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1 Introduction
Sesame is one of the oldest oil crops known to mankind. 

Sesame oil is rich in nutrients, contains sesame lignans, vitamin 
E, and other substances, has a strong aroma and long shelf 
life, and is loved by consumers (Das et al., 2019; Shen et al., 
2020, Nikzad et al., 2021). Sesame lignans are a general term 
for a class of compounds formed by the paired oxidation of 
ρ-hydroxyphenyl propane, whose structural features include 
3,4 -methylenedioxyphenyl. Sesame lignans mainly consist of 
sesamin, sesamolin, sesamol, and asarinin, among which sesamin 
and sesamolin are the most abundant, with sesamin content of 
0.4%-0.8% in sesame oil and sesamolin content of 0.2%-0.4% in 
sesame oil (Andargie et al., 2021). In recent years, sesame lignans 
have received worldwide attention for their super antioxidant 
effects and significant health benefits, such as promoting ethanol 
metabolism or liver detoxification, regulating blood lipids, anti-
cancer properties, etc. For example, Majdalawieh et al. reported 
the in vitro and in vivo anticancer activity of sesamol from 
sesame lignans in several tumor cell lines and animal models, 
demonstrating potent anticancer properties of sesamol in vitro and 
in vivo (Majdalawieh & Mansour, 2019). Oikawa et al. reported 
that sesamin and its related lignans have inhibitory effects on 
the intestinal bacteria L-tryptophan indole-Lyase, and drugs 
based on this machine can be made for the treatment of chronic 
kidney disease (Oikawa et al., 2022). Aslam et al. reported that 
the increase of sesame lignans had a lipid-lowering effect on 
rats (Aslam et al., 2021). As a result, many sesame oil products 
have started to label the sesame lignans content, using the level 

of content to indicate the high quality of sesame oil in order to 
attract consumers.

The current methods for the analytical determination of lignans 
in sesame oil include gas chromatography (GC) (Schwertner & 
Rios, 2012; Tashiro), gas chromatography-mass spectrometry 
(GC-MS) (Qadir  et  al., 2018), HPLC (Mikropoulou  et  al., 
2019; Moazzami et al., 2010; Shi et al., 2018), and thin layer 
chromatography (TLC) (Dar  et  al., 2015). Chromatography 
methods have high accuracy, but there are some problems such 
as long detection time, complex operation, and harmful reagents, 
among which the HPLC method is the most commonly used. 
These problems make it difficult for them to measure expediently, 
quickly and nondestructively, and it is difficult to popularize the 
characteristics of complex operations. Thus, a straightforward, 
portable, quick, and nondestructive approach must be developed 
to determine the amount of lignans in sesame seeds, and modern 
spectroscopic techniques correspond with these advantages.

Past developments have seen the utilization of molecular 
spectroscopy in modern spectral analysis technology has been 
comprehensively developed. Although the vibration of each 
atom in a molecule is very complicated, information can be 
gained by analyzing the infrared spectrum of compounds to 
many reflect the information about the molecular structure used 
for the determination of the molecular structure of compounds 
and the identification of unknown materials and mixtures. 
It can also be inferred to determine the content of components 
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in the mixture from the intensity of characteristic absorption 
peaks. In addition, it can also determine the bond length and 
angle of the molecule, thereby inferring the 3D configuration 
of the molecule and judging the strength of the chemical bond. 
Among them, the application of portable NIR spectroscopy in 
the quantitative detection of substances is very broad due to 
its maturity, convenience, and low cost, and a large number 
of research reports have been accumulated. NIR spectroscopy 
is widely used in various fields of food, such as cereals and 
tubers (Aykas et al., 2020; Chadalavada et al., 2022; Su et al., 
2020; Tilahun et al., 2020), animal foods (Diaz-Olivares et al., 
2020; Lin et al., 2010; Rahim & Ghazali, 2012), legumes and 
their products (Natcha & Panmanas, 2014; Plans et al., 2014; 
Szigedi et al., 2013), vegetables and fruits (Malvandi et al., 2022; 
Minas et al., 2021; Sirisomboon, 2018), and beverages (Wang et al., 
2022) etc. Zhenzhen Xia (Xia  et  al., 2020) and others have 
verified the feasibility of NIR spectroscopy technology for the 
prediction of sesamin and sesamolin in sesame seeds. However, 
the NIR spectrometers they use are all large instruments used in 
laboratories, which are expensive and cannot meet the demand 
of the public for simple, portable, and cheap use.

