may lead to the saturation of the controller output and unde-
sired amplification of high-frequency dynamics. In the cal-
culation of the parameter ranges for the PSSs, the magnitude
of Ap was chosen as 4 p.u. for the algorithm iterations.

The first adopted test system corresponds to a simple multi-
machine power system which was chosen with the purpose
of clarifying the application of the proposed tool. Its single
line diagram is shown in Fig. 6 and its complete data can be
obtained in Kundur (1994).

Area 1

G1

G2 L1

Area 2

7 9 07 1 3

L2

G3

G4

Figure 6: Single line diagram of the test system 1.

PSSs were placed only in the generators G1 and G3, which,
according to a residue analysis (Pagola et al., 1989; Martins
and Lima, 1990), is enough to properly damp the power sys-
tem electromechanical modes. Table 1 shows the eigenvalues
related to the electromechanical modes of the test system 1,
in the base case condition, with the two PSSs. The PSSs
placed in the test system 1 were taken from the literature
and therefore details regarding the design of these controllers
may be obtained in Kundur (1994). The eigenvalues of test
system 1 in open-loop (without the PSSs) and the transfer
functions of the system PSSs can be found in the appendix.
It is important to emphasize that the design of PSS is not the
aim of this work, since the proposed approach was formu-
lated to generate robust parameter ranges for the field tuning
of PSS previously designed by some design methodology.

Table 1: Eigenvalues corresponding to the electromechanical
modes of test system before the PSS retuning.

Oscillations Eigenvalues Damping

Modes (1/s) Ratio (%)
Inter-area —0.27 £ 53.77 7.22
Local —1.23 4+ 57.09 17.12
Local —1.26 £+ 57.35 16.86

A modal analysis (Perez-Arriaga et al., 1982; Verghese
et al., 1982) of the test system 1 has revealed that the least
damped mode (inter-area mode) can be damped by retun-
ing either the PSS placed in generator G1 or G3. Based on
this analysis, the approach was initially applied to generate
a range of parameter values just for the PSS placed in gen-
erator G3. Three operating conditions were taken into ac-
count in this test: a base case operating condition (given by
Kundur (1994)) and two other ones corresponding to varia-
tions of £10% in the base case loads. These conditions are a
simplified representation of the system operating under low,
medium and high load conditions, for example. The active
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power variation was distributed among all system generators,
weighted by their corresponding inertia constants.

A damping ratio of 5% was initially sought as desired small-
signal stability margin for the power system with the retuned
controller. The algorithm took 9 iterations and the resulting
range of parameter value is depicted in Fig. 7. Each iteration,
corresponding to the solution of LMIs (22)-(24), was carried
out using the solver ‘mincx’, available in the LMI Toolbox
of MATLAB (Gahinet et al., 1995), and the whole iterative
process took about 18 minutes in a computer equipped with
an i7 3.0 GHz processor and 8GB of RAM memory. This
same computer is also employed in all the subsequent tests.

In the sequence, the parameter range was recalculated con-
sidering a damping ratio of 10% for the response modes of
the power system with the retuned controller. The algorithm
took about 10 minutes (corresponding to 5 iterations) to pro-
vide a solution. The resulting parameter range is also de-
picted in Fig. 7, considering also the algorithm evolution.
Since the nominal value of the parameter (p;{,; = 20) is not
enough to provide a damping ratio higher than 10% for the
system response modes, the algorithm was initialized with
the maximum allowable value of gain (p;{,} = 50). Accord-
ing to the parameter ranges presented in Fig. 7, it is possi-
ble to see that the engineer responsible for the PSS tuning
may employ static gain values from 16 to 50 p.u. (30 to 50
p.u.) with the assurance that the system will present response
modes with damping ratio higher than 5% (10%) for the re-
sponse modes of the power system.

