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1 Introduction
The potato (Solanum tuberosum) is the fourth largest food 

crop globally after wheat, rice, and maize (Habig et al., 2018). 
Potatoes have high nutritional contents, such as various vitamins 
and minerals, including vitamin C, vitamin B6, niacin, folic acid, 
potassium, iron, and magnesium, as well as starch and water 
(Zhu et al., 2022). The processing of raw potato tubers to obtain 
various target products is important due to their nutritional 
and agronomic value (Nikzad et al., 2021; Pereira et al., 2021). 
Potatoes are used widely to produce flakes, flour, and other 
potato-based foodstuffs. Dehydration treatment is required to 
improve the stability of the potatoes and food products depend 
greatly on the moisture content of the raw potatoes used for to 
reduce the microbial activity during processing procedures. Thus, 
a rapid and effective method is required to effectively monitor 
the dehydration process and control the moisture content 
(Calderón et al., 2021). Currently, the main focus of the food 
drying industry is the qualitative or quantitative relationship 
between moisture content and product quality, rather than 
intelligent dynamic control of the production process. Therefore, 
accurate estimation of moisture content is essential to establish 
a reliable relationship between quality attributes and products. 
New moisture content analysis methods will be very important 
in the potato processing industry.

In recent years, machine learning methods have been found 
to be effective in predicting the content of food ingredients using 
spectral data (Hou et al., 2022). Machine learning is an extension 

of mathematical statistics and computer science and includes many 
statistical models and computer program algorithms. Liu et al. 
(2018) used hyperspectral technology to study the water content 
of potato leaves at different leaf positions, and predicted their 
water content through machine learning algorithms As machine 
learning algorithms mature, new versions of machine learning 
algorithms have emerged for predicting structure, folding, 
binding, and even catalytic activity, the main purpose of which 
is to process the accumulated information about mutants and 
their functional properties (Wang et al., 2021). Zhao et al. (2021) 
used a machine learning algorithm to predict the chlorophyll 
content of potato crops based on visible light and near-infrared 
spectroscopy. Zhang et al. (2022) performed a comprehensive 
analysis of photosynthetic pigments and SPADs by combining 
spectral and multispectral imaging techniques with different 
machine learning algorithms. Zheng et al. (2018) established 
a model for estimating chlorophyll content in potato leaves at 
the red edge position, with an R2 of 0.87. Hou et al. (2022) used 
Fourier transform infrared spectroscopy and machine learning 
to predict the amino acid content of insects, and the analysis of 
insect spectral data through machine learning proved to be able 
to predict amino acid content. Therefore, this study provides 
guidance for nondestructive testing of potato water content.

Hyperspectral imaging combines the spectrum and image 
of the target object at the same time to accurately capture the 
spectral data and image information of each pixel in the image 
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(Liu et al., 2022). In recent years, hyperspectral imaging and 
visualization techniques have been applied in agriculture for 
drought monitoring and the control of diseases and insect pests 
(Sun et al., 2019). Gerhards et al. (2016) successfully applied the 
hyperspectral reflectance data obtained from the potato crop 
canopy to predict the moisture contents of potato plants with 
high accuracy. However, the single algorithm employed in that 
study might not be optimal for predicting the moisture contents of 
potato tubers. Moisture-sensitive spectral and vegetation indexes 
based on spectral absorption and transmission techniques have 
also been applied to estimate the moisture contents of plants. 
For instance, the spectra acquired at 800, 1323, and 1423 nm were 
identified as moisture-sensitive wavelengths and a multiple linear 
regression (LR) model was established for predicting the moisture 
content of corn leaves by using the difference vegetation index 
(1423 nm and 800 nm) and transmission spectra at 1323 nm and 
1058 nm (Sun et al., 2018). Das et al. (2020) extracted spectral 
indices at 1391 and 1830 nm as moisture-sensitive wavelengths 
and developed ratio vegetation indexes (RVI, R1391, R1830) and 
normalized difference spectral indices (NDSI, R139, R1830) to 
simultaneously measure the relative water and microelement 
contents of rice.

The overall goal of this study was to determine the feasibility 
of using hyperspectral imaging to monitor dynamic changes in 
potato tuber water content. Compared with the previous single 
method, 17 different spectral data analysis methods were used 
to optimize the process and improve the accuracy of the results. 
Reliable typical water-sensitive spectral wavelengths related to 
tuber moisture content were obtained by machine learning, 
improving the accuracy of models used to predict potato tuber 
moisture content. It provides new methods and ideas for the 
prediction of potato moisture content.