Therefore, in this study, a portable NIR spectrometer was used 
to establish PLS models for the determination of sesamin, sesamolin, 
and sesame lignans content in sesame oil. Although NIR spectroscopy 
is convenient and quick, due to the poor sensitivity of the spectrum, 
stoichiometry methods are needed to optimize the model after 
the spectral acquisition, such as spectra pretreatment and variable 
selection. Consequently, in order to improve the PLS models, the 
first derivative (1st), second derivative (2nd), and standard normal 
variable transformation (SNV) spectral pretreatment methods 
were performed in this study. Based on the spectral information of 
sesame oil and the structure of sesame lignans, the spectral variables 
were selected. The results obtained by the quantitative model were 
compared with those obtained by HPLC to evaluate the established 
model detection method.

2 Materials and methods
2.1 Reagents and samples

Sesamin (purity > 98%), sesamolin (purity > 98%), sesamol 
(purity > 98%) and asarinin (purity > 98%) were purchased 
from Macklin Reagent Network. Collect 60 kinds of sesame oil 
(purchased from the market respectively, including three kinds of 
sesame oil with different processes of cold pressing, hot pressing, 
and small grinding, and homemade sesame oil with different 
microwave power and time). Methanol (chromatographic grade, 
purchased from Honeywell Trading (Shanghai) Co.)

2.2 HPLC analysis

The standard curves of sesamin, sesamolin, sesamol, and asarinin 
were first established in HPLC. Appropriate amounts of each of the 
four standards were taken and prepared with chromatographic 
grade methanol to form 224 μg/mL of sesamin, 85 μg/mL of 
sesamin, 237 μg/mL of sesamol, and 104 μg/mL of asarinin. Then 
the master mixes were diluted separately and subjected to liquid 
chromatographic detection, and the results were plotted as standard 
curves for sesamin, sesamolin, sesamol, and asarinin.

Detection conditions for HPLC:

a) Chromatographic column: Sunfire C18 reversed-phase 
column (250 × 4.6 mm, 5 μm);

b) Injection volume: 20 μL;

c) Mobile phase: methanol: water = 70:30 (V/V);

d) Flow rate: 0.8 mL/min;

e) Column temperature: 30 °C;

f) UV detector wavelength: UV detector, detection wavelength 
287 nm.

Extraction of sesame lignans from the sample: 0.2 g of oil sample 
was accurately weighed in a 10 mL white plastic centrifuge tube 
and extracted with chromatographic methanol three times. First, 
add 4 mL of chromatographic methanol, vortex for 5 min, sonicate 
for 5 min, freeze for 5 min, centrifuge at 4000 r/min for 5 min, and 
transfer the supernatant to a 10 mL volumetric flask. Repeat the 
above steps with 3 mL of chromatographic methanol and 2 mL 
of chromatographic methanol. Finally, the volumetric flask was 
filled with chromatographic methanol and the filter membrane 
was pumped into the liquid flask for machine determination. 
The extracted samples were detected by HPLC, and the contents 
of sesamin, sesamolin, sesamol, and asarinin were calculated from 
the standard curve for each sample, and then the four substances 
were summed up to obtain the content of sesame lignans.

2.3 NIR spectroscopy detection

The AvaSpec NIR256-1.7 TEC spectrometer, tungsten halogen 
light source, color matching tube frame, and two optical fibers 
were used (Figure 1). The signal source interface is a standard 
SMA905 interface to connect the optical probe, and the light 
source signal is calibrated by the spherical mirror. Spectra were 
collected in a colorimetric dish by the transmission principle.