11 T T T T T T T T T T T T T T T

0 Parameter Range B
PagFinal_min P}

Damping Ratio (%)

P10}  Parameter Range A

P1{Final_min} -
= P1{Final_max}
““““““

[ 5 10 16 20 24 28 30 32 34 36 38 40 42 44 46 48 50
Static Gain Kpss1 (p.u.)

Figure 7: Ranges of values for the retuning of the PSS at
generator G3.

Fig. 8 shows the eigenvalues related to the closed-loop model
of test system 1 with the retuned PSS, in the base case operat-
ing condition, considering five different values of static gain
belonging to the parameter range that ensures damping ratio
higher than 5% (gains belonging to parameter range A pre-
sented in Fig. 7). In Fig. 8, it is possible to verify that the
five different values of static gain belonging to the generated
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parameter ranges have assured a damping ratio higher than
5% for the response modes of the power system.

These five gain values, together with other ten gain values,
were also evaluated considering the other employed operat-
ing conditions. As expected, all the considered gain values
provided the small-signal stability margin specified in the
control problem formulation, in all operating conditions con-
sidered.

It is worth mentioning that depending on the amount of PSSs
placed in the system and which PSSs will be tuned, a given
small-signal stability margin may not be achieved by a re-
tuning procedure. In such case, new PSSs or simultaneous
retuning of various system PSSs may be required to accom-
plish the desired small-signal stability margin.
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Figure 8: Eigenvalues of the test system 1 after the applica-
tion of the proposed tool, considering 5 different gain values
for the retuning of the PSS at generator G3.

The approach was also employed to simultaneously gener-
ate the parameter ranges for the two PSSs of test system 1.
This evaluation took into account the same operating condi-
tions and minimum damping ratios (5% and 10%) employed
in the previous test. The parameter ranges were determined
by the algorithm in 9 iterations for damping ratio of 5% (for
which the overall process took about 2 hours and 12 min-
utes) and 5 iterations for damping ratio of 10% (for which
the overall process took about 1 hours and 6 minutes). The
resulting parameter boxes are presented in Fig. 9. Analyzing
the resulting parameter box A (box B) in Fig. 9, it is possible
to see that the gains of the PSSs placed in generators G1 and
G3 may be simultaneously set between 16 and 50 p.u. (30
and 50 p.u.) with the assurance of damping ratio higher than
5% (10%) for response modes of the power system with the
retuned PSSs.

Linear analyses were carried out considering twenty points
(forty gain values) belonging to the parameter boxes pre-
sented in Fig. 9. In all evaluated cases, the gain values pro-
vided a damping ratio better than the minimum damping ratio
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Figure 9: Ranges of values for the retuning of the PSSs at
generators G1 and G3.

specified in the control problem formulation, in all consid-
ered operating conditions. Fig. 10 presents the poles related
to the electromechanical modes of the system in five different
operating conditions, considering only one point belonging
to parameter box B (Kpss1=37 and Kpss2=32). The anal-
ysis presented in Fig. 10 shows that, after the retuning of
the PSSs placed in generators G1 and G3, the test system 1
kept the small-signal stability margin specified in the control
problem formulation for the five different operating condi-
tions.
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Figure 10: Eigenvalues of the test system 1 after the appli-
cation of the proposed tool, considering 5 different operating
conditions for the retuning of the PSSs at generators G1 and
G3.

Nonlinear analyses, considering the power system before and
after the PSS tuning, were also performed in order to validate
the linear ones. Fig. 11 presents nonlinear response corre-
sponding to the speed of generator G4, in a case where the
loads were increased by 7.5% with respect to their base case
levels. The retuning of the PSSs at generators G1 and G3
has improved the damping of the response modes observed
in rotor speed of generator G4.
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Figure 11: Speed response of generator G4 considering the
system operating with the PSSs before and after the retuning.

