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1 Introduction
Peony, a perennial deciduous shrub belonging to the Paeonia 

in the family Paeoniaceae, can be subdivided into ornamental 
peony and oil-utilized peony according to different purpose. 
Paeonia suffruticosa Andr. is the representative of ornamental 
peony. Its flowers are large and luxurious and its petals can 
also be supplemented as food with more than 1500 years of 
cultivation history (Bai et al., 2021). It is well known that its 
root is the raw material of Moutan Cortex (Mudanpi, Dan 
Pi), traditional Chinese medicine (Li  et  al., 2009; Liu  et  al., 
2017). Kim et al. (2014) demonstrated peony root extract had 
neuroprotective effects on Parkinson’s disease and might be 
helpful to prevent or treat Parkinson’s disease. The oil content 
of peony seeds (Paeonia ostii) is as high as 27% (Li, et al., 2015). 
The seed oil contains high level unsaturated fatty acids, including 
α-linolenic acid, linoleic acid and oleic acid, of which the content 
of α-linolenic acid exceeds 40% (Qiao et al., 2020). α-Linolenic 
acid is often used as a dietary supplement which reduces the risk 
of inflammation, diabetes and hypertension (Kaur, et al., 2014, 
Sergeant et al., 2016). Hence, peony seed oil was approved as 
a new food resource by the Ministry of Health of the people’s 
Republic of China in 2011 (Chang, et al., 2020). Although peony 
root in a broad sense has medicinal value as long as paeonol 
exceeds 1.2% in Chinese Pharmacopoeia (2015), the large-scale 
utilization of P. ostii root (PR) still lacks data support. It has been 
reported that peony leaves (P.‘Hexie’) is also rich in monoterpene 
glycosides, phenols and flavonoids, which has strong antioxidant 

capacity (Tong, et al., 2021). However, almost all peony leaves 
(PL), including ornamental and oil peony, are discarded as 
by-products. The phenolic compounds from different sources 
may play specific role in health by regulating metabolism and 
cell proliferation, especially phenolics from by-products improve 
economic benefits (Jiang et al., 2021, Yang, et al., 2020). Therefore, 
a feasible extraction process is being expected to utilize of these 
non-medicinal PR and abandoned PL.

The active ingredients of plant natural products are mostly 
intracellular products, and the cells need to be broken during 
extraction. Traditional extraction processes cannot achieve the 
ideal breaking effect, which directly leads to the low extraction 
rate and waste of resources. With the in-depth research on 
natural products, ultrasonic-assisted extraction (UAE) and 
homogenization-assisted extraction (HAE) have replaced 
traditional processes such as impregnation, hot water diffusion 
and reflux extraction, and have become common processes for 
plant extraction. It is generally believed that cavitation, thermal 
and mechanical effects are the main theoretical basis in ultrasonic 
extraction. They accelerate the release of active compounds into 
the solvent by destroying the structure of plant cell walls and 
cell membranes, so as to improve the extraction rate, shorten 
the extraction time and achieve high efficiency (Shirsath et al., 
2012). For instance, phenolic compounds from turkish propolis 
were extracted by conventional solvent extraction methods and 
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UAE, respectively. The results showed that the extraction rate 
of chrysin in phenolics extracted increased by 46.73% by UAE 
optimization (Bakkaloglu et al., 2021). High-speed homogenization 
is an economic and efficient mechanical crushing process, which 
can be used for the dispersion of biological tissues. Mechanical 
shear force can destroy the cell wall and fibrillate, resulting in 
the decrease of crystallinity and particle size and the increase 
of porosity (Madison, et al., 2017). Guo et al reported that the 
extraction yield of pomelo peel pectin was 209 ± 2 g/kg by HAE, 
which was higher than that by traditional thermal extraction 
(175 ± 6 g/kg). Moreover, the apparent viscosity of the former 
was significantly higher than that of the latter (Guo et al., 2017). 
Additionally, compared with UAE or HAE alone, the lipid 
extraction rate from microalgae by the combination of UAE+HAE 
was increased by 8.1 times and 5.3 times, respectively (Park et al., 
2015). Although ultrasound and high-speed homogenization 
work on different principles, both of them can accelerate the 
rupture of cells and quickly release the effective substances, 
their combination maybe improve the extraction rate of active 
ingredients from peony by-products to a greater extent.