The required sesame oil samples were taken out of the 
refrigerator and put on the experimental bench until the temperature 
reached room temperature of 15 °C, at which point the samples 
were taken. The oil sample was added to a quartz cuvette with 
an optical length of 10 mm and a capacity of 10 mL. In order to 
avoid stray light interfering with the measurement, the sample to 
be measured was put into place and then covered with a sample 
cover before its spectrum was collected. When the measurement 
of a sample was finished, the sample was dumped out and 3 rinses 
were performed with the next sample to be measured. The NIR 
spectrometer used an integration time of 0.470 ms, and each 
spectrum was obtained by averaging 100 repeated measurements. 
Each spectrum was in the wavelength range of 1100-1700 nm 
and consisted of 203 points.

2.4 NIR spectra pretreatment and modeling

In this study, we used PLS to construct NIR models of sesamin, 
sesamolin, and sesame lignans contents in sesame oil, and we 
used the model to predict the sesamin, sesamolin, and sesame 
lignans contents in the validation set and compare them with 
the actual values determined by HPLC. The calibration set and 
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validation set were created by randomly dividing the dataset’s 
samples. The spectra also contain unimportant information and 
noise, such as sample background, astigmatism, and electrical 
noise, except as the chemical data of the samples themselves. 
The spectrum of the 1st and 2nd derivatives spectral analysis 
is commonly used in pretreatment methods. The 1st shows 
the rate of change of the spectrum, the 2nd shows the change 
of the whole spectrum rate, which can effectively eliminate 
the interference of the baseline and another background, to 
distinguish the overlapping peaks, and improve the sensitivity 
and resolution, but can introduce noise at the same time, 
reducing the signal-to-noise ratio. In addition, the 2nd has more 
baseline noise than the 1st. For example, for a discrete spectrum 
xk, the first and second derivative spectra at wavelength k with 
a different width g are calculated according to the following 
equation, respectively (Equations 1, 2 and 3). The SNV is mainly 
used to eliminate the influence of sample surface scattering 
and optical path variation on NIR spectra. SNV is the raw 
spectrum after subtracting the average of the spectrum, then 
dividing by the standard deviation of the data, essentially 
normalizing the raw spectral data standard. The difference 
from the standardized algorithm is that the SNV algorithm 
processes each spectrum and computes the following formula 
for spectra requiring SNV transformation. Therefore, the 1st, 
2nd, and SNV spectra pretreatment methods were selected to 
be combined with the original spectra of samples, respectively, 
to establish PLS models for comparison, and to select the 
optimal pretreatment method.
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∑ , m is the number of wavelength points, 
k = 1, 2, ..., m.

The performance and stability of the prediction model 
were evaluated by correlation coefficient (R2), root mean square 
error of cross-validation (RMSECV), root mean square error 
of prediction (RMSEP) and the ratio of prediction to deviation 
(RPD). R2 is used to evaluate the correlation between the predicted 
value of the sample and the true value, and the closer the value 
is to 1, the better the prediction, given the same concentration 
range. RMSECV and RMSEP are used to evaluate the predictive 
power of the model, and the smaller their values, the stronger 
the predictive power of the model. The RPD is the ratio of the 
standard deviation (SD) of the validation set to the RMSEP. 
The smaller the SD is, the wider and more uniform the dispersion 
of the validation set samples will be, and the larger the RPD value 
will be. According to the same concentration range assumption, 
the model’s prediction accuracy increases with RPD size, and 
it is typically thought that the RPD should be more than 2 for 
the forecast results to be regarded as acceptable.