Different from the studies carried out in de Oliveira et al.
(2010b), in this work the methodology is also applied to tune
AVRs. After generating parameter ranges just for PSSs, the
approach was employed to generate parameter ranges just for
AVRs (with nominal PSSs in operation, but with their param-
eters unchanged) and also for AVRs and PSSs, simultane-
ously. This evaluation took into account a minimum damp-
ing ratio of 5% and the same operating conditions employed
in the previous test. Since the AVR gains are usually higher
than the PSS gains, the calculation of the parameter ranges
for the AVR consider gain deviations of 20 p.u. for the al-
gorithm iterations (i.e., Ap=20 p.u.). The nominal parame-
ters of the AVRs employed in the model of test system 1 are
Ke=200 p.u. and Te=0.01 s. Fig. 12 presents the parame-
ter box determined for the simultaneous tuning of the AVRs
placed in generators G1 and G3. The parameter box gener-
ated for the simultaneous tuning of the AVR and PSS placed
in generator G3 is presented in Fig. 13. Fig. 14 shows the
eigenvalues related to the closed-loop model of test system
1, in the base case operating condition, after the retuning of
the AVR and PSS (different values of static gains belonging
to the parameter box presented in Fig. 13 were considered).

350
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I I I
[¢] 136 200 320 350
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Figure 12: Ranges of values for the retuning of the AVRs at
generators G1 and G3.
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Analyzing Fig. 12, it is possible to see that any values of
K. 1 and K. o between 136 and 320 p.u. (i.e., any values be-
longing to resulting parameter box) assure the desired small
signal stability margin for the power system (damping ratio
higher than 5%) in all the considered operating conditions.
It must be highlighted at this point that the lower limits in
Fig. 12 were defined by nonlinear simulations that ensured a
minimum steady-state error of 1% for the terminal voltages
of both generators (otherwise, smaller gains could ensure the
desired damping but not be practical, in the sense that they
do not provide a satisfactory voltage regulation). The param-
eter box presented in Fig. 13 shows that the static gain of the
PSS and AVR placed in generator G3 may be simultaneously
set from 12 to 50 p.u. and from 160 to 220 p.u., respectively
(ie., 12 < Kpgs < 50 and 160 < K. < 220), with assur-
ance of damping ratio higher than 5% for response modes of
the power system with the retuned controllers. In Fig. 14,
it is possible to notice that the different values of static gains
belonging to the parameter box presented in Fig. 13 (PSS and
AVR gains) assured the small-signal stability margin speci-
fied in the control problem formulation.
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Figure 14: Eigenvalues of the test system 1 after the retuning
of the PSS and AVR at generator G3, considering different

gain values.
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It is important to observe that the algorithm usually finds
a conservative range due to the control formulation conser-
vatism and numerical characteristics in the solver employed
to resolve the LMIs. However, the parameter range found
by the proposed tool always ensures the robustness and the
specified small-signal stability margin for the power system
with the retuned controllers.

In a second sequence of tests, the effectiveness of the pro-
posed tool is evaluated in a larger power system correspond-
ing to the reduced-order model of the New England system
(Rogers, 2000). This system is constituted by 39 buses and
10 generators. The single line diagram of this system is
shown in Fig. 15. Generator G10, shown in Fig. 15, is an
equivalent of the New York system. The eigenvalues cor-
responding to the 9 electromechanical modes of test system
2 in open- loop (without the PSSs) are presented in the ap-
pendix.

Again, a base case and two other operating points, related to
variations of £10% in the values of the base case loads, were
employed in these tests. A residue analysis has shown that
8 PSSs are enough to properly damp the electromechanical
oscillations and provide a good small signal stability margin
for the system. The absolute values of the residues related
to the open-loop transfer function of test system 2, for each
electromechanical mode, are presented in the appendix. The
residues were calculated considering the transfer function be-
tween u; (i-th stabilizing signal) and y; (speed deviation of
the i-th generator). As result of this residue analysis, con-
trollers were placed in generators G1, G2, G3, G4, G6, G7,
G8 and G9 of test system 2.