2 Material and methods
2.1 Materials

In total, this study used 200 potatoes sampled from one potato 
variety (Cv. Hezuo-88) in Yunnan province, China. The fresh 
potato tubers were carefully rinsed with water. Next, 104 potato 

samples with length > 3 cm, width > 2 cm, height > 2 cm, no 
damage to the skin, no deformities, and no signs of germination 
were selected to measure the moisture contents. A square blade 
measuring 15 mm × 15 mm (Jiechenuo Tech. China) was used 
to cut a single potato into rectangular parallelepiped tuber 
samples (width × height = 15 mm × 30 mm). All of the samples 
were stored in a refrigerator at 4 °C for 24 h to prevent moisture 
losses and browning after cutting. A temperature of 4 °C is the 
best for storage because it effectively slows down the activities 
of enzymes in agricultural food products (Su & Sun, 2016).

2.2 Experimental design and implementation

After 24 h, the tubers were labeled individually. The weight 
of each sample was recorded and controlled within the range 
from 10.50-11.60 g by blade micro-cutting (Santos et al., 2020). 
Hyperspectral data and the weight of each sample were collected 
in a time series during the heating process. The first hyperspectral 
image was labeled as t0 before heating and oven drying. In total, 
105 samples were treated together by drying in an oven (Midea, 
PT2531) at 120 °C. Hyperspectral photographing and weight 
measurements were performed at 45 min, 105 min, and 165 min, 
where the hyperspectral data were labeled as t45 min, t105 min, and 
t165 min, respectively, and the samples weights as M0, M45, M105, 
and M165. The change in water content is shown in Figure 1. 
All of the samples were then oven dried at 105 °C for 24 h until 
a constant weight (Md). The formula for calculating the tuber 
moisture content is as Equation 1 (Su & Sun, 2016):

t d
c

t

M M
M = ×100%

M
−

	 (1)

The moisture content ( cM ) was calculated based on the 
difference between each weight recorded and dM , and by 
dividing by tM .

2.3 Hyperspectral imaging system and image correction

An Image-λ series hyperspectral camera (Zolli Hanguang Co. 
Ltd, Beijing) with a spectrum acquisition range of 387–1035 nm, 
resolution of 2.8 nm, 256 bands, and 1344 × 1024 pixels was used 

Figure 1. Visualization of potato cut water content.
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to establish the laboratory platform. The distance between the 
hyperspectral camera and sample was set to 17 cm. The moving 
speed of the mobile loading platform was set to 0.5 cm s–1 and 
the measurement speed was < 60 s per sample. The exposure 
time for the hyperspectral camera was set to 5 ms. The scanning 
start position was set to 120 mm and the actual length of the 
scanning line was 100 mm. A block diagram illustrating the 
hyperspectral imaging acquisition system used in this study is 
shown in Figure 2.

This experiment uses ENVI5.1 (Exelis Visual Iformation 
Slution Is) to select ROI. Use the software to open the raw 
format file, use the oval tool to circle the potatoes, extract the 
data covering the entire potato sample, calculate the image ROI 
of each sample and calculate the average value of the spectrum 
of all pixels in the region as the sample information for the final 
spectral value. Among them, spectral data were extracted from 
potato samples of 0 min, 45 min, 105 min, 165 min and pure dry 
matter, respectively, with a total of 520 spectral data.

Hyperspectral imaging systems respond to various light 
source intensities at different wavelengths and the impact of 
noise is more severe when the intensity of the light source is 
weaker. The dark current in the camera produces significant 
noise, which cannot be avoided in hyperspectral images. 
The acquired hyperspectral images were corrected in black and 
white. After capturing the last image and without changing any 
parameters, the lens of the hyperspectral camera was aligned 
with a standard whiteboard to obtain a standard white frame 
image W. A black frame image B was obtained by covering the 
camera lens with a lid (Shao et al., 2022). The corrected image 
R was then obtained using Equation 2.

I BR
W B
−

=
−

	 (2)

In Equation 2, I denote the original hyperspectral image.

The corrected hyperspectral images were then subjected to 
subsequent data analysis with ENVI4.8 software (Exelis Visual 
Information Solutions, USA). A region of interest (70 × 70 pixels) 
in each image was used to calculate the average spectral reflectance 
values from the 256 bands, which were then employed as the 
original hyperspectral data for predicting the moisture contents 
of the potato tubers.