Recently, the research and development of oil peony has 
entered a blossom period, however, due to the lack of extraction 
process of active ingredients from peony by-products, its 
comprehensive utilization is limited. In this study, the extraction 
process of phenolic compounds in PR and PL was deeply explored. 
The flavonoids content (TFC) is taken as the response value to 
characterize the release efficiency of phenolic ingredients in the 
samples. By single factor and response surface experiments, the 
optimum process of UAE (UAEo) in PR and PL was determined. 
Then, the effects of single extraction (UAEo, HAE) and combined 
extraction (UAEo + HAE, UHAEo, HAE + UAEo, HUAEo) 
on the PR- TFC/PL-TFC were compared. These results will 
provide feasible process for the phenolic extraction from oil 
peony by-products.

2 Materials and methods
2.1 Materials and reagents

The PR and PL (P. ostii) were collected in August 2020 at 
the plantation of Nanolattix Biotech Corporation in Changzhi 
City, Shanxi Province, China. The materials were rinsed with 
water for 2-3 times, dried to constant weight at 60°C, ground 
with a small crusher, screened through a 50 mm sieves, then 
the powder were stored at – 4°C for standby.

Rutin, gallic acid, sodium chloride, aluminium nitrate, 
sodium nitrite, ethanol, sodium carbonate, sodium hydroxide, 
Folin-Ciocalteu and all reagents (analytic-grade) were purchased 
from Macklin Biochemical Co. Ltd. (Shanghai, China).

2.2 The UAE experiment design

Single factor experiment: The effects of ultrasonic time (20, 
30, 40, 50, 60 min), ultrasonic temperature (20, 40, 60, 80°C), 
ultrasonic power (150, 200, 250, 300, 350 W), solid-liquid ratio 
(1:5, 1:10, 1:15, 1:20 g/mL) and ethanol concentration (0, 20, 40, 
60, 80, 100%, v : v) on the TFC in PR and PL were investigated, 
respectively. The basic process was ultrasonic time of 30 min, 
ultrasonic temperature of 60°C, ultrasonic power of 250 W, 
solid-liquid ratio of 1:10 and ethanol concentration of 60% (v : v).

Response surface methodology (RSM): Based on the single 
factor experiment results, ultrasonic time (A), solid-liquid ratio 
(B) and ultrasonic power (C) were selected as three factors and 
three levels to optimize the experiment (Table 1).

2.3 The HAE experiment design

On the basis of the optimum process of UAE (UAEo), the 
measured samples were homogenized by high-speed homogenizer 
at 3000 rpm for 0, 0.5, 1, 3 and 5 min to explore and compare 

Table 1. The experiment results of RSM.

No.
Factor PR-TFC  

(mg Rutin/g dw)
PL-TFC  

(mg Rutin/g dw)A B C
1 60 1:10 250 30.85 ± 0.96 24.71 ± 0.09
2 40 1:10 200 30.55 ± 0.62 21.66 ± 0.51
3 60 1:15 300 29.35 ± 0.37 22.31 ± 1.09
4 60 1:15 200 28.90 ± 1.08 20.63 ± 0.33
5 60 1:10 250 31.10 ± 0.26 24.99 ± 0.72
6 80 1:5 250 33.83 ± 0.49 23.06 ± 0.64
7 80 1:10 200 31.68 ± 1.05 24.41 ± 0.85
8 60 1:5 300 32.02 ± 0.63 22.58 ± 0.37
9 60 1:10 250 31.61 ± 0.59 25.38 ± 0.07

10 40 1:10 300 29.59 ± 1.09 22.59 ± 1.05
11 80 1:15 250 27.11 ± 0.34 20.46 ± 0.59
12 60 1:10 250 30.98 ± 1.12 25.85 ± 0.78
13 60 1:5 200 32.28 ± 0.88 23.68 ± 0.55
14 60 1:10 250 31.16 ± 0.71 24.76 ± 0.29
15 80 1:10 300 30.74 ± 1.08 23.68 ± 0.65
16 40 1:5 250 28.77 ± 0.92 20.70 ± 0.97
17 40 1:15 250 27.95 ± 0.85 18.68 ± 0.51

A, Ultrasonic time (min); B, Solid-liquid ratio (g/mL); C, ultrasonic power (W).
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the effects of UAEo, HAE, UHAEo (UAEo + HAE) and HUAEo 
(HAE + UAEo) on the TFC and total phenolic content (TPC) 
in PR and PL (Table 2).

2.4 Determination of TFC

According to Yang et al. (2019), the TFC was determined by 
classical Aluminium salt colorimentry method. The absorbance 
value of mixture solution was measured at the wavelength 
of 510 nm, and the TFC in the sample was calculated by the 
standard curve: Y = 13.34X + 0.0011, R = 0.9996, expressed as 
mg Rutin/g dry weight (dw).

