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ABSTRACT
Despite many years of dedicated research into the etiopathogenesis of adolescent idiopathic scoliosis, there is still no single distinct 

cause for this puzzling condition. In this overview, we attempt to link knowledge on the complex three-dimensional pathoanatomy of AIS, 
based on our ongoing research in this field, with etiopathogenic questions. Evidence from multiple recent cross-sectional imaging studies is 
provided that supports the hypothesis that AIS has an intrinsic biomechanical basis: an imbalance between the biomechanical loading of the 
upright human spine due to its unique sagittal configuration on the one hand, and the body’s compensating mechanisms on the other. The 
question that remains in the etiology of AIS, and the focus of our ongoing research, is to determine what causes or induces this imbalance.

Keywords: Scoliosis; Etiology; Pathogenesis; Research.

RESUMO
Apesar dos muitos anos de pesquisa dedicada à etiopatogenia da escoliose idiopática do adolescente, ainda não existe uma única 

causa distinta para essa afecção intrigante. Nesta visão geral, tentamos fazer a ligação do conhecimento sobre a complexa anatomia pa-
tológica tridimensional da EIA, com base em nossas pesquisas em andamento nessa área, com as questões da etiopatogenia da doença. 
As evidências dos diversos estudos transversais recentes são apresentadas e corroboram a hipótese de que a EIA tem base biomecânica 
intrínseca: o desequilíbrio entre a carga biomecânica devido à sua configuração sagital única por um lado, e os mecanismos compensatórios 
do corpo, por outro. Ainda há dúvidas sobre a etiologia da EIA e o foco de nossa pesquisa em andamento é determinar o que causa ou 
induz esse desequilíbrio.

Descritores: Escoliose; Etiologia; Patogênese; Pesquisa.

RESUMEN
A pesar de los muchos años de investigación dedicada a la etiopatogenia de la escoliosis idiopática del adolescente, aún no existe una 

única causa distinta para esa afección intrigante. En esta visión general, tratamos de hacer la conexión del conocimiento sobre la compleja 
anatomía patológica tridimensional de la EIA, con base en nuestras investigaciones en marcha en esa área, con las cuestiones de la etiopa-
togenia de la enfermedad. Las evidencias de los diversos estudios transversales recientes son presentadas y corroboran la hipótesis de que 
la EIA tiene base biomecánica intrínseca: el desequilibrio entre la carga biomecánica debido a su configuración sagital única por un lado, y 
los mecanismos compensatorios del cuerpo, por otro. Aún hay dudas sobre la etiología de la EIA y el enfoque de nuestra investigación en 
marcha es determinar lo que causa o induce ese desequilibrio.

Descriptores: Escoliosis; Etiología; Patogénesis; Investigación.

INTRODUCTION
Scoliosis is a three-dimensional (3-D) deformity of the spine 

and trunk that primarily affects previously healthy children. It is a 
classic orthopedic disorder.1 The most common type of scoliosis is 
idiopathic scoliosis. The term ‘idiopathic’ (from the Greek: ίδιος=one’s 
own and πάθος=suffering) indicates that the disease is not linked to 
any physical impairment or previous medical history. Despite many 
years of dedicated research into the etiopathogenesis of idiopathic 
scoliosis, there is no single, distinct cause for this condition, and a 
number of intriguing questions remain.2,3 The purpose of this study is 

to provide, based on our ongoing research into the etiopathogenesis 
of idiopathic scoliosis, answers to some of these questions, namely:
1.	 Why is scoliosis a disease of man?
2.	 Why are thoracic curves predominantly right convex in adolescents, 

but left convex in infants?
3.	 What is the role of relative anterior spinal overgrowth (RASO)?

Why is scoliosis a disease of man?
Idiopathic scoliosis appears to occur exclusively in humans, 

and it has not been observed in any other mammals.4 Other spinal 
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deformities have been observed or created in animals, but they 
either have iatrogenic, post-traumatic, neuromuscular or congenital 
etiologies. Why is this? 

