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1 Introduction
Tea is one of the three most widely consumed non-alcoholic 

beverages worldwide and has numerous economic, health, and 
cultural values (Meng et al., 2022). Tea consumption has been 
reported to have numerous health benefits, such as reduction of 
serum cholesterol (Doğan et al., 2021), prevention of low-density 
lipoprotein oxidation (Xu et al., 2021), and decreased risk of 
cardiovascular syndromes (Xia et al., 2020). Tea from specific 
origins has a strong influence on the purchasing decision of 
consumers, whose price may be high compared with the green 
teas from other regions.

As a kind of well-known Chinese green tea, Taiping Houkui 
tea mainly occupies an important position in the market. Hougang 
Village, Houcun Village, and Yanjia Village of Huangshan city, 
Anhui province is the core production area in China, where the 
quality of Taiping Houkui tea is significantly superior to that of 
other production areas. The quality and price of green tea are 
greatly influenced by geographical origin, which further affects the 
consumer’s desire to purchase (Pang et al., 2022). Consequently, 
adulteration and inferior quality of tea were reported. Some 
unscrupulous traders fraudulently label their green tea from core 
production areas to obtain profits. This caused great concern 
regarding food safety and tea quality, which impacts the market 
price and consumer satisfaction, thus attracting increasing 
attention (Song et al., 2021; Zhang et al., 2021). Unfortunately, 
it is difficult to distinguish the geographical origins of Taiping 
Houkui tea because the differences in shape, color, and internal 

composition of Taiping Houkui tea from different origins are 
subtle (Huang et al., 2020; Li et al., 2019).

Various technologies were developed to identify the 
geographical origins of Taiping Houkui tea. Traditionally, the 
assessment is conducted by experienced experts in tea sensory 
evaluation. However, the accuracy, reproduction, and standard 
of Taiping Houkui tea quality of each batch cannot be guaranteed 
(Jin  et  al., 2021). Some electronic instruments have been 
developed and applied to handle this problem. An analytical 
instrument named electronic tongue (E-tongue) is a typical array 
of chemical sensors coupled with chemometrics for processing 
and characterizing green tea samples (Bhuyan et al., 2019). Sensors 
can generate analytically useful electric signals when interacting 
with green tea samples. E-tongue systems take the advantage 
of easy operation, low cost, simple setup, easy fabrication, etc. 
Nevertheless, the major drawbacks of potentiometric sensors are 
their temperature dependence and the adsorption of solution 
components that affect the membrane potential (Zhang et al., 
2019). Artificial olfaction (known as E-nose currently) has 
been exploited as another useful tool (Xu et al., 2019). E-nose 
devices consist of a sensor array that is adequately sensitive 
to the volatile. It can mimic the mammalian sense of smell by 
producing a composite response unique to each odorant. The 
E-nose has been successfully used to identify the geographical 
origins and geographical origin of green tea because the aroma is 
an important factor, which depends upon the amount of volatile 
organic compounds. Compared with the conventional methods, 
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E-nose is a reliable, fast, and robust technology. However, the 
higher sensitivity of the sensors to moisture and water vapor 
results in essential noise from strong sensor outputs produced 
due to the presence of water vapor in the headspace of green tea 
samples (Hidayat et al., 2010). Currently, near-infrared (NIR) 
spectroscopy combined with a calibration model was applied 
in the geographical origins analysis of green tea (Cardoso & 
Poppi, 2021). NIR spectroscopy with the advantage of rapid, 
non-destructive, and high-efficiency determination, has gained 
wide acceptance (Chen et al., 2022). However, one shortcoming 
of NIR spectroscopy is that it requires very sensitive and properly 
tuned instruments. The organic chemical components can be 
detected using NIR spectroscopy only for those whose content 
is more than 0.1%. More important, specific absorption in 
the NIR region can only express the organic molecules of the 
material being analyzed. Mineral elements cannot be detected 
using this technology. However, the mineral elements including 
trace metals and rare earth elements play a critical role in the 
geographical origin identification of green tea (Bobková et al., 
2021). The amount and ratio of mineral elements in the soil have 
a direct impact on the quality of Taiping Houkui tea. After being 
absorbed by Taiping Houkui tea, some mineral elements act as 
the key composition of enzymes and coenzymes affecting the 
formation rate and amount of organic chemical components 
(such as certain kinds of amino acids, caffeine, tea polyphenol, 
catechin), the rest exist in the form of inorganic salts, accounting 
for 4-6% of green tea (Wang et al., 2003). There are significant 
differences in the amount and ratio of mineral elements in 
green tea from different origins (Ye et al., 2017). Therefore, the 
geographical origins of green tea can be traced by the difference 
in mineral elements. Moreover, appropriate chemometrics is also 
critical in the process. In multi-variant statistical approaches, 
principal component analysis (PCA) and partial least square 
discriminant analysis (PLS-DA) were widely used to build good 
inferential models (Shevchuk et al., 2018). The PCA and PLS-DA 
can handle data with high dimensionality and collinearities by 
projecting the original variables onto a space defined by orthogonal 
components (Shao, et al., 2019). The correlation between the 
independent and dependent variables was not considered in the 
PCA, which PLS-DA overcame. Unfortunately, PLS-DA cannot 
screen out the key factors that affect the dependent variables.