2.5 Determination of TPC

According to Yang et al. (2019), the TPC was determined 
by Folin-Ciocalteu method. The absorbance value of mixture 
solution was determined at the wavelength of 760 nm, and 
the TPC in the sample was calculated by the standard curve: 
Y = 1.80X + 0.006, R = 0.998, expressed as mg GAE/g dw.

2.6 Statistical analysis

Each experiment was repeated 3 times, expressed as 
mean ± standard deviation. All experiment data were analyzed 
by IBM SPSS statistics 22.0 (P<0.05, significant difference). 
RSM were analyzed using Design-Expert 8.0 software (P<0.05, 
significant difference, marked *, P<0.01, very significant difference, 
marked **). All figures were drawn with Origin software (2018).

3 Results and discussion
3.1 The UAE analysis

The single factor experiment

As shown in Figure 1, five single factor experiments at 4 or 
5 levels were investigated under the basic conditions. Firstly, with 
the extension of ultrasonic time, and the PR-TFC and PL-TFC at 
60 min reached the maximum values, 36.16 ± 1.63 mg/g and 27.82 ± 
1.07 mg/g, respectively (Figure 1a). The degree of cell disruption 
is positive correlation with ultrasonic time, which reproduces in 
some studies (Anticona et al., 2021, Baite et al., 2021). To explore 
the impact of the interaction between ultrasonic time and other 
factors on the TFC, 60 min was selected as the central point, and 
40 and 80 minutes as the other two levels of the first factor in 
RSM. Secondly, with the increase of solid-liquid ratio, the TFC 
decreased continuously. When the solid-liquid ratio was 1:5, the 
maximum of PR-/PL-TFC were 32.66 ± 0.54 mg/g and 25.88 ± 
0.72 mg/g, respectively (Figure 1b). This may be due to the dilution 
of extraction solution with the increase of solvent, which affects 

the yield (Liao et al., 2016). However, if the solid-liquid ratio was 
lower than 1:5, solution concentration is too high to completely 
soak the material. Therefore, the solid-liquid ratio of 1:5, 1:10 and 
1:15 was used as the second factor in RSM. Finally, the PR-TFC 
and PL-TFC increased first and then decreased in the three single 
factor experiments of ultrasonic temperature, ultrasonic power 
and ethanol concentration, and reached the maximum at 60°C, 
250 W and 60%, respectively (Figure 1c,1d,1e). If the extraction 
temperature is too high (> 80°C), it may lead to the structural 
change and low bioactivity of active compounds (Zhang & Lee, 
2021).Both ultrasonic temperature and power have a significant 
influence on the TFC, and the ultrasonic process was accompanied 
by heat release, resulting in temperature instability. Therefore, 
ultrasonic power was selected as the third factor in RSM. When 
the ethanol concentration was 60% (v:v), the TFC reached the 
maximum, 33.46 ± 0.71 mg/g (PR) and 22.12 ± 0.69 mg/g (PL). 
It could be seen that ethanol concentration had a significant 
impact on the TFC in peony, but higher ethanol concentration 
directly affect the flavonoids solubility.Considering the safety and 
price of solvents, and most studies show that 60% ethanol is the 
best extraction solvent for phenolic compounds (Akbari et al., 
2019, Lim et al., 2019), 60% ethanol was selected as one of basic 
conditions. In short, ultrasonic time, solid-liquid ratio ultrasonic 
power and were selected three factors in RSM.

Response surface methodology (RSM)

According to the above results, the three factors and three 
levels of RSM was carried out (Table 1). Taking ultrasonic time 
(A), solid-liquid ratio (B) and ultrasonic power (C) as independent 
variables and the TFC as the response value Y, the quadratic 
multiple regression equations were fitted with Design-Expert 
software. They were PR-TFC (mg Rutin/g dw) = 31.14 + 0.81 × 
A – 1.70 × B – 0.21 × C – 1.47×AB + 0.00475 × AC + 0.18 × BC – 
0.86 × A2 – 0.86 × B2 + 0.37 × C2 and PL-TFC (mg Rutin/g dw) 
= 25.14 + 1.12 × A – 0.99 × B – 0.027 × C – 0.14 × AB – 0.67 × 
AC + 0.69 × BC – 1.69 × A2 – 2.72 × B2 – 0.11 × C2.