2.4 Hyperspectral data preprocessing

In order to eliminate the effects of factors that had no 
relationships with the moisture content in the hyperspectral 
spectrum information, 17 data preprocessing methods were 
employed to eliminate the noise present in the original spectral 
data and to identify outliers in the box plots of the moisture 
contents. such as first derivative (FD), second derivative (SD), 
box smoothing (BS), L2 norm normalizationL2 (L2NN), moving 
average method (MAM), multiplicative scatter correction (MSC), 
min-max standardization (MMS), anti-cotangent normalization 
(CAN), wavelet threshold denoising (WTD), logarithmic 
transformation normalization (LTN), exponential smoothing 
(ES), median filtering (MF), gaussian window smoothing (GWS), 
z-score standardization (ZSS), local regression- weighted linear 
least squares and a first order polynomial model (LR1), local 
regression-weighted linear least squares and a second order 
polynomial model (LR2) and Savitzky-Golay filtering (SG) were 
used to preprocess the original spectral data (RD) (Ruszczak & 
Boguszewska-Mańkowska, 2022; Zou et al., 2022).

2.5 Predictive model

The data set input to the model, the columns are 256 spectral 
channels (spectral bands), and the rows are the spectral reflectance 
intensity of each column channel. 70% of the spectral curve 
data is randomly selected as the training set, and the remaining 
30% of the spectral curve data is used as the test set. Use four 
supervised machine learning algorithms. Use EXtreme Gradient 
Boosting (XGBoost), Gradient Boosting Categorical Features 
(CatBoost), Light Gradient Boosting Machine (LightGBM), 
Stacking integrated (Stacking) machine learning algorithm to 
build a model to predict the water content of potatoes. These 
four classes of algorithms perform well in classification models 
and are widely used in other applications.

XGBoost algorithm

The XGBoost algorithm has high prediction accuracy and 
it was developed by modifying and improving the integrated 
tree model and the gradient boosting tree model. One of the 
advantages of this algorithm is that it avoids overfitting (Ji et al., 
2019; Pan et al., 2022; Sun et al., 2021).

The integrated model of the tree is represented by Equation 3.

1

ˆ ( ),
K

i K i k
K

y f x f F
=

= ∈∑ 	 (3)

In Equation 3, ˆiy  denotes the predicted value, K is the number 
of trees, F is the collection space, xi is the feature vector of the 
first data point, T is the number of leaves on the tree, and fk is 
related to the k-th independent structure (q) and leaf weight 
(w). The XGBoost model loss function (Equation 3) comprises 
two components, i.e., classification and regression loss. 

Equation 4:

1
1

)ˆ( , ) (
n K

i i kk
i

Obj l y y f
=

=

= + Ω∑ ∑ 	 (4)Figure 2. Block diagram illustrating the hyperspectral image acquisition 
system employed to study potato tubers.
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In Equation 4, ( )
1

,
n

i ii
l y y

=∑   denotes the training error between 
the predicted and observed values, and ( )

1

K

k
k

f
=

Ω∑  denotes the sum 

of the complexity of the tree, which is a regular term used to 
control the complexity of the model (Equation 5).

( ) 21
2

f T wγ λΩ = +   	 (5)

In Equation 5, γ and λ represent the penalty coefficients.

The model performs better when the loss function is smaller. 
A greedy algorithm is used to divide the subtree and enumerate 
the feasible segmentation points, where the maximum gain 
obtained is calculated each time a new segment is added to an 
existing leaf (Chen & Guestrin, 2016). The gain is calculated 
with Equation 11. Equation 6:

( )2 21
2

L RL R

L R R L

G GG GGain
H H H H

γ
λ λ λ

 +
 ≅ + − −

+ + + +  
	 (6)

In Equation 6, the first and second terms represent the gains 
generated after splitting the left and right subtrees, respectively, 
and the third term is the gain without subtree splitting.

Catboost algorithm

The CatBoost algorithm is a gradient boosting decision tree 
(GBDT) algorithm that processes categorical data by performing 
stochastic permutations. This algorithm effectively prevents 
overfitting by conducting multiple permutations to train different 
models, thereby obtaining unbiased estimates of the gradients 
with little impact on the gradient estimation bias. The robustness 
of the model is high (Huang et al., 2019). CatBoost is an effective 
method for converting categorical data into numeric data and 
preventing overfitting. Categorical data are mainly preprocessed 
according to the following three steps (Hancock & Khoshgoftaar, 
2020; Samat et al., 2021; Zhang et al., 2021).

1.	Randomly arrange the initial data to generate multiple 
random arrangements.

2.	Convert the tag value comprising a floating point or 
category into an integer.

3.	Convert a categorical variable into a numeric variable 
using Equation 7.

1target
countInClass prioravg

totalCount
+

=
+

	 (7)

In Equation 12, countInClass denotes the frequency of the 
object tag with the current classification eigenvalue of 1, totalCount 
is the total number of objects with the classification eigenvalue 
that matches the current value, and prior is the initial value of 
the numerator. Advantages of the CatBoost algorithm include the 
capacity to handle categorical and numerical variables, support 
for customized loss functions, and obtaining accurate predictions 
in a low simulation time even when using the default parameters.