A facile and reliable method to distinguish the geographical 
origin of Taiping Houkui tea is developed and the feasibility of the 
proposed scheme is verified in this work. A total of 120 Taiping 
Houkui tea samples were collected from six villages including 
core regions and non-core regions. The contents of 11 metal 
ions in the collected Taiping Houkui tea samples were measured 
and analyzed. The key metal ions were screened using the least 
absolute shrinkage and selection operator method (LASSO), 
and analysis of variance (ANOVA) was used to validate the 
selected variables. The geographical origin of Taiping Houkui 
tea could be determined based on linear regression using the 
selected metal ions.

2 Materials and methods
2.1 Materials

All Taiping Houkui tea samples were collected from Huangshan 
city in China. Their origins, quantity, and corresponding plucking 
time are shown in Table 1. Houkeng village, Hougang village, 
and Yanjia village are the core production areas in which the 
quality of Taiping Houkui tea is better than in other areas. Sanhe 
village, Shihekeng village, and Wangling village are the other 
three non-core production areas, where the Taiping Houkui tea 
samples are the treatment group. All samples were encoded, 
stored, and labeled. The concentration of metal ions in samples 
was attained by the microwave digestion pretreatment method 
combined with inductively coupled plasma mass spectrometry 
(ICP-MS) (Patocka  et  al., 2017). This technology has great 
sensitivity, precision, and a wide linear measurement range. 
The name, specification, and source of materials and reagents 
used in this experiment are shown in Table 2.

2.2 Metal ions detection

The procedure of metal ions detection is as follows:

1) Taiping Houkui tea samples of 0.2500 g ± 0.0010 g were 
weighed in the microwave digestion tanks. Two sets of 
parallel samples were set in this experiment;

2) HNO3 of 5mL was added and kept for 30 min. H2O2 of 2 mL 
was added and kept for 2 min. After that, the digestion 
tanks were covered and put into the microwave digestion 
instrument for digestion. Subsequently, the tanks were 
taken out after cooling, and their covers were opened 
slowly to exhaust;

3) The inner covers were rinsed with a small amount of water, 
and the digestion tanks were placed in the temperature 
control electric heating plate to outgas at 100 °C for 30 min. 
The process of degassing can be replaced by degassing in 
an ultrasonic water bath box for 2-5 min;

4) The digestion tanks were volumed to 25 mL using ultrapure 
water constant and sealed hermetically while doing the blank 
test. The high content of K, Ca, and Mg in Taiping Houkui 
tea samples should be diluted in a certain proportion and 
then determined. The model and origin of the experimental 
instrument in the experiment are shown in Table 3. In 
this study, a total of 11 metal ions (Ca, Mg, K, Mn, Fe, 

Table 1. Origins, quantity, and plucking time information of collected 
samples.