The variance analysis of regression equation for PR was 
shown in Table 3. The data showed that there was a significant 
multiple regression relationship between dependent variables 
and independent variables in the regression equation model. 
The model reached a very significant difference (P < 0.01). 
From the F values of the three influencing factors, it could be 
concluded that the order of the influence of each factor on the 
PR-TFC was solid-liquid ratio > ultrasonic time > ultrasonic 
power, and the first two factors had extremely significant effects 
on the TFC (P < 0.01). There was a reciprocal action between 
ultrasonic time (A) and solid-liquid ratio (B) (P < 0.01). 
Furthermore, the quadratic term of A2 and B2 had significant 

Table 2. The HAE experiment design.

Name
Extraction process

HAE Time (min)
1st step 2nd step

HAE HAE -- 0 0.5 1 3 5
UHAEo UAEo HAE 0 0.5 1 3 5
HUAEo HAE UAEo 0 0.5 1 3 5

HAE, Homogenization-Assisted Extraction; UHAEo, Ultrasound-Homogenization-Assisted Extraction; HUAEo, Homogenization-Ultrasound-Assisted Extraction; UAEo: 80 min, 
1:5 g/mL, 250 W (PR), 60 min, 1:10 g/mL, 250 W (PL).
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effects on the TFC (P < 0.01). The lack of fit was not significant 
(P = 0.0733 > 0.05), indicating good adequacy of the model. 
The RAdj

2 = 0.9197 indicated that the model could reflect 91% of 
the data, and well fit with the mathematical model. The similar 
results of PL-TFC were shown in Table 4. The difference was that 
there was also a reciprocal action between solid-liquid ratio (B) 
and ultrasonic power (C) besides AB. Both the PR-model and 
PL-model could analyze and predict the TFC value.

According to the above regression equations, the response 
surfaces were displayed in Figure 2 and 3, and the effects of 
various factors on the TFC was investigated. The PR-TFC and 
PL-TFC increased first and then decreased under the interaction 
of different factors, and the steepness of the curve reflected the 

influence of different factors on the response value. For PR, with 
the change of ultrasonic time and solid-liquid showed a “bell 
jar” shape and the surface was steep (Figure 2a), indicating that 
AB had reciprocal action, which was also consistent with the 
analysis of variance (Table 3). As shown in Figure 2b and 2c, 
their surfaces were flat, suggesting that there is no interaction 
between ultrasonic power and the other two factors. Similarly, 
the curved surfaces were steep for PL (Figure  3a  and  3c), 
indicating that the solid-liquid ratio had significant interaction 
with ultrasonic time or power. However, there was no reciprocal 
action between ultrasonic time (A) and ultrasonic power (C) 
due to a gentle slope in Figure 3b, which was consistent with 
the analysis of variance (Table 4).

Figure 1. Effects of ultrasonic time (a), solid-liquid ratio (b), ultrasonic temperature (c), ultrasonic power (d) and solvent (e) on TFC. PR, peony 
roots; PL, peony leaves.
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Table 3. Analysis of variance of RSM for the PR-TFC.

Source Sum of Squares df Mean Square F-value P-value Significant
Model 44.48 9 4.94 21.36 0.0003 **

A-Ultrasonic time 5.29 1 5.29 22.85 0.0020 **
B-Solid-liquid ratio 23.09 1 23.09 99.79 <0.0001 **

C-Ultrasonic 
power

0.36 1 0.36 1.58 0.2496

AB 8.69 1 8.69 37.57 0.0005 **
AC 0.0009025 1 0.0009025 0.0003900 0.9848
BC 0.12 1 0.12 0.54 0.4875
A2 3.13 1 3.13 13.52 0.0079 **
B2 3.13 1 3.13 13.54 0.0079 **
C2 0.57 1 0.57 2.44 0.1620

Residual 1.62 7 0.23
Lack of Fit 1.29 3 0.43 5.16 0.0733
Pure Error 0.33 4 0.083
Cor Total 46.10 16

df, degree of freedom; **, very significant difference ( P < 0.01).

Table 4. Analysis of variance of RSM for the PL-TFC.

Source Sum of Squares df Mean Square F-value P-value Significant
Model 67.70 9 7.52 37.14 <0.0001 **

A- Ultrasonic time 10.08 1 10.08 49.78 0.0002 **
B- Solid-liquid 

ratio
7.88 1 7.88 38.96 0.0004 **

C- Ultrasonic 
power

0.00577 1 0.00561 0.028 0.8706

AB 0.08 1 0.08 0.39 0.0179 *
AC 1.77 1 1.77 8.77 0.5498
BC 1.92 1 1.91 9.48 0.0211 *
A2 12.00 1 12.00 59.34 0.0001 **
B2 31.26 1 31.26 154.53 <0.0001 **
C2 0.054 1 0.054 0.26 0.6226

Residual 1.42 7 0.20
Lack of Fit 0.50 3 0.17 0.74 0.5825
Pure Error 0.91 4 0.23
Cor Total 69.12 16

df, degree of freedom; *,  significant difference (P < 0.05); **, very significant difference (P <0.01).