The essential difference between man and all other vertebrates is 
not any major difference in spinal architecture, since this is relatively 
uniform throughout all species, with broad vertebral endplates and 
discs to withstand axial loading, and posteriorly located synovial joints 
and protuberances for muscle and ligament attachment to withstand 
anteriorly directed shear loads. Nor is it the fact that man is bipedal; 
there have always been many bipedal species, starting with most 
dinosaurs. Human posture and locomotion, however, is different from 
all other vertebrates, quadrupedal and bipedal alike, in two aspects:
1.	 The uniquely human pelvic lordosis, also known as a lordotic 

angulation between the ischial and iliac bones,5-8 and 
2.	 The ability to simultaneously extend both hips and knees.9 

Man, unlike any other species, actually has three well developed 
lordoses along the spine, at least after infancy: one between the iliac 
and ischial bones, one in the lumbar region, and one in the cervical 
region. It is generally accepted by anthropologists that habitual human 
bipedalism and sagittal spinopelvic alignment can be attributed to 
morphological changes in the pelvis during human evolution.5,10 In 
the earliest hominid specimen to date, an Australopithecus afarensis 
that was found in Ethiopia (also known as ‘Lucy’), as well as in other 
hominids, anthropologists observed that angulation of the ilium relative 
to the ischium enabled upright human locomotion.11 Even in man’s 
closest relatives, the bonobos and chimpanzees, there is almost no 
angulation between the ischium and ilium (Figure 1). When a primate 
tries to stand upright, the trunk simply swings up on the femoral 
heads to a point that the ischium points almost directly downward. 
For energy-efficient human bipedal locomotion, however, lordotic 
angulation of the ilium relative to the ischium, increasing the lever 
arm of the ischio-crural muscles, was a prerequisite to be able to walk 
fully upright.5,12,13 This resulted in an increase in the ischio-iliac angle 
and pelvic incidence during human evolution.5,8 This, in combination 
with the ability to fully extend the hips and knees at the same time, 
makes man the only species to consistently carry the body’s center 
of gravity straight above the pelvis, rather than in front (Figure 1). This 
poses unique biomechanical loads on the human spine that have 
been shown to lead to a reduction of rotational stiffness of certain 
exposed segments.14-17 A previous work by Vercauteren in 1980 and 
Castelein et al. in 2005 has clarified that a certain area of the human 
spine in the upright position is posteriorly inclined, and affected by 
posteriorly directed shear loads.14,16,18 From this perspective, Janssen 
et al. showed that posterior shear loads act on all posteriorly inclined 
segments of the spine, as determined by each individual’s sagittal 
profile (Figure 2).16,19 In an experimental setup, Kouwenhoven et al. 
showed that excessive posterior shear load results in diminished 
rotational stiffness of the spinal segments.15 Therefore, the more the 

spine exhibits areas with posteriorly tilted vertebrae, the more these 
segments are prone to develop a rotational deformity, in other words 
scoliosis.14,17 Since then, variation in sagittal alignment of the spine 
has been increasingly recognized in relation to the etiopathogenesis 
of spinal deformities.20-22 