3 Results and analysis
3.1 Division of calibration and validation sets

From the HPLC analysis, it is clear that the homemade 
ones have a larger range of composition than the market-
purchased samples, expanding the range of detection and 

Figure 1. Portable NIR spectrometer.
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increasing the applicability (Table 1). From the analysis of 
the raw spectrogram (Figure 2), sample 27 was found to be 
turbid or even granular during the assay, which eventually 
resulted in a large absorbance and the following spectral 
results occurred. It was also found that the color difference 
between cold pressed, hot pressed, and water extraction sesame 
oil had no significant effect on the spectrum. Subsequently, 
60 samples were randomly divided into 50 calibration groups 
and 10 validation groups.

The concentration content of these three components 
was different, so the samples for calibration and validation 
sets were selected differently. The coverage of sesamin, 
sesamolin, and sesame lignans distribution in the sesame oil 
calibration set samples was larger than the variation range of 
the validation set, indicating that the constructed PLS model 
for the calibration set samples could be better applied to the 
validation set samples (Table 2).

3.2 Modeling and optimization

Spectral pretreatment

Before establishing PLS models of sesamin, sesamolin, and 
sesamin lignans in sesame oil, the spectrum of sesame oil was 
pretreated with different combinations of 1st, 2nd, and SNV. 
These pretreatment methods can reduce the color difference 
obtained by the three processes and the problem of sesame oil 
27 sample detection by different means. R2, RMSECV, RMSEP, 
and RPD were used to assess the models, and the results of raw 
spectra were added to facilitate comparison (Table 3).

For sesamin, R2 of the model generated by the raw spectrum 
was RC

2 = 0.97, RP
2 = 0.99, RMSECV, RMSEP, and RPD were 

13.08, 2.43, and 8.54, respectively. The whole data set became 
worse after SNV treatment of the raw spectrum, and the results 
of the other two combinations did not improve greatly, probably 
because the special signal of sesamin was less obvious after 
SNV treatment, so its model is not suitable for SNV treatment. 

After pretreatment with 1st and 2nd, the results of the 1st were 
worse, but the results of the 2nd were better, where R2 did not 
change significantly, RMSECV decreased significantly from 
13.08 to 7.83, while RMSEP and RPD only changed slightly. 
Therefore, the 2nd pretreatment method should be selected for 
the sesamin PLS model.

The PLS model result for the raw spectra of sesamolin was 
RC

2 = 0.93, RP
2 = 0.95, RMSECV, RMSEP, and RPD were 9.36, 

5.23, and 4.49, respectively. Compared with the raw spectrum, 
the PLS model results after pretreatment were optimized to a 
certain extent. In particular, the four evaluation indexes of the 
results after SNV pretreatment were the best among the six 
model results. RC

2 increased from 0.93 to 0.99, RP
2 increased 

from 0.95 to 0.97, and RMSEP decreased from 5.23 to 3.59. 
RPD increased from 4.49 to 6.55. After the other four kinds of 
pretreatment, the relevant indicators of the correction set were 
significantly improved, but the RPD value and relevant indicators 
of the validation set were decreased to a certain extent, which 
did not improve the predictive ability of the model. And their 
results were all similar, indicating that 1st and 2nd pretreatment 
did not increase the sesamolin signal in the spectrum. Thus, the 
optimal spectral pretreatment method in the sesamolin PLS 
model is the SNV pretreatment method.

For the raw spectra of sesame lignans, PLS model results 
were RC

2 = 0.98, RP
2 = 0.92, RMSECV, RMSEP, and RPD were 

12.94, 8.04, and 4.06, respectively. The comparison of the 
results after the five pretreatments revealed that their RC

2 was 

Table 1. Concentration of sesame lignans.

samples sesamin /
(μg /mL)

sesamolin /
(μg /mL)

sesame lignans /
(μg /mL)

Purchased from 
market

114.48-140.37 34.40-67.05 154.31-217.95

Homemade 
samples

107.34-178.73 11.41-87.20 143.28-271.37

Table 2. Distribution of sesamin, sesamolin and sesamin lignans in calibration and validation sets.