Code Origins Specifications Quantity Plucking 
Time

#1 Houkeng village 50 g 20 2020-04-18
#2 Hougang village 50 g 20 2020-04-17
#3 Yanjia village 50 g 20 2020-04-17
#4 Sanhe village 50 g 20 2020-04-16
#5 Shihekeng village 50 g 20 2020-04-16

#6 Wangwangling 
village 50 g 20 2020-04-16
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Na, Cu, Zn, Cr, Pb, Cd) in Taiping Houkui samples were 
determined using microwave digestion and ICP-ES.

2.3 Key variables selection using LASSO

The pretreated metal ions of Taiping Houkui tea (i.e., 
independent variables) are denoted as 1 2, , , T n m

nX ×= ∈ℜ  x x x , 
where ,1 ,2 ,, , ,

T
i i i i mx x x =  x  , and the corresponding quality labels 

(i.e., dependent variables) are described as 1 2, , , T n
nY y y y ×= ∈ℜ   . 

The relationship between ,1 ,2 ,, , ,i i i mx x x  and iy  is calculated by 
Equation 1:

1 ,1 2 ,2 , = xT
i i i m i m iy x x xβ β β β= + +  (1)

where 1 2, , , T
mβ β β β=     is the coefficient vector. In ordinary 

least squares (OLS), the estimation of the coefficient vector β  
is obtained by minimizing the residual sum of squares, which 
is formulated as:



2

,
1 1

arg min
n m

i j i j
i j

y xβ β
= =

 
 = − 
 
 

∑ ∑  (2)

However, Equation 2 is morbid because of the correlation 
between input variables. In other words, some metal ions have 
similar effects on the geographical origin of Taiping Houkui tea. 
Hence, it is necessary to determine the explanatory metal ions 
of the identification process. The LASSO algorithm is proposed 
by introducing an extra penalty into Equation 3, which is shown 
as (Tibshirani, 1996):
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where 
1

| |
m

j
j

λ β
=
∑  is called the LASSO penalty, and λ  is a non-

negative tuning parameter. 

The algorithm constrains the absolute value of the 
regression coefficient of the model at a certain threshold and 
then minimizes the sum of squares of the model residuals. 
Therefore, the coefficient of variables with a correlation greater 
than the threshold continues to shrink to zero, thereby realizing 
variable selection (Huang et al., 2012). The algorithm heavily 
relies on the parameter λ, which is the amount of shrinkage. The 
algorithm becomes OLS when λ is equal to zero. Conversely, 
λ = ∞ implies no feature is considered. The bias increases with 
increase in λ, and variance increases with decrease in λ . To 
select the optimal λ, the grid search method combined with 
ten-fold cross-validation (CV) was implemented in the process. 
The appropriate range of λ was selected with a small positive 
number (tends to zero) to a large number. In ten-fold CV, the 
entire dataset was divided into ten groups. A subset was used 
as the prediction set, and the remaining nine sub-datasets were 
used to construct the model using LASSO. The procedure was 
repeated ten times to eliminate the occasionality.

A coordinate descent (CD) algorithm was developed to solve 
LASSO by successively performing approximate minimization 
along with coordinate directions or coordinate hyperplanes 
(Friedman et al., 2010; Wright, 2015). The pseudocode of the 
LASSO is as follows (Qu & Richtarik, 2016): The CD method 
minimizes the objective function in one coordinate at a time 
and cycles through all coordinates until convergence. Set maxλ  is 
a sufficiently large value that ensures that β  is a null vector. The 
CD algorithm produces a solution path β  over a grid of points dλ , 

1,2,d D= 

 where 1 maxλ λ= , and 0Dλ = . The pseudocode of the LASSO 
method is presented in Algorithm 1. Finally, the corresponding 
independent variables with 0, 1,2,j j mβ ≠ =   are selected, which 
directly affect the estimation results (Zuo et al., 2021).

Table 2. Names, specifications, and sources of materials and reagents.