LightGBM algorithm

LightGBM is a novel GBDT algorithm that has been used 
widely in various data mining projects and competitions. 
The LightGBM algorithm includes two new techniques that 
involve gradient-based unilateral sampling and exclusive feature 
bundling (Sun et al., 2020). Based on the supervised training set 

( ){ } 1
,

n
i i i

X x y
=

= , LightGBM aims to find an approximation ( )ˆ  y x of a 
specific function ( )*f x  by minimizing the specific loss function 

( )( ),L y f x . Equation 8:

( )( ),ˆ ,y Xy argminE L y f x= 	 (8)

The regression tree can be expressed as ( )q xw , { }1,2, ,q J∈ … , 
where J represents the number of leaves, q represents the decision 
rule for the tree sum, and w represents a vector leaf node,w is 
the sample weight of a vector leaf node (Dev & Eden, 2019). 
Thus, LightGBM can be trained in addition form at step t, as 
shown in Equation 9:

( ) ( )( )1
1

,
n

t i t j t i
i

L y F x f x−
=

Γ = +∑ 	 (9)

In Equation 10, *
TΓ  is a scoring function q for measuring the 

quality of the tree structure. The increased objective function 
obtained after splitting is shown in Equation 11.
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In Equation 11, LI  and  RI  denote the sample sets for the left and 
right branches, respectively. LightGBM grows the tree vertically 
whereas other algorithms such as XGBoost and GBDT grow it 
horizontally (level-wise growth) (Zhang et al., 2019). Vertical 
growth is more prone to overfitting, so LightGBM is an effective 
alternative algorithm only for large data sets. The accuracy of the 
predictions is often affected significantly by the hyperparameters. 
Thus, it is necessary to identify the number and range of the 
hyperparameters before using LightGBM.

Stacking integrated algorithm

The Stacking machine learning framework generalizes 
the output values from multiple models to improve the overall 
prediction performance (Figure 3). When using the Stacking 
integrated algorithm, the original data set is divided into several 
subdata sets, which are then employed as the input data for 
different base learners in the first layer (Shi & Zhang, 2019). 
The prediction values derived from the first layer are employed 
as the input data for the second layer to train the base learners. 
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The final prediction values are derived from the model of the 
second layer.

2.6 Hyperspectral feature selection and modeling

Hyperspectral and high-dimensional variables often contain 
large amounts of irrelevant information and redundant variables 
will affect the accuracy of the predictions produced by the final 
model. In the present study, CatBoost (Huang et al., 2019), Ridge 
algorithm (Piepho, 2009), LightGBM (Dev & Eden, 2019), LR 
(Friedman  et  al., 2010), Lasso (Tibshirani, 2011), XGBoost 
(Ji et al., 2019; Pan et al., 2022; Sun et al., 2021), Plsr (Long et al., 
2019) and Stacking were used to effectively screen appropriate 
hyperspectral feature variables and to analyze the models.

2.7 Model performance assessment

A random sampling method was employed by using 75% 
of the sample reflection spectrum data as the training data and 
the remainder as the testing set. Different machine learning 
algorithms were employed to derive models for predicting the 
moisture contents of tuber by using the variables extracted 
from the hyperspectral images. The predictive performance was 
assessed using the mean absolute error (Mae), median absolute 
error (Mdae), root mean squared error (Rmse), coefficient of 
determination ( 2R ), and TimeFit . The evaluation indicators used 
for the cross-validation set were Rmse and 2R . 2R  represent the 
proportion of the variance in the observed values that can be 
explained by that in the predicted values. Rmse measures the 
deviation between the observed and true values. Mae is the mean 
of the absolute error and it denotes the error of the predicted 
values. Mdae is calculated as the loss relative to the median 
value for all the absolute differences between the observed and 
predicted values, and provides a measure of the robustness of 
the variances (An et al., 2022; Liu et al., 2022; Pham & Liou, 
2022). Equations 12-17:

( ) ( ) ( )
n

pred n act ni 1
pred act

y   y
Mae y , y
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=

−
=
∑ 	 (12)

( )
( )
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( )n
pred acti 1
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n
=

−
=
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In Equations 12-17, n denotes the number of samples, yact is the 
observed value, ypred is the predicted value, and ymean is the mean 
of the measured values.