The PSSs for test system 2 were designed taking into account
the operating point regarding the base case. The design was
based on the residue technique (Sadikovic et al., 2005; Fu-
rini et al., 2011), which takes into account the coordination
between the designed controllers. The PSSs were sequen-
tially designed, which means that each of the controllers is
designed one at a time. It is worth mentioning again that the
design and placement of PSSs are not the focus of this work.
The parameters of the PSSs placed in this test system are also
presented in the appendix.

A linear analysis of the system before the PSS tuning showed
that it exhibits 9 electromechanical oscillation modes, and 2
of these modes present damping ratio lower than 10% in two
of the adopted operating conditions. The PSSs were inten-
tionally designed to provide a damping ratio lower than 10%
for two electromechanical modes of the test system 2 in or-
der to highlight the characteristics and effectiveness of the
proposed tool. The poles related to the electromechanical
modes of the system with the 8 PSSs, in the three operating
conditions considered, are presented in Fig. 16. The least
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Figure 15: Single line diagram of test system 2.

damped modes, considering the three operating conditions,
are located between the two dashed lines of Fig. 16.
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Figure 16: Eigenvalues of the test system 2 before the appli-
cation of the proposed tool.

A modal analysis of the test system 2 has showed that con-
troller placed in generator G4 presents the best controllabil-
ity index to improve the damping of the two least damped
modes. Based on this analysis, it was found that the state
variables of the PSS at generator G4 had the highest partic-
ipation factors with respect to the least damped modes and,
therefore, the PSS of G4 was chosen as the one for retun-
ing in this application of the proposed tool. The participation
factors of the generator speed, in the least damped mode of
the test system 2 (A =-0,84+j10,93), are presented in the
appendix. Damping ratios of 5% and 10% were sought as
desired small-signal stability margins for the power system
with the retuned PSS. The parameter ranges were determined
by the algorithm in 12 iterations for a minimum damping ra-
tio of 5% (for which overall iterative process took about 29

hours and 44 minutes) and 6 iterations for a minimum damp-
ing ratio of 10% (for which the process took about 14 hours
and 52 minutes). The resulting parameter ranges are pre-
sented in Fig. 17. Analyzing Fig. 17, it is possible to see that
the engineer in charge of the tuning of PSS placed in genera-
tor G4 may set the controller gain between 4 and 50 p.u. (26
and 50 p.u.) with the assurance that the system will present
response modes with damping ratio higher than 5% (10%).
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Figure 17: Ranges of values for the retuning of the PSS
placed in generator G4 of the test system 2.

The robustness of the resulting parameter ranges was vali-
dated by means of linear and non-linear analyses. Fig. 18
shows the eigenvalues associated to the closed-loop models
of the test system, for 4 different values of the PSS gain of
generator G4 that are within the two ranges shown in Fig. 17.
It can be seen that the desired small-signal stability margins
of 5% and 10% are both satisfied when using these gains.
Similar results were obtained for the system operating at low
and high load levels, with respect to the base case.

Non-linear simulations before and after the retuning of the
PSS of generator G4, were also carried out in order to val-
idate the results observed in linear analysis. The speed re-
sponse of generator G4 is presented in Fig. 19, in a case
where the loads were increased by 7.5% with respect to their
base case levels. The PSS retuning has significantly im-
proved the damping of the modes of this speed response,
which can be observed in Fig. 19.

It is important to emphasize that the highest values of gain in
these ranges may not be practically acceptable, due to pos-
sible saturation of the PSS output for typical small perturba-
tions. However, it is up to the engineer in charge of controller
retuning to choose, among the values of gain provided by the
proposed tool, the one that best suits other practical needs,
such as for example, the avoidance this kind of saturation.
The biggest advantage of the proposed tool is the fact that
the engineer may confidently choose any gain value within
the provided range with guaranteed theoretical closed-loop
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stability, so he/she does not have to rely entirely on his/her
judgment.
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Figure 18: Eigenvalues of the test system 2 after the appli-
cation of the proposed tool, for 4 different gain values of the
retuned PSS of generator G4.
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Figure 19: Speed response corresponding to generator G4
operating with the PSS before and after the retuning.