Reagents Specification or grade Source or manufacturer
HNO3 Level-UP (68%) Suzhou Jingrui Chemical Co., Ltd
H2O2 Degree of purity (30%) Guoyao Group Chemical Reagent Co., Ltd.

Taiping Houkui tea standard materials GBW10083 China Institute of Metrology
Pb, Cd, Cr, Cu, Fe, Mn, Zn, K, Na, Ga, Mg 1000 mg/L National Center for Analysis and Testing of Nonferrous Metals 

and Electronic Materials
Sc, Ge, Im, Bi (Internal standard elements) 1000 mg/L Ditto

Table 3. Information of experimental instruments in detail.

Apparatus Model Country and Company
Inductively coupled plasma mass 
spectrometry

PE NeXlON 350D Perkin Elmer Corporation, USA

High-pressure microwave digester CEM MARS 5 CEM Corporation, USA
Ultra-pure water system Millipore direct 16 Millipore Corporation, USA
Thermostatic drying chamber M5 Binder Corporation, Germany
Temperature control electric heating plate DB-3 Changzhou Guoyu Instrument Manufacturing Corporation, China
Ultrasonic water bath box KQ-500DE Kunshan Ultrasonic Instrument Corporation, China
Electronic analytical balance Mettler-AL204-IC Mettler Toledo Instruments Corporation, China
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2.4 Statistical analysis

Analysis of variance (ANOVA) is an important method in 
exploratory and confirmatory data analysis (Nourbakhsh et al., 
2013). The method uses a variance ratio to estimate the importance 
of the selected metal ions. Assuming that the number of groups 
is denoted by q and the number of samples in each group is w, 
and the mean of each group is denoted as 1 2, , qµ µ µ . In general, 
the null hypothesis is tested as (Equation 4).

0 1 2

1 1 2

: = = =

:
q

q

H

H

µ µ µ

µ µ µ


 ≠ ≠ ≠





 (4)

The ANOVA divides the variance of all observations (SST) 
into within-group variance (SSW) and between-groups (SSB) 
variance, that is (Equation 5),
SST SSB SSW= +  (5)

The SSB  is calculated using Equation 6,

( )2
1

1
1

q

h h
h

SSB c x x
q

=

= −
− ∑  (6)

where hc  is the number of samples in the thh  group, hx  is the mean 
of the thh  group, and x  is the mean of all samples.

The SSW  is calculated by Equation 7,

2
,

1 1

1 ( ( ) )
( 1)

q w

h g h
h g

SSW x x
q w

= =

= −
− ∑ ∑  (7)

where ,h gx  represents the thg  sample of the thh  group. Then, 
the F-statistic is constructed to test the hypothesis, which is 
(Equation 8):

SSBF
SSW

=  (8)

ANOVA allows a(the type I error rate) to be held at a 
predetermined level. If tF F> , the null hypothesis can be rejected, 
where tF  is consulted from a table of critical Fvalues. Particularly, 
the detected metal ions are significant to the determination of 
the geographical origin of Taiping Houkui tea. The algorithm 
was applied in this study to verify the significance of the metal 
ions selected by LASSO.

3 Results and discussion
3.1 Experiment scheme

As demonstrated in Figure 1, an experiment on the geographical 
origin identification of Taiping Houkui tea was conducted using 
the proposed method. In this work, Monte Carlo simulation 
was implemented to eliminate occasionally. Compared with the 
K-fold cross-check (Wong, 2015) and leave-one-out cross-check, 
the model index obtained using Monte Carlo cross-validation 
(MCCV) is close to the actual prediction ability (Du et al., 2006). 
In this study, proportional stratified sampling randomly was used 
to construct the calibration and prediction sets at a ratio of 7:3 
for statistical analysis. The MCCV was iteratively performed 
100 times to avoid errors caused by the unreasonable division 

Algorithm 1. The flowchart of LASSO.

input: collect X  and Y .