3 Results and discussion
3.1 Spectral reflectance pattern

Figure 4 shows the mean spectral reflectance values obtained 
for the time series during the oven-drying period. The reflection 
intensity of 500-900 nm potatoes decreased with the increase of 
baking time. This shows that this interval has a great relationship 
with the change of potato water content. In addition, and the 
four curves are obviously different, the reflectance value before 
dehydration is higher than the reflectance value after dehydration. 
The spectral reflectance curves obtained at the four sampling 

Figure 3. Schematic illustration of the Stacking machine learning framework.
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points near the visible light wavelength of 400 nm basically agreed, 
with the minimum reflectance near the visible light wavelength 
of 450 nm where a trough formed. The reflectance increased 
in a linear manner in the visible light band from 500-900 nm. 
For each sample, the reflectance values decreased during oven 
drying and the four curves were clearly distinct. The reflectance 
values were higher before dehydration than after dehydration. 
A peak occurred close to the near infrared light wavelength at 
930 nm and a trough at the near infrared band of 940-980 nm, 
where the reflectance value decreased. At wavelengths > 980 nm, 
the reflectance values increased and the four curves basically 
coincided. The curve declined and then increased sharply near 
the visible wavelength of 400 nm, mainly because this band 
contains the strong absorption bands for chlorophyll a and b, 
and it was affected by the electronic transition. The decrease in 

the reflectance value near the wavelength of 960 nm was due 
to the dominance of this band by the strong absorption band 
attributable to water and it was affected by C-H bond stretching 
and the first harmonic. The differences in the spectral reflectance 
curves suggest that hyperspectral imaging can be used to estimate 
the moisture contents of potatoes.

3.2 Reflection spectrum preprocessing

The acquisition of spectral data is affected by the instrument’s 
working status, detection environment, and the intensity of 
light. Noisy data may obscure the actual characteristics of the 
reflectance curves. Therefore, 17 data preprocessing methods. 
The processed data and raw data were trained with the CatBoost 
model, and the prediction results are shown in Table 1. As shown 
in Table 1, the FD algorithm had the largest Mae value, the ES 
algorithm had the smallest value, and the MF algorithm had the 
third lowest value. The FD algorithm produced the largest Mdae 
value whereas the MF algorithm had the smallest value. The FD 
algorithm yielded the largest Rmse value whereas the LR2 algorithm 
produced the smallest value. The MF algorithm yielded the 
largest 2R  value whereas the SD algorithm obtained the smallest. 
The SD algorithm obtained the largest Rmse value whereas the MF 
algorithm produced the smallest. The MF algorithm obtained the 
largest 2  cvR  value whereas the SD algorithm produced the smallest. 
The L2NN algorithm yielded the largest TimeFit  value whereas 
the ES algorithm had the smallest. The prediction performance 
of the LR1 and SG algorithms did not differ significantly from 
that obtained by using the original data for modeling. The Rmse 
value was 0.0677 for both the LR1 and RD algorithms. The SG 
and RD algorithms obtained similar 2 R  values around 0.6980. 
The results produced by the SG algorithm suggested that it was 
the most stable method, with relatively small differences in the Figure 4. Spectral reflectance measured at four different sampling points.

Table 1. Prediction results obtained with different pretreatments.

Methods Mae Mdae Rmse R2 Rmsecv R2
cv Fit time

RD 0.0534 0.0452 0.0677 0.6980 0.0739 0.6914 23.8276
FD 0.0786 0.0581 0.1075 0.7203 0.0891 0.6876 29.4692
SD 0.0752 0.0626 0.0983 0.6574 0.0984 0.5238 24.8935

GWS 0.0590 0.0423 0.0748 0.6746 0.0747 0.7108 24.3578
BS 0.0577 0.0468 0.0749 0.7675 0.0717 0.6966 28.2548

LR1 0.0551 0.0509 0.0677 0.7173 0.0769 0.6753 28.5188
LR2 0.0510 0.0396 0.0659 0.7062 0.0783 0.7009 29.9864

L2NN 0.0555 0.0545 0.0707 0.6685 0.0769 0.6541 30.1779
LTN 0.0563 0.0417 0.0738 0.7354 0.0741 0.7371 28.1683

MAM 0.0618 0.0533 0.0772 0.6803 0.0708 0.7282 28.2339
MSC 0.0605 0.0490 0.0778 0.6656 0.0781 0.6393 27.2989
SG 0.0591 0.0517 0.0761 0.6991 0.0734 0.6833 22.3748

ACN 0.0575 0.0429 0.0779 0.6871 0.0745 0.7099 23.2816
WTD 0.0600 0.0521 0.0743 0.7235 0.0767 0.6770 25.7103

ES 0.0523 0.0437 0.0663 0.7321 0.0745 0.7194 22.3437
MF 0.0537 0.0393 0.0720 0.8015 0.0599 0.8021 23.4790
ZSS 0.0562 0.0440 0.0764 0.7525 0.0734 0.7075 24.4995