Pediatric spinal deformities have a well-known age-related prefe-
rence and gender-related distribution.23-26 For example, AIS develops 
most frequently in girls around the time of the adolescent growth 
spurt. To test the hypothesis that the spine in which a rotational 
deformity has a chance to develop is based on differences in sagittal 
spinopelvic alignment, making a child prone to develop a rotational 
deformity, Schlösser et al. analyzed sagittal spinopelvic alignment in 
156 non-scoliotic children before, during, and after the peak of pubertal 
growth.27,28 The results showed that thoracic kyphosis, pelvic tilt, and 
pelvic incidence increase during growth, and that before and during 
the peak of the growth spurt, a greater number of vertebrae are more 
posteriorly inclined as compared to after the growth spurt. Moreover, 
the spines of girls at the peak of the growth spurt showed more 
posterior inclination and a smaller thoracic kyphosis as compared 
to the spines of boys. This suggests that in girls around the peak of 
the growth spurt, the spine is subject to greater posteriorly directed 
shear loads, and thus shows less resistance to rotation. This may 
explain why AIS - under circumstances during growth that have yet 
to be determined - occurs more often in girls than in boys. It can also 
be inferred that thoracic AIS develops in a different sagittal profile 
as compared to (thoraco)lumbar AIS. From a multicenter database 
of almost 1400 AIS patients, all lateral radiographs were reviewed of 
children with an established, but still very small (Cobb angle smaller 
than 20 degrees) thoracic (Lenke 1 and 2, n=128) and (thoraco)lumbar 
AIS (Lenke 5, n=64). A systematic analysis of the sagittal profile and 
exact inclination of each individual vertebra revealed that already at 
this very early stage, the thoracic kyphosis and posterior inclination of 
thoracic AIS differs significantly from (thoraco)lumbar AIS, as well as 
from controls.29-31 More precisely, in thoracic scoliosis, most thoracic 
vertebra were more backwardly inclined as compared to (thoraco)
lumbar scoliosis, and vice versa. This difference in sagittal profile 
was shown to already exist at a very early stage of development of 
the rotation and the curvature, and thus can be postulated to play a 
role in the pathogenesis of the different curve types. 

The pelvis is the key regulator of sagittal spinopelvic balance. 
Despite the differences in sagittal spinal alignment between thoracic 
and lumbar scoliosis, Mac-Thiong et al. and Farshad et al.31 were 
not able to demonstrate a statistically significant difference in sagittal 

Figura 1. Hominoidae (great apes) typically display a ‘bent-hip, bent-knee’ 
posture during bipedal locomotion. Due to a backwards-bent pelvic axis 
(red lines), only humans are able to stand upright.7,8

Figura 2. The sagittal spinopelvic configuration of the double-S shaped hu-
man spine in relation to the pelvis determines whether individual vertebrae 
are subject to either an anteriorly directed, or a posteriorly directed vector 
(as a vector of the axial loading). In the figure, the segments that are affected 
by posterior shear loading, between the apex of the thoracic kyphosis and 
lumbar lordosis, are shown in red.
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pelvic anatomy between patients affected by different degrees of 
thoracic and (thoraco)lumbar scoliosis, using conventional radio-
graphs.30,32 Moreover, Schlösser et al. had identical results for the 
parameter “pelvic incidence” in a population of Lenke type one and 
5 AIS patients with curves with a Cobb angle less than 20 degrees. 
Recently, however, Pasha et al. introduced novel pelvic parameters 
based on 3-D reconstructed radiographs, and Vrtovec et al. deve-
loped a 3-D measurement method for “pelvic incidence” on 3-D CT 
scans, demonstrating the improved accuracy of these methods as 
compared to the traditional measurements on plain lateral radio-
graphs.33,34 Using this 3-D measurement method, Brink et al. found 
greater pelvic incidence in a small population of thoraco(lumbar) AIS 
curves as compared to thoracic curves and controls.35 Therefore, 
their findings are consistent with previous theories, suggesting a link 
between sagittal pelvic anatomy, sagittal spinopelvic alignment and 
the development of different curve types in AIS.

Why are thoracic curves predominantly right convex in adoles-
cents, but left convex in infants?

The most prevalent curve type in AIS is a right convex main thoracic 
curve with compensatory high-thoracic and (thoraco)lumbar curves 
to the left.36 In contrast to adolescent scoliosis, the main thoracic 
curve in infantile idiopathic scoliosis rotates and deviates far more 
often to the left, whereas in juvenile idiopathic scoliosis, this pattern 
is more evenly distributed between right and left.37 