initialization: Let  1
1 2= , , m

mβ β β β ×∈     be an initial vector generated randomly, l is the iterations.
1: for 1, 2,d D= 

2: 0l = ;
3: do {

1l l= + ;
4: Cyclically For 1,2,j m= 

4: Update the thj  component ˆ
jβ  of β  by 

( )
2 ,

2

ˆ = 0,
2 2

( )
2 ,

2

d
j d

j
j

d d
j j

d
j d

j
j

z

z

λρ λ
ρ

λ λ
β ρ

λρ λ
ρ

 +
< −



 − ≤ ≤



−
> −



, where

5: , ,
1

ˆ= ( )
n m

j i c i c i j
i c j

y x xρ β
= ≠

−∑ ∑ , 2
,

1

=
n

j i j
i

z x
=
∑ ;

6: } while ( 1 - 0.001l lβ β− <  || l< 500)

7: end for

8: Find the optimal λ  with the minimum ( )J β .

Output: The optimal coefficient vector  { }1 2= , , mβ β β β  corresponding to the optimal λ.
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of data sets. The models were validated using a prediction set by 
applying the coefficient of determination ( 2R ) (Cakmakyapan & 
Demirhan, 2017; Pejovic et al., 2018), accuracy ratio (P), and root 
mean square error (RMSE). The results of running the MCCV 
method 100 times are listed in order, and the median is used as 
the performance index (Equations 9, 10 and 11).

( )

( )

2

2 1

2

1

ˆ
n

i
i
n

i
i

y y

R

y y

=

=

−

=

−

∑

∑
 (9)

100%cn
P

n
= ×  (10)

2

1

1 ˆ( )
n

i i
i

RMSE y y
n

=

= −∑  (11)

where iy  and ˆiy  are the actual and predicted values of the thi  test 
sample, respectively; y  is the average value of all the test samples, 
and cn  and n are the number of correctly distinguished samples 
and the total number of samples, respectively.

3.2 Key metal ions extraction and validation

Owing to differences between the data size and units of 
the various components, the data of the components must be 
normalized to fully analyze the effect of each variable on the 
geographical origin of Taiping Houkui tea. Therefore, standard 
normal variate (SNV) was used to reduce within-class variance 
(Wang et al., 2020), which is given by Equation 12,

,
,

org
ji j

i j
j

x
x

µ

σ

−
=  (12)

where ,
org
i jx  is the original data, which represents the thj  feature 

of the thi  sample and ,
1

1
n

org
j i j

i

x
n

µ
=

= ∑ , ( )2,
1

1
1

n
org

j ji j
i

x
n

σ µ
=

= −
− ∑ .

The correlation matrix of the components in the Taiping 
Houkui tea is shown in Table 4. There are some metal ions with 
large correlation coefficients. It is indicated that these metal ions 
play a similar role in the classification model (Zhuang et al., 2020). 
Therefore, it is important to screen out the key factors affecting 
the geographical origin of Taiping Houkui tea using LASSO. A 
ten-fold CV was used to select the optimal value of λ . The mean 
square error (MSE) corresponding to various λ is presented in 
Figure 2. The λ corresponding to the smallest MSE marked using 
the blue line was then selected as the optimal penalty coefficient, 

0.07λ =  in this experiment. As a result, the regression coefficient 
of metal ions whose contribution is relatively small shrinks to 
zero in the LASSO algorithm. The critical metal ions screened 
by LASSO were Cd, Cr, Pb, Cu, and Na. Subsequently, ANOVA 
was used to verify the significance of the selected metal ions. 
The regression coefficients of the selected metal ions and the 
corresponding p-values using the F-statistic test are shown in 
Table 5 when the confidence level was 0.05. All p-values were 
less than 0.05, verifying that the key variables screened using 
LASSO significantly influenced the geographical origin of 
Taiping Houkui tea.