MMS 0.0598 0.0449 0.0809 0.7180 0.0775 0.7007 24.4379
The mae is the squared absolute error. The mdae is the median of the absolute error values between the actual and predicted values. The Rmse is root mean square error. The R2 is the 
coefficient of absolute certainty. Rmsecv is root mean square error of cross validation. The R2

cv is the coefficient of determination for cross-validation.
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Rmse and 2  R  values between the prediction and cross-validation 
data sets. However, the prediction accuracies with FD, SD, 
and MMS were lower than those when using the original data 
for modeling, where larger Rmse and smaller 2R  values were 
obtained. The differences in the prediction abilities when using 
data preprocessed with GWS, L2NN, MAM, MSC, and CAN 
compared with those using the raw data were relatively small, 
although Rmse was larger and 2R  was smaller for the models 
derived based on the data preprocessed by the LR2, ES, and 
MF algorithms relative to the models derived with the raw data, 
where the indicators obtained were comparable. The accuracy 
of the predictions obtained by models derived using the 
preprocessed data was much better than that based on the raw 
data because the raw data-based models obtained consistently 
low Rmse and larger 2R  values. In particular, the prediction 
models based on the data preprocessed with the MF algorithm 
had the smallest Mdae (0.0393) and highest 2  R  values among 
all of the preprocessed data-based models. The lowest cvRmse  
value was 0.0599 with the MF algorithm. The 2R  and 2

cvR  values 
were comparable and they were the largest, thereby indicating 
that the MF algorithm exhibited high stability. The accuracies 
of the models derived using raw data and data preprocessed by 
the BS, LTN, and WTN algorithms were difficult to compare 
because all of the Rmse and 2R  values were larger for the models 
obtained with the preprocessed data compared with those based 
on the raw data. Therefore, it’s concluded that the different data 
preprocessing methods had various effects on the accuracy of 
the model predictions, with more accurate predictions, inferior 
predictions, and some comparable predictions. Finally, after 
comparing the different model performance indicators, the MF 
algorithm was selected as the optimal algorithm.

3.3 Feature band extraction

The original hyperspectral curves obtained from images of 
potatoes contained 256 characteristic variables. However, these 
high-dimensional variables contained large amounts of irrelevant 
information and the redundant variables affected the classification 
accuracy for the final model. Therefore, multiple LR methods as 

well as the Ridge, Lasso, XGBoost, LightGBM, Plsr, CatBoost, and 
XGBoost algorithms were used to extract the feature wavelengths 
from the hyperspectral curves. The top 40 feature variables that 
made the greatest contributions to the hyperspectral curves 
were extracted and the weighted characteristic wavelengths were 
obtained (Table 2). The feature extraction algorithms, i.e., Plsr, 
CatBoost, Ridge, and Lasso, all identified the band around 850-
970 nm as the primary feature variable. Using the LR algorithm, 
the weighted contribution of this band ranked fifth, where the 
peak occurred near a wavelength of 940 nm, and valleys and 
absorption characteristics were identified around 960 nm. Using 
the LightGBM and XGBoost algorithms, the band around 400 nm 
was the primary feature variable. With the Lasso algorithm, the 
weighted contribution of this band ranked sixth, and the valley 
and absorption characteristics were identified at 400 nm. Using the 
CatBoost algorithm, the contribution of the band at 694-865 nm 
ranked from fourth to eighth. The features with wavelengths of 
833.66 nm and 917.5 nm ranked fourth and fifth, respectively, with 
the Lasso algorithm. The band at 547-848 nm ranked among the 
top 40 important features with LR. The wavelength of 957.34 nm 
ranked first using the Plsr algorithm. The band at 510-884 nm 
ranked in the top 40 with the Ridge algorithm. The spectral 
image was clearly distinguished in the band from 510-958 nm 
in the spectral curve, thereby verifying the importance of the 
extracted features. The experimental results showed that the 
feature extraction algorithms could extract common features at 
the same wavelengths, but significant differences were also found. 
The feature variables were used subsequently as input variables 
for the prediction algorithms.