5 CONCLUSIONS

This paper presented a computational tool capable of gen-
erating a range of parameter values to assist the engineers
in charge of controller commissioning or retuning, in such
a way that a guarantee of closed loop stability is provided
for any gain adjustment made within this range. The main
advantage of the application of this tool is the confidence it
provides to the responsible engineer when approving a gain
adjustment, during the commissioning stage, which is differ-
ent from the one determined at the design stage based on the
nominal model.

If the changes in the topology and/or operating conditions of
the system (that can be extracted from the daily load curves
and contingency lists for stability analysis, which are readily
available at power system utilities) are adequately modeled in
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the proposed tool, the engineer in charge of controller com-
missioning does not have to rely entirely on his/her empirical
knowledge about the system to perform the gain retuning in
the field. It is also important to remark that, due to the possi-
bility of application of the same technique to any parameter
variation in the model, the same tool can be used to retune the
phase compensation parameters of a PSS in order to provide
a range of guaranteed small signal stability margin.

The results obtained with the tests have showed that the pro-
posed tool successfully generated ranges of static gain val-
ues for PSSs and AVRs that ensure stability robustness and
the fulfillment of a minimum damping ratio criterion for the
closed loop power system.

Future directions of this work include the application of this
methodology to the tuning of other kinds of power system
controllers. Different LMI formulations will also be inves-
tigated in order to reduce the computational effort required
to solve the control problem. Furthermore, the investigation
of some model order reduction techniques, in order to find
out the most suitable ones to be used in conjunction with this
algorithm, is also a future direction of this research.

A APPENDIX

The model of the i-th synchronous generator with its AVR is
given by:

05 = wew; — ws, (A.1)
. 1
Wi = 57 [Pri = Byl = Bgilas — (2, — @) Lailai]
(A.2)
El, = — [(x4i — xly;)1ai + Erps — E;] (A.3)
doi
: 1
Ey = o (s — 2gi)Igi — Bl (A4)
doi
1

ﬂmZTMMWwﬂWH%M—&mLﬁﬂ

where ¢ is the generator power angle, w is the rotor angular
speed, wy is the synchronous machine speed, E’, is the di-
rect axis transient voltage, E; is the quadrature axis transient
voltage, I, is the quadrature axis current, I is the direct axis
current, Erp is the voltage applied to the field circuit by the
AVR, V; is terminal voltage, V... is the reference voltage for
the AVR, and V), is the stabilizing signal from the PSS.

The PSS model is given by the following differential equa-
tions:



1

1= Kpusts = 7ol (A.6)
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To = F[xl + Th&1 — 29, (A7)
2
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T

In (A.6)-(A.8), 1, z2, and V4, are the state variables re-
lated to the PSS model. Additional details regarding the sys-
tem model and its respective parameters can be obtained in
Kundur (1994), Anderson and Fouad (2003), and Machowski
et al. (2008).

The eigenvalues related to the electromechanical modes of
the test system 1 without PSSs are presented in Table A.1
and the transfer function corresponding to the PSSs placed
in test system 1 is given by

Fpss1(8) = Fpss2(s) =

B (105)(0.05s 4 1)(3.00s + 1)
=20 (10s 4+ 1)(0.02s + 1)(5.40s + 1) (A9)

Table A.1: Eigenvalues corresponding to the electromechan-
ical modes of test system before the PSS retuning.

Oscillations Eigenvalues Damping

Modes (1/8) Ratio (%)
Inter-area 0.06 £ 53.55 -1.80
Local —0.42 £+ j6.82 6.14
Local —0.40 £ 57.05 5.64

The absolute values of the residues related to the open-loop
transfer function of test system 2, for each electromechanical
mode, are presented in Tables A.2 and A.3.

The absolute values of the participation factors of the gen-
erator speed in the least damped mode of the test system 2
are presented in Table A.4. The speed of the generator was
chosen due to the fact that the electromechanical oscillations
usually have a strong participation on this variable.