3.3 Results and analysis

It can be observed from Table 5 that the weight of Cd, Cr, 
Pb, Cu in the regression model is higher. The measurement of 
insoluble metal ions is more accurate and less noisy than that of 
soluble metals. Therefore, the selected key variables have a great 
significance in the practical applications. To avoid contingency 
and problems with data set partitioning, the MCCV method 
was run 100 times at random in this experiment, and the sparse 

Figure 1. Experimental setup for geographical origin identification of Taiping Houkui tea.
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variables obtained by LASSO were used to construct the regression 
models. The median accuracies of the LASSO on the calibration 
and prediction sets were 67.9% and 61.1%, respectively, and the 
median 2R  was 0.882 and 0.842, respectively. The estimation 
results showed that LASSO achieved high performance.

To demonstrate the performance of the proposed method, 
PLS-DA was used for comparison. As a classical linear classification 
method, PLS-DA is commonly used for dimension reduction 
(Chen et al., 2020). It can effectively reduce the dimensions of 
the original variables by exporting a few principal components 
(PCs) from the original variables while retaining as much 

information as possible about the original data. The optimal 
number of PCs is nine which was determined using a grid search 
method combined with K-fold CV.

The experimental results of LASSO and PLS-DA for 
estimating the geographical origin of Taiping Houkui tea are 
shown in Table 6. The results showed that LASSO could select 
the crucial metal ions that affect the geographical origin of 
Taiping Houkui tea. Therefore, the proposed method could 
overcome correlations between the metal ions, resulting in 
superior performance. Simultaneously, the proposed method 
could overcome overfitting for the 2R  on the calibration set are 

Figure 2. Mean square error corresponding to various λ in the LASSO method.

Table 5. The coefficients and p-values of the metal ions selected by LASSO.

Metal ions Cd Cr Pb Cu Na
Coefficients -2.31 -0.83 -4.94 0.47 0.04

p-values 2.12e-42 2.39e-7 6.68e-67 2.44e-41 3.00e-60

Table 4. Correlation matrix of all the variables.

Metal ions Cd Cr Pb Cu Fe Na Zn Ca K Mg Mn
Cd 1.00
Cr -0.07 1.00
Pb 0.89 -0.09 1.00
Cu -0.36 0.17 -0.45 1.00
Fe 0.00 0.09 -0.05 0.08 1.00
Na 0.02 -0.29 0.17 -0.61 -0.04 1.00
Zn -0.27 -0.28 -0.34 0.29 0.27 0.03 1.00
Ca 0.04 -0.05 -0.02 0.03 0.12 -0.26 0.04 1.00
K 0.10 0.01 -0.01 0.22 0.04 -0.12 0.22 0.37 1.00

Mg 0.23 -0.07 0.21 -0.24 0.08 0.32 0.17 0.36 0.79 1.00
Mn -0.54 0.00 -0.67 0.50 -0.06 -0.27 0.21 0.33 0.40 0.04 1.00



Pan; Yan; Chen

Food Sci. Technol, Campinas, 42, e41922, 2022 7

much closer to that on the prediction set. In addition, according 
to the standard RMSE of the prediction set in the table and the 
Monte Carlo experimental distribution presented in Figure 3, the 
model constructed by the screened variables using LASSO was 
robust and achieved high accuracy in the estimation of Taiping 
Houkui tea quality grade discrimination analysis.

4 Conclusion
In this study, a total of 120 Taiping Houkui tea samples 

were collected from six villages including core regions and 
non-core regions. The contents of 11 metal ions in the collected 
Taiping Houkui tea samples were measured and analyzed using 
the microwave digestion pretreatment method combined with 
ICP-MS. An approach for simplifying the identification process 
based on LASSO was proposed. The screened key variables were 
tested by ANOVA, which verified the effectiveness of LASSO. 
The proposed scheme identified key metal ions which can be 
used to identify the geographical origins of Taiping Houkui tea. 
The experimental results showed that the data-driven model 
constructed using the key variables achieved a high and robust 
prediction performance. Therefore, the detection speed has been 
effectively improved and the cost has been reduced because of 
the simplification of the detection process. Therefore, it has 
significant value for the Taiping Houkui tea market by increasing 
the related economic benefits.
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