3.4 Visualization of top five feature correlation coefficients 
for each model

Figure  5 shows the feature correlation coefficients with 
particular importance for each model. The selected features that 
had relatively strong correlations with the moisture contents 
are shown in red, blue, and purple in Figure 5. A small number 
of the features had relatively weak correlations and they are 
shown in green. The results suggested that the feature variables 

Table 2. The top 40 characteristic bands selected by different algorithms.
Models Feature band (nm)

CatBoost 579.93 997.38 403.88 694.86 735.62 864.98 697.4 449.59 604.3 975.99 831.06 447.18 1021.53 522.66 1002.73 396.7 439. 93 661.98 727.95 
387.15 399.09 468.97 391.92 768.96 748.42 740.75 797.34 459.27 601.81 1024.22 495.27 761.25 413.47 515.31 1000.05 552.2 928.15 805.1 
1032.29 490.87

Lasso 957.34 949.36 970.65 833.66 917.58 478.69 435.11 684.72 1002.73 1008.1 1032.29 554.67 396.7 387.15 1024.22 468.97 1010.78 427.89 510.41 
432.7 488.43 473.83 1000.05 401.49 454.43 1034.99 415.87 1018.84 408.67 1026.91 423.07 997.38 456.65 391.92 420.67 439.93 413.47 464.12 
1016.15 389.54

LightGBM 396.7 387.15 408.67 391.92 389.54 399.09 415.87 394.31 401.49 418.27 403.88 406.28 413.47 1032.29 1029.6 411.07 466.55 1021.22 425.48 
442.35 423.07 503.07 1034.99 420.67 439.93 986.67 498.19 1010.78 471.4 435.11 481.12 456.85 500.63 1021.53 437.52 981.33 1018.84 
1026.91 452.01 477.18

Linear 705.02 659.46 557.14 684.72 823.26 862.36 682.19 559.61 694.86 661.92 825.85 576.94 654.42 699.94 692.33 601.81 651.9 717.75 571.98 712.66 
626.79 756.11 687.26 656.94 569.5 878.08 547.26 697.4 774.11 649.39 789.58 619.28 564.55 584.39 743.3 586.87 672.08 756.68 636.84 634.31

Plsr 957.34 970.65 435.11 387.15 1026.91 1024.22 1008.1 1010.78 408.67 396.7 949.36 967.99 391.92 997.38 1029.6 473.83 478.69 962.66 1018.84 468.97 
914.93 1000.05 464.12 1034.99  687.26 656.94 569.5 878.08 909.66 439.93 917.58 488.43 413.47 437.52 423.07 920.22 510.41 928.15 912.29 493.3

Ridge 854.52 604.3 833.66 584.39 510.41 789.58 815.47 781.84 893.33 818.06 684.86 766.39 802.51 851.91 571.98 629.3 812.87 614.28 544.8 616.78 
624.29 875.46 567.03 507.96 594.33 532.49 542.33 609.29 805.1 771.54 702.48 779.26 768.96 554.67 539.87 1021.53 522.66 712.66 730.51 667.03

XGBoost 387.15 389.54 411.07 391.92 415.87 399.09 413.47 396.7 394.34 403.88 498.18 406.28 473.83 401.49 418.27 425.48 439.93 420.67 510.41 408.67 
423.07 500.63 471.4 503.07 495.74 430.29 435.11 507.96 1034.99 427.89 412.86 442.35 537.41 444.76 476.26 452.01 505.52 515.31 454.43 712.66
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and positively correlated, thereby suggesting that there was 
redundancy between the features. Therefore, the best prediction 
would not be produced by combining the features extracted from 
several models. It was reasonable and feasible to use the feature 
extracted from each model separately for modeling.

3.5 Analysis of hyperspectral response to the moisture 
content of potatoes

Analysis of hyperspectral response to the moisture content of 
potatoes

The results obtained from the four prediction models by 
using the feature wavelengths selected with different algorithms 
are summarized in Table 3. The Stacking model was establishd by 
taking XGBoost, CatBoost, and LightGBM as the first layer, and 
the XGBoost model as the second layer. As shown in Table 3, the 
Stacking model explained > 80% of the variance regardless of the 
feature extraction method employed, whereas some other models 
only explained < 80% of the variance in the moisture contents of 
potato tubers, and there were large variations in the prediction 
abilities of the models. Thus, the Stacking model performed best 
overall. In addition, the XGBoost model required the least time 
whereas the Stacking model consumed the most time. The models 
produced using feature extraction methods performed better 

Table 3. Comparison of the indexes obtained for the models established using the feature wavelengths extracted by different algorithms.