Figure 2. Response surface methodology of various factors on PR-TFC, Solid-liquid ratio and Ultrasonic time (a), Ultrasonic power and Ultrasonic 
time (b),Ultrasonic temperature and Ultrasonic time (c). PR, peony roots.
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Based on the theoretical optimization of RSM and practicability, 
the PR-UAEo was ultrasonic time of 80 min, solid-liquid ratio of 
1:5 g/mL, ultrasonic power of 250 W and the practical maximum 
of PR-TFC was 33.83 ± 0.49 mg Rutin/g dw, and the PL-UAEo 
was ultrasonic time of 60 min, solid-liquid ratio of 1:10 g/mL, 
ultrasonic power of 250 W and the practical maximum of PL-
TFC was 25.85 ± 0.78 mg Rutin/g dw. These values were close 
to the theoretical prediction, 33.40 mg Rutin/g dw (PR) and 
25.14 mg Rutin/g dw (PL) by RSM.

3.2 The HAE and combined extraction

The homogenization technology was introduced on the basis 
of the UAEo to investigate the effects of single extraction (HAE 
and UAEo), and combined extraction (HUAEo and UHAEo) on 
the phenolic compounds release with TPC and TFC as response 
values. Take PR as an example (Figure 4a), with the extension of 
homogenization time, the TFC increased from 24.76 ± 0.16 mg 
Rutin/g dw to 33.11 ± 0.21 mg Rutin/g dw, an increase of 33.7% 
in HAE group. In the combined extraction, the TFC increased 
from 33.83 ± 0.26 mg Rutin/g dw to 49.58 ± 0.25 mg Rutin/g dw 
(46.6%) by HUAEo, and 47.52 ± 0.21 mg Rutin/g dw (40.5%) 
by UHAEo. Similarly, the extension of homogenization time 
had positive impacts on the PL-TFC in the three processes 

(Figure  4b). The effects of HUAEo and UHAEo on the PR-
TFC/PL-TFC were not statistically different (P > 0.05). This 
may be due to the cavitation, thermal and mechanical effects, 
which increases mass transfer and significant cell wall destroy 
(Ardekani et al., 2017, Ghitescu et al., 2015). On the other hand, 
high-speed homogenization breaks the cells to a greater extent 
and releases the active compounds into the solvent through 
mechanical shear, stirring, fluid cutting and crushing (Xia et al., 
2017). Therefore, the combined extraction (HUAEo and UHAEo) 
has synergistic effect, which is more conducive to the extraction 
of active ingredients. Our previous study on the extraction 
of polyphenols from coconut mesocarp also showed that the 
combined extraction improved the yield of total phenols and 
total flavonoids, especially UHAEo (Yang et al., 2021).

Interestingly, with the extension of homogenization time, 
the PR-TPC/PL-TPC increased first and then decreased, and 
at 3 min reached the maximum, 77.84 ± 0.52 mg GAE/g dw 
and 146.62 ± 2.77 mg GAE/g dw, respectively (Figure 5). This 
high-speed shear force leads to cell disruption and the release of 
various active components, including polyphenol oxidase (PPO) 
in the cytoplasm. The PPO combines with phenols in the solution, 
resulting in the decomposition of polyphenols (Yang et al., 2021). 
Coincidentally, the PPO activity and TFC of coconut mesocarp 

Figure 3. Response surface methodology of various factors on PL-TFC, Solid-liquid ratio and Ultrasonic time (a), Ultrasonic power and Ultrasonic 
time (b),Ultrasonic temperature and Ultrasonic time (c). PL, peony leaves.

Figure 4. Effects of HAE, UHAEo and HUAEo on PR-TFC and PL-TFC. Different uppercase letters (A-B) indicate significant differences in TFC 
among different extraction processes of PR and PL (P < 0.05); Different lowercase letters (a-e) indicate significant differences in TFC among 0, 
0.5, 1, 3, 5 min of PR and PL (P < 0.05); PR, peony roots; PL, peony leaves. HAE, Homogenization-Assisted Extraction; UHAEo, Ultrasound-
Homogenization-Assisted Extraction; HUAEo, Homogenization-Ultrasound-Assisted Extraction.
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The combined extraction (HUAEo and UHAEo) is more conducive 
to the release of phenolic compounds in peony by-product.
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