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Time-to-event assessment for the discovery of
the proper prognostic value of clinical
biomarkers optimized for COVID-19
In the early days of the pandemic, clinical COVID-19 biomarkers
were investigated to predict mortality.1 Yan et al., for instance, proposed
a straightforward decision tree with three variables: Lactic Dehydroge-
nase (LDH), high-sensitivity C-Reactive Protein (hs-CRP), and lympho-
cyte percentage. They claimed to obtain more than 90% accuracy on a
test set. Although it is an interesting approach, Yan et al. considered the
problem a classification task (dead vs. alive), which may not be the
proper way to deal with continuous time-to-event data.2−4 Moreover,
machine-learning-based assessment is pruned to over-optimistic results
using small sampling for training. In addition, it has been shown that
their model has limited performance on external datasets.5−7 These two
limitations are possibly due to data overfitting.

Therefore, the authors performed time-to-event analyses using the
original dataset to find a proper predictive potential for the investigated
biomarkers. The authors’ evaluation aimed to optimize the clinical vari-
ables previously modeled and discover other biomarkers with prognostic
value. By opposing the original strategy, the authors also focused on
identifying biomarkers for different sub-populations, according to
patient aging and hospitalization time.

Original data is publicly available.1 The dataset comprised demo-
graphics data of age (varying 18−95, averaging 58.8 ± 16.5 years old)
and sex (224 men, 151 women), along with the results of 74 blood tests
in different hospitalization times. The variables obtained for each
patient is listed as follows: 2019-ncov nucleic acid detection, activation
of partial thromboplastin time, albumin, alkaline phosphatase, amino-
terminal brain natriuretic peptide precursor, antithrombin, aspartate
aminotransferase, basophil count, basophil percentage, calcium, cor-
rected calcium, creatinine, d-d dimer, direct bilirubin, egfr, eosinophil
count, eosinophils percentage, esr, ferritin, fibrin degradation products,
fibrinogen, globulin, glucose, glutamic-pyruvic transaminase, hbsag,
hco3-, hcv antibody quantification, hematocrit, hemoglobin, hiv anti-
body quantification, hypersensitive cardiac troponini, hypersensitive c-
reactive protein, indirect bilirubin, interleukin 10, interleukin 1β, inter-
leukin 2 receptor, interleukin 6, interleukin 8, international standard
ratio, lactate dehydrogenase, lymphocyte count, lymphocyte percentage,
mean corpuscular hemoglobin, mean corpuscular hemoglobin concen-
tration, mean corpuscular volume, mean platelet volume, monocytes
count, monocytes percentage, neutrophils count, neutrophils percent-
age, ph value, platelet count, platelet large cell ratio, plt distribution
width, procalcitonin, prothrombin activity, prothrombin time, quantifi-
cation of treponema pallidum antibodies, rbc distribution width sd, red
blood cell count, red blood cell distribution width, serum chloride,
serum potassium, serum sodium, thrombin time, thrombocytocrit, total
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bilirubin, total cholesterol, total protein, tumor necrosis factorα, urea,
uric acid, white blood cell count, and γ-glutamyl transpeptidase.

The authors split the dataset into discovery and validation subsets to
perform a robust assessment and validate the results. The thresholds
identified in the discovery set were then applied in the validation set to
confirm further performance. Patient risk groups were stratified accord-
ing to the variables’ median.3,4 The log-rank test assessed the difference
between Kaplan-Meier curves and Cox proportional hazards regression
models. R v4.1.0 packages of survival v3.2.3 and survminer v0.4.7 per-
formed statistical analyses, with p < 0.05 considered significant.

As expected, the older the patient is, the worst is the prognosis;8,9 the
threshold of 62 years obtained significant difference on survival curves
(Fig. 1a). The overall assessment disregarding patient age and hospitali-
zation timing found predictive value in 53 variables, including LDH and
hs-CRP (Fig. 1b−c). Moreover, other biomarkers yielded relevant infor-
mation on COVID-19 prognostication (Table 1). For instance, high-risk
groups stratified by fibrin degradation products presented a 97% likeli-
hood of death and a Hazard Ratio (HR) of 4.26 (95% Confidence Interval
[95% CI]: 1.88−9.64); and elevated Interleukin-6 (IL-6) associated
with 65% likelihood of death and HR of 18.20 (95% CI: 2.42-136.54).

Furthermore, LDH and hs-CRP combined presented complementary
predictive potential in multivariate assessment (Fig. 1d). With both bio-
markers’ values elevated, patients showed a likelihood of death of 87%,
the mean survival time of 9.5 days, and HRs of 8.19 (95% CI: 2.27
−29.52) and 3.90 (95% CI: 1.41−10.72). Conversely, when either LDH
or hs-CRP yielded low value, potentially indicating lower risk, the age
determined the worse prognosis in the multivariate signature
(p<0.001), resulting in a likelihood of death of 72% and HR of 7.01
(95% CI: 3.10−15.84) for the elderly patients.