Models Methods Mae Mdae Rmse R2 Rmsecv R2
cv Fit time

XGBoost CatBoost 0.0485 0.0346 0.0679 0.8187 0.0559 0.8218 0.6333
Lasso 0.0477 0.0389 0.0610 0.8908 0.0544 0.8448 0.5056

LightGBM 0.0472 0.0332 0.0620 0.8764 0.0592 0.8076 0.6034
Linear 0.0457 0.0291 0.0616 0.7842 0.0703 0.7442 0.4618
Plsr 0.0446 0.0357 0.0554 0.8578 0.0545 0.8338 0.7201

Ridge 0.0505 0.0409 0.0647 0.8244 0.0701 0.7285 1.0901
XGBoost 0.0388 0.0298 0.0516 0.8795 0.0551 0.8343 0.6971

LightGBM CatBoost 0.0406 0.0359 0.0511 0.8482 0.0537 0.8189 1.3105
Lasso 0.0408 0.0321 0.0524 0.8414 0.0546 0.8158 1.4667

LightGBM 0.0410 0.0308 0.0541 0.8576 0.0577 0.7938 1.3045
Linear 0.0462 0.0344 0.0614 0.7288 0.0640 0.7365 0.8846
Plsr 0.0413 0.0330 0.0525 0.8443 0.0524 0.8235 1.5148

Ridge 0.0460 0.0345 0.0588 0.7396 0.0635 0.7383 1.5437
XGBoost 0.0408 0.0323 0.0529 0.8511 0.0542 0.8199 1.4595

CatBoost CatBoost 0.0594 0.0431 0.0798 0.8187 0.0622 0.8097 9.7620
Lasso 0.0553 0.0415 0.0717 0.8145 0.0636 0.7947 10.8851

LightGBM 0.0560 0.0419 0.0720 0.8014 0.0636 0.7469 10.2706
Linear 0.0569 0.0478 0.0707 0.6495 0.0746 0.6302 8.6289
Plsr 0.0509 0.0400 0.0648 0.7965 0.0580 0.8217 11.4537

Ridge 0.0495 0.0389 0.0647 0.7018 0.0655 0.6962 9.6833
XGBoost 0.0557 0.0468 0.0717 0.8121 0.0646 0.7979 11.7052

Stacking CatBoost 0.0439 0.0380 0.0586 0.8561 0.0543 0.8211 14.0775
Lasso 0.0428 0.0356 0.0540 0.8690 0.0545 0.8351 14.1991

LightGBM 0.0485 0.0344 0.0667 0.8679 0.0582 0.8075 13.0800
Linear 0.0466 0.0350 0.0628 0.8113 0.0739 0.7395 10.0741
Plsr 0.0410 0.0346 0.0522 0.8452 0.0554 0.8255 14.2234

Ridge 0.0489 0.0381 0.0615 0.8076 0.0695 0.7353 13.6310
XGBoost 0.0405 0.0316 0.0526 0.8640 0.0563 0.8169 17.6071

Figure 5. Correlation coefficient map showing the top five features 
for each mode.

extracted by the supervised algorithm were highly correlated 
(red and orange in Figure 5. Thus, the main features selected 
were reasonably consistent. Most of the features were strongly 
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compared with the full-band CatBoost predictions. Among 
the seven feature extraction methods, the features extracted 
using the LR model followed by Ridge were the worst in terms 
of the modeling and prediction abilities compared with the 
other methods. The feature variables extracted by XGBoost and 
Lasso were much better in terms of the modeling performance. 
As shown in Figure 6, best model produced by combining the 
Lasso and XGBoost algorithms achieved an Rmse of 0.061, 2 R  
of 0.8908, Mdae of 0.0389, and 2

cvR of 0.8448. The worst model 
generated by combining the LR + CatBoost algorithms had an 
Rmse of 0.0707, 2R  of 0.6495, Mdae of 0.0478, and 2

cvR  of 0.630.

4 Conclusion
In this article, potato tubers were heated at 120 degrees Celsius 

for 0 min, 45 min, 105 min and 165 min. Through spectral data 
preprocessing, feature extraction and data modeling, the prediction 
of moisture content of potato tubers under different baking 
times was successfully achieved. In this study, 17 hyperspectral 
data preprocessing methods were used to eliminate the effect 
of noise in the original hyperspectral data of potato images. 
The preprocessing results show that using MF preprocessing is 
better than other methods in terms of its predictive performance. 
Therefore, choosing an appropriate preprocessing method can 
reduce the noise and improve the prediction accuracy of the 
model. In addition, spectral data in the 400 nm and 547-970 nm 
bands are important for predicting the moisture content of potato 
tubers. Among them, the top forty feature bands extracted by 
lasso make a significant contribution to the prediction accuracy 
of the model. The best model generated by combining Lasso and 
XGBoost algorithms has Rmse of 0.0610, 2 R  of 0.8908, Mdae of 
0.0389, and 2 cvR  of 0.8448. To sum up, the best prediction model 
is MF-Lasso-XGBoost. Using hyperspectral imaging technology 
can accurately predict the water content of potato tubers. At the 
same time, it can also provide new opportunities for future crop 
moisture detection related ideas.
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