As has been known for a long time, the normal, non-scoliotic spine 
is also not a symmetrical structure.38 In 2006, Kouwenhoven et al. 
demonstrated the presence of an axial rotational pattern in the normal 
human spine that is similar to what is seen in the most prevalent curve 
patterns in idiopathic scoliosis.39,40 In 2014, we measured the rotation 
of each individual thoracic vertebra on CT scans in 146 asymptomatic 
children (the scans had been taken for reasons other than the spine such 
as pulmonary disease, poly-trauma, malignancy, not for the purpose 
of this study). Statistical analysis revealed significant differences in the 
rotational patterns of the spine between non-scoliotic infants, juveniles 
and adolescents: at the infantile age the spine was rotated to the left 
at all thoracic levels, at the juvenile age, the thoracic vertebrae were 
oriented in the midline. In contrast, at the adolescent age, the mid- and 
low thoracic levels (T6-T12) were significantly rotated to the right.41,42 
Therefore, our analyses of non-scoliotic vertebral columns at different 
ages shows that transverse plane asymmetry is also a normal feature of 
the pediatric spine. Furthermore, the different rotational patterns between 
the infants, juveniles and adolescents in this study match the rotation 
and convexity of the curve as is normally seen in idiopathic scoliosis. 
The hypothesis that the convexity of the curve in idiopathic scoliosis 
is determined by organ distribution was recently confirmed in 2017 by 
Schlösser et al., who screened a unique population of primary ciliary 
dyskinesia patients with and without situs inversus totalis for scoliosis, 
retrieved 16 patients with this unique combination, and found a 94% 
match between organ distribution and scoliosis curve convexity.43

In contrast to the normal spine, it has long been known that the 
scoliotic spine is a completely asymmetrical structure.1 This was 
based on scoliotic specimens and experimental studies that have 
shown that asymmetrical growth of the neurocentral junctions of the 
vertebrae leads to vertebral rotation; in more detail, unilateral lag screw 
epiphysiodesis of the neurocentral junctions in a growing pig was 
shown to lead to transverse asymmetry and a rotational deformity, 
similar to AIS.44,45 In man however, the growth plate of the pedicles, 
also known as the neurocentral junctions, close before the age of 
eight, suggesting that any asymmetry should start before that age.42 
In 2017, Brink et al. studied the transverse anatomy of the vertebrae 
in severe AIS in the true transverse plane, using 3-D multiplanar re-
construction of high-resolution CT scans for each individual vertebra, 
and reported the asymmetry of both the vertebral bodies and pedicles 
in a population of moderate to severe AIS patients and non-scoliotic 
controls.46 They observed that even in non-scoliotic controls, a certain 
degree of vertebral body asymmetry exists, but the asymmetry was 
slightly more pronounced in AIS; the concave pedicles of the thoracic 
primary curves were slightly (0.4 mm) thinner and longer (1.8 mm) 

than for the convex pedicle, especially around the apex. Interestingly, 
the observed asymmetry was considerably smaller than previously 
described.47-49 Additionally, no direct correlation was found between 
the degree of asymmetry, the magnitude of the Cobb angle, and 
the amount of rotation of the apex in these moderate to severe AIS 
curves. In summary, the fact there is almost no asymmetry in the true 
transverse plane in AIS suggests that asymmetrical growth is not the 
driver for rotation in AIS.

What is the role of relative anterior spinal overgrowth (RASO)?

a.	 Global 3-D alignment of adolescent idiopathic scoliosis
The Scoliosis Research Society defines scoliosis as a lateral curva-