Samples
sesamin /(μg /mL) sesamolin /(μg/mL) sesame lignans /(μg/mL)

Max Min Average SD Max Min Average SD Max Min Average SD

Totality 178.73 107.34 133.12 18.98 87.20 11.41 54.01 21.93 271.37 143.28 193.76 37.71

Calibration 178.73 107.34 131.68 18.49 87.20 11.41 54.75 21.78 271.37 143.28 193.94 38.94

Validation 167.09 108.26 140.34 20.75 79.34 16.41 50.30 23.51 249.40 155.51 192.84 32.66

Figure 2. Raw NIR spectra.
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0.99, and the smallest of the RMSECV was 6.67 after the 
1st+SNV pretreatment, so the optimal result in the correction 
set was the 1st+SNV pretreatment method. Only SNV, 1st, 
and 1st+SNV pretreatment had the highest RP

2 of 0.94 in the 
validation set; 1st and 1st+SNV pretreatment had the lowest 
RMSEP of 7.96, and both methods had the highest RPD value 
of 4.10. Only the RMSECV values decreased in the 1st+SNV 
pretreatment compared with the 1st pretreatment alone, while 
all other indices remained unchanged, indicating that SNV 
further optimized the model, so the 1st+SNV pretreatment 
method is the best choice for the sesame lignans PLS model 
pretreatment method.

Spectral band and model master factor number selection

When using a full spectrum to build a spectral model, a 
large amount of data and irrelevant information can affect 
and interfere with the model, resulting in slow processing 
speed, which leads to the model not being able to calculate 
predicted values more accurately and cannot meet the fast-
paced portable inspection of sesame oil production. Therefore, 
the band regions associated with sesamin, sesamolin, and 
sesame lignans should be selected based on the sesame 
oil spectral information, and the model should be further 
optimized based on preprocessing to select the optimal band 
among available bands. Sesamin and sesamolin have similar 
chemical structural characteristics, and sesame lignans are the 
general term for this class of compounds, whose structural 
characteristics include 3, 4-methylene dioxophenyl. Their 

IR spectral information contains the stretching vibration 
characteristic peak of the carbon-oxygen carbon bond C-O-C 
1050-1250 nm, the in-plane bending vibration peak of two 
adjacent hydrogens on the benzene ring 1000-1300 nm, and 
the vibration absorption peak of the benzene ring skeleton 
1450-1600 nm. From the raw spectrogram (Figure 2), three 
peaks located around 1200, 1400, and 1700 nm can be seen, 
and from the basic chemical structure of sesame lignans, all 
these three peaks may be related to it. Accordingly, the spectra 
should be divided into three regions: 1100-1300 nm, 1300-
1500 nm, and 1500-1700 nm, and the regions that are more 
suitable for the PLS model of the three related substances 
should be explored respectively. Based on the obtained optimal 
pretreatment method, the three regions are combined for 
modeling and compared with each other to select the optimal 
modeling region (Table 4). Meanwhile, the table also shows 
the optimal number of principal factors for each final PLS 
model. The selection of the quantity of principal factors of 
the model is directly related to the actual predictive power. 
Using too few master factors will not fully express the spectral 
information of the samples; using too many master factors 
will add noise and reduce the actual prediction ability of 
the model. As a result, one of the efficient ways to utilize 
spectral information and filter out noise is to determine the 
quantity of principal factors participating in model building 
reasonably. The method of selecting the optimal number of 
principal factors here is to determine the optimal number 
of factors in the model by RMSECV.

Table 3. Results of different pretreatment methods.