Results confirmed poor short-term prognosis to abnormal levels of
some indicators, such as LDH,1,9-11 CRP,1,8-11 lymphocytes,1,8-10 IL-6,12

and procalcitonin.11 These findings could provide insights into COVID-
19 research, such as key levels of fibrin degradation products, which are
directly associated with the Dimerized plasmin fragment D and could
indicate active coagulation and thrombosis.9-11

Yan et al. had already mentioned that lymphocytes might serve as a
potential therapeutic target.1 Still, the authors highlight the role of IL-6,
a cytokine that induces inflammatory response and has prognostic value.
Although IL-6 blockade is not the standard strategy for COVID-19 treat-
ment, interleukin-6 remains the best available biomarker for severity
assessment and still holds great potential for targeted therapy.12

In this work, the authors have identified relevant biomarkers that are
fully available in medical practice and be a mainstay for the clinical eval-
uation of COVID-19. These biomarkers correlated with short-term out-
comes and could support the management of the disease with early
interventions, ultimately leading to better endpoints such as decreased
deterioration and mortality. Future works include a prospective
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Fig. 1. Kaplan-Meier curves of the clinical biomarkers of (a) age, (b) Lactic Dehydrogenase (LDH), (c) high-sensitivity C-Reactive Protein (hs-CRP), (d) LDH combined
with hs-CRP.

Table 1
Discovered biomarkers according to the patient age and hospitalization time.

High-risk group Low-risk group

Relevant biomarkers Threshold
discovered

Proportion
of deaths

Mean survival
days

Proportion
of deaths

Mean survival
days

Log-rank
p-value

Demographics: 1 significant variable Age 62 0.824 7.9 0.146 11.2 < 0.001
Sex Male / Female 0.542 9.5 0.296 10.1 0.120

Overall (disregarding patient age and hospitali-
zation timing): 53 significant variables

Lactate dehydrogenase 334 0.835 10.1 0.041 12.8 < 0.001
Hypersensitive c-reactive protein 47.2 0.785 9.6 0.089 13.1 < 0.001
Lymphocyte (%) 11.6 0.793 10.8 0.134 13.2 < 0.001
Fibrin degradation products 16.9 0.974 10.4 0.226 10.8 < 0.001
Interleukin-6 18.3 0.655 10.7 0.045 12.8 < 0.001
Hypersensitive cardiac troponinI 22.8 0.902 6.8 0.273 12.3 < 0.001

First sample after admission (disregarding
patient age): 40 significant variables

Lactate dehydrogenase 328 0.732 8.8 0.094 11.2 < 0.001
Hypersensitive c-reactive protein 51.9 0.732 8.6 0.065 11.6 < 0.001
Lymphocyte (%) 14.9 0.700 8.8 0.125 11.3 < 0.001
Fibrin degradation products 4.9 0.875 9.0 0.095 9.6 <0.001
Interleukin-6 19.53 0.667 10.2 0.071 12.0 < 0.01
Procalcitonin 0.09 0.853 8.2 0.071 13.6 < 0.001

Last sample before discharge or death (disre-
garding patient age): 46 significant variables

Lactate dehydrogenase 261 0.733 8.6 0.000 11.8 < 0.001
Hypersensitive c-reactive protein 23.9 0.780 8.0 0.000 12.4 < 0.001
Lymphocyte (%) 14.35 0.806 8.3 0.083 11.5 < 0.001
Fibrin degradation products 5.9 0.952 8.7 0.125 9.7 < 0.001
Procalcitonin 0.09 0.882 8.0 0.036 13.8 < 0.001
HCO3- 24.1 0.638 7.6 0.115 13.9 < 0.001

Patients with age <62 years (disregarding hos-
pitalization timing): 31 significant variables

Lactate dehydrogenase 232.5 0.360 14.1 0.000 18.3 < 0.001
Hypersensitive c-reactive protein 11.6 0.417 14.1 0.000 18.6 < 0.001
Lymphocyte (%) 22.15 0.362 15.6 0.089 16.0 < 0.01
Fibrin degradation products 4 0.769 9.1 0.000 14.4 < 0.001
International standard ratio 1.05 0.531 11.4 0.000 18.0 < 0.001
Calcium 2.15 0.463 14.8 0.042 16.2 < 0.001

Patients with age ≥62 years (disregarding hos-
pitalization timing): 29 significant variables

Lactate dehydrogenase 470 0.986 11.6 0.603 16.4 < 0.001
Hypersensitive c-reactive protein 88.3 0.922 12.4 0.596 16.2 < 0.001
Lymphocyte (%) 5.3 0.967 13.3 0.627 14.2 < 0.01
Hypersensitive cardiac troponin I 51.4 1.000 11.9 0.800 14.2 < 0.01
Monocytes (%) 4.1 0.986 13.5 0.552 14.1 < 0.001
Alkaline phosphatase 77 0.952 11.1 0.687 16.2 < 0.001
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evaluation to increase robustness and the assessment across different
geographic populations, as each region has its genomic specificity.
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