ture of the spine of more than 10 degrees in the coronal plane.50 This 
formal definition denies the fact that it is actually a complex 3-D spinal 
deformity. By the late nineteenth and early twentieth centuries, using 
cadaver specimens, anatomists had carefully described that adolescent 
idiopathic scoliosis involves changes in the coronal, transverse, as 
well as the sagittal planes: in the coronal plane, it is characterized by 
lateral deviation and lateral bending, in the transverse plane by axial 
rotation, asymmetrical growth of the pedicles and asymmetrical closure 
of the neurocentral cartilages, and in the sagittal plane by lordosis of 
the apical segments and hypertrophy of the facet joints.1,51,52 A typical 
feature of the curves in AIS is the coupling between the phenomena in 
the three different planes. In 1952, Somerville and Roaf described that 
during the development of AIS, the vertebral bodies rotate away from 
the midline toward the convexity, to a more lateral position than the 
posterior elements of the spine.44,53 By definition, axial rotation towards 
the convexity of the curve leads to a spinal column that is latero-flexed 
and is longer anteriorly than posteriorly, in other words, rotated lordosis 
of the apex. With the advent of radiography, unfortunately scoliosis 
gradually became regarded as a coronal plane deformity, until a number 
of authors re-emphasized the importance of the sagittal plane.44,53-56 
Because of the rotated apical lordoses in AIS, Stagnara introduced 
le plan d’election, a rotated view to evaluate the true coronal profile 
of the apical segments of the curvature.57 Using its equivalent in the 
sagittal plane, in 1984 Dickson et al. observed in 70 AIS patients that 
instead of a normal thoracic kyphosis, 75% of AIS curves were lordotic, 
24% were straight, and only 1% were kyphotic.54,55 Ultimately, this has 
led to the assumption that idiopathic scoliosis may be a problem of 
generalized anterior overgrowth of the whole spine, or a discrepancy of 
growth of the spinal cord as compared to growth of the vertebrae.58-62 

Although the 3-D aspect of AIS has been studied for over a century 
and has been given much attention in recent years in the literature, the 
true 3-D morphology, and especially the sagittal deformation, of the 
different areas of the scoliotic spine, has only recently been described 
in detail. This overview summarizes the findings of recent 3-D studies 
on a unique dataset of AIS cases that had undergone high-resolution 
computed tomographic imaging of the spine preoperatively for navigation 
purposes. The scans were analyzed using special software to generate 
complete 3-D reconstructions and describe the 3-D deformation of 
different regions of the spine in AIS patients in the coronal, transverse 
and true sagittal planes in great detail (Figure 3). Interestingly, quantitative 
description of the 3-D morphology of AIS revealed that (1) the global 3-D 
development of AIS curves follows a rather uniform pattern with coupling 
of the different aspects of the deformity in all three planes and that (2) 
all AIS curves, structural as well as nonstructural, primary as well as 
compensatory, thoracic as well as (thoraco)lumbar, were characterized 
by greater anterior length (on average 4.1%) measured from Cobb end 
vertebra to Cobb end vertebra (Figure 4).63 The junctional segments 
between the curves were more or less straight. 

This so-called relative anterior spinal anterior overgrowth, or 
non-synchronous anterior-posterior growth, has been considered 
as part of the etiologic mechanism of idiopathic scoliosis.1,53,55,63,64 
However, our recent research has shown that neuromuscular scoliosis 
demonstrates the same pattern of relative anterior spinal overgrowth 
as idiopathic scoliosis.65 This suggests that anterior lengthening 
of the spine is part of a more generalized mechanism that is the 
consequence of the curvature, not its cause.
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Figura 3. A posterolateral view that represents a true lateral view of the 
apical thoracic region of a complete 3-D reconstruction of an adolescent 
idiopathic scoliosis patient demonstrating that the thoracic curvature is a 
rotated lordosis.

Figura 4. A craniocaudal view on a 3-D reconstruction of the spinopelvic 
complex of an adolescent idiopathic scoliosis patient demonstrating the 
complex rotational pattern of the rotated apical segments.