The parameters of the existing PSSs in the test system 2 be-
fore retuning are presented in Table A.5. Note that, after
the retuning suggested by the proposed tool, any Kpss in the
range between 4 p.u. and 50 p.u. can be used, and the system
will still present a 5% minimum damping as a small-signal
stability margin. The engineer in charge of the PSS retuning
can then confidently choose, using his/her own judgment, the

Table A.2: Eigenvalues corresponding to the electromechani-
cal modes of test system 2 in open-loop and absolute values
of the residues regarding the generators G1 to G5.

System Modes Residue
G1 G2 G3 G4 G5

—0.22£59.97 | 0.0001| 0.0000| 0.0001| 0.0862| 0.0141
—0.51£759.84 | 0.0161| 0.0001| 0.0001| 0.0016| 0.0009
—0.384759.75 | 0.0007| 0.0001| 0.0003| 0.0813| 0.0346
—0.42+358.25 | 0.0018| 0.0005| 0.0004| 0.0043| 0.0431
—0.03£358.17 | 0.0140| 0.0080| 0.0043| 0.0032| 0.0113
0.18 + 58.22 | 0.0001| 0.0542| 0.0689| 0.0001| 0.0002
0.54 £+ 57.06 | 0.0003| 0.0122| 0.0137| 0.0017| 0.0023
0.13 4+ 47.16 | 0.0010| 0.0258| 0.0228| 0.0194| 0.0347
0.01 + 53.62 | 0.0040| 0.0051| 0.0066| 0.0089| 0.0094

Table A.3: Eigenvalues corresponding to the electromechani-
cal modes of test system 2 in open-loop and absolute values
of the residues regarding the generators G6 to G10.

System Modes Residue

Go6 G7 G8 G9 G10
—0.22£759.97 | 0.0117| 0.0866| 0.0000| 0.0000{ 0.0000
—0.514759.84 | 0.0013| 0.0017| 0.1033| 0.0001| 0.0000
—0.38+759.75 | 0.0287| 0.0531| 0.0042| 0.0001| 0.0000
—0.424758.25 | 0.0701| 0.0160| 0.0074| 0.0012| 0.0000
—0.03£358.17 | 0.0053| 0.0022| 0.0480| 0.0256| 0.0000
0.18 £58.22 | 0.0001| 0.0001| 0.0004| 0.0003| 0.0000
0.54 £+ j7.06 | 0.0008| 0.0006| 0.0023| 0.0959| 0.0000
0.13£57.16 | 0.0068| 0.0040| 0.0022| 0.0095| 0.0002
0.01 £53.62 | 0.0094| 0.0070| 0.0047| 0.0105| 0.0049

best value of gain within this range that suits other practical
requirements as well, such as the avoidance of saturation of
PSS outputs when responding to typical perturbations, for
example.
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Table A.4: Absolute values of the participation factors of the
generator speed in the least damped mode of the test system
2 with the 8 PSSs.

Generator Variable Participation Factors

(A= —0.84 4 710.93)
Gl wat 0.0022
G2 wa2 0.0002
G3 was 0.0009
G4 wa4a 0.3229
G5 was 0.0727
G6 wae 0.0176
G7 war 0.0037
G8 waes 0.0001
G9 wa9 0.0003
G10 waE10 0.0000

Table A.5: Parameters of the Existing PSSs in the Test Sys-
tem 2 before Retuning of the PSS in G4.

Generator | Tw (s) Kpss T1q1 (s) T2 (s)
(p-w.) (nc=2) (nc=2)
Gl 10 8.00 0.2111 0.1044
G2 10 9.00 0.2200 0.1505
G3 10 9.00 0.2004 0.1773
G4 10 8.00 0.1973 0.1329
G6 10 10.00 0.2075 0.1656
G7 10 9.00 0.2096 0.1537
G8 10 8.00 0.1709 0.1127
G9 10 9.00 0.2051 0.1005
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