b.	Segmental 3-D morphology of adolescent idiopathic scoliosis
There is an ongoing debate on the development of the excess of 

anterior spinal length in AIS. In two-dimensional radiographic studies 
on AIS, contradictory findings have been reported on the individual 
contribution of the vertebral bodies, as compared to the discs, to 
the coronal deformity.66-75 Because the spinal column in AIS, unlike 
the normal situation, is longer anteriorly than posteriorly, it has been 
hypothesized that AIS is the result of active anterior overgrowth of the 
vertebral bodies, or reduced posterior growth by posterior tethering.60,61 
Furthermore, disorders of bone metabolism have been suggested to 
play an etiological role. From our etiological perspective, however, 
the anterior-posterior length discrepancy in AIS is secondary to axial 
rotation. Therefore, we addressed the important question of which 
anatomical structure and which plane give rise to the deformity in AIS. 
We used the same series of high-resolution CT-scans and software 
as those used for the study presented above, to investigate, at the 
segmental level whether the 3-D deformation of the spine in AIS is 
predominantly localized in the vertebral bodies (as a result of active 

growth) or in the discs (as a secondary phenomenon to axial rotation). 
Segmental parameters were determined for each individual disc (total 
n=924) and vertebra (total n=1078) between T4 and L5. Interestingly, 
in contrast to previous studies, in scoliosis the intervertebral discs were 
at least three times more deformed in the coronal, true transverse and 
true sagittal planes than in the vertebral bodies.71,73 Anterior-posterior 
and coronal wedging was more pronounced at the apices of the 
curves, whereas mechanical torsion was found in all regions of the 
spine. Most of the excess anterior length in the scoliotic thoracic spine, 
both in idiopathic as well as in neuromuscular cases, appeared to be 
caused by a substantial difference in height of the anterior portion 
of the disc compared to its posterior aspect, whereas the vertebral 
bodies showed almost no relative anterior overgrowth compared to 
normal children.65,76 The conclusions of this and the previous study 
are that excess of anterior length is not a global, but rather a regional 
phenomenon, and that since the deformity is much more in the disc 
than in the bone, it seems more of a passive phenomenon than an 
active growth process. The anterior wedging of the discs could be 
a mechanical effect caused by unloading of the anterior spine by 
its position rotated away from the midline in both types of scoliosis.

CONCLUSIONS
In this overview, evidence from multiple cross-sectional imaging 

studies is provided that supports the hypothesis that rotational stiff-
ness of the human spine in general is less than in all other species, 
due to the existence of destabilizing posteriorly directed shear load 
that are the result of the unique spinopelvic alignment of the human 
spine. Under certain, as yet ill-defined, circumstances, the delicate 
balance that normally exists between these rotation-inducing forces, 
and the body’s compensating mechanisms, can be disturbed during 
the vulnerable period of the growth spurt. We showed that, amongst 
many other things, spinopelvic alignment also changes rapidly during 
puberty, and in a different manner between boys and girls. This may 
lead to the rotatory decompensation that we call scoliosis. Our studies 
have also demonstrated that once the spine decompensates into this 
rotational deformity, it will follow the pre-existent rotational pattern that 
also exists in the normal, non-scoliotic spine. This process of rotation 
away from the midline, in which the posterior structures stay behind, 
ultimately leads to the development of a rotated, apical lordosis. 
This lordosis, or excess anterior length, takes place predominantly 
in the soft tissues and not in the bone; there is no evidence of an 
actual disturbance of bony growth, rather, the discs expand in their 
anterior aspects and the interlaminar and interspinous soft tissues 
are compressed posteriorly with the facet joints as a fulcrum, so 
that the process resembles passive extension of the normal spine. 
We can conclude that AIS has an intrinsic biomechanical basis: an 
imbalance between the biomechanical loading of the upright human 
spine (i.e. posteriorly directed shear loading) on the one hand and 
the body’s compensating mechanisms on the other. 

The question remains: “What underlying mechanisms and struc-
tures influence rotational stability of the spine and predispose the 
spines of otherwise healthy children to decompensate into a rotational 
deformity, while the spines of other children remain unaffected?” In 
one of our studies, we found that the geometry of the intervertebral 
disc is most affected in AIS as compared to the vertebral bodies. 
Moreover, this structure may play a key role in the rotational stability 
of the pediatric and adult spine. From our perspective, as a first step 
to answering this question, factors that influence the rotational stability 
of the intervertebral discs should be elucidated. This is, at present, 
the focus of our continuing studies. 
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this article.
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