Lignans Methods
Calibration Set Validation Set

RPD
R2 RMSECV R2 RMSEP

Sesamin Raw 0.97 13.08 0.99 2.43 8.54

SNV 0.85 10.58 0.82 8.66 2.40

1st 0.91 8.84 0.89 6.78 3.06

1st+SNV 0.91 9.25 0.89 6.55 3.17

2nd 0.98 7.83 0.98 3.36 6.17

2nd+SNV 0.97 7.90 0.98 3.34 6.21

Sesamolin Raw 0.93 9.36 0.95 5.23 4.49

SNV 0.99 10.18 0.97 3.59 6.55

1st 0.99 7.49 0.93 5.89 3.99

1st+SNV 0.99 6.53 0.92 6.40 3.67

2nd 0.98 7.78 0.94 5.90 3.98

2nd+SNV 0.98 7.85 0.93 6.16 3.82

Sesame lignans Raw 0.98 12.94 0.92 8.04 4.06

SNV 0.99 9.58 0.94 8.36 3.91

1st 0.99 7.21 0.94 7.96 4.10

1st+SNV 0.99 6.67 0.94 7.96 4.10

2nd 0.99 8.42 0.89 13.70 2.38

2nd+SNV 0.99 8.94 0.91 12.10 2.70
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The PLS models of sesamin in different regions showed the 
worst results at 1100-1300 nm, indicating that this region was 
not characterized for sesamin. All aspects of the result index 
are optimal at 1300-1700 nm, where the RMSEP decreases 
significantly and the RPD increases significantly in comparison 
with the full band. The results of the validation set are optimized 
at the same time as the calibration set optimization, which 
improves the prediction ability and reduces the used band. 
Therefore, the sesamin PLS model selects the optimal region 
between 1300 and 1700 nm, and its principal factor number is 
12, RC

2 = 0.98, RP
2 = 0.99, RMSECV, RMSEP, and RPD are 7.79, 

2.69, and 7.71, respectively.

Compared to the results of the sesamolin PLS model in 
different regions, RC

2 reached 0.99 at 1500-1700 nm, 1100-
1300+1500-1700 nm, 1300-1700 nm, and the full band. 
The RMSECV of the other three models was significantly 
lower than that of the full band, while their RMSEP and RPD 
were poor. RP

2 is only highest at 1300-1700 nm and full band, 
so the 1300-1700 nm region modeling is closer to the results 
of full band modeling. In the 1300-1700 nm and full-band 
modeling results, the RMSECV of the 1300-1700 nm model 
was significantly improved, and the RPD value decreased 

slightly. Therefore, the 1300-1700 nm region should be 
selected for the sesamolin PLS model, and the principal 
factor number is 26.

The calibration set results of the PLS model in each 
region of sesame lignans showed that RC

2 was similar, and 
there were 4 regions with RMSECV values around 7, among 
which the minimum value of the whole band was 6.67. 
The RP

2 difference of the validation set results of the above 
four models were small, and the RMSEP value was only about 
1100-1300+1500-1700 nm, with a small difference, as was 
the RPD value. However, the RMSECV of the full-band PLS 
model was significantly less than 1100-1300+1500-1700 nm, 
so the full-band region with a principal factor number of 
10 was selected for the sesame lignans PLS model. This may 
be because sesame lignans contain a variety of substances, 
and the modeling of the whole band region is more complete 
than that of other combinations, so the obtained results are 
more accurate. Finally, the prediction plots and regression 
residuals of the determination of PLS models based on 
sesamin, sesamolin, and sesame lignans from the NIR spectra 
are plotted (Figure 3).

Table 4. Results for different spectral band regions.

Lignans Spectral band /(nm) Factor
Calibration Set Validation Set

RPD
R2 RMSECV R2 RMSEP

Sesamin 1100-1300 7 0.88 15.67 0.82 9.15 2.27

1300-1500 10 0.97 12.51 0.93 5.24 3.96

1500-1700 7 0.94 9.40 0.95 4.39 4.73

1100-1500 8 0.96 14.64 0.93 5.22 3.97

1100-1300+ 1500-1700 8 0.96 9.10 0.99 2.93 7.08

1300-1700 12 0.98 7.79 0.99 2.69 7.71

1100-1700 10 0.98 7.83 0.98 3.36 6.17

Sesamolin 1100-1300 11 0.98 10.45 0.86 8.41 2.80

1300-1500 9 0.95 12.13 0.88 10.1 2.33

1500-1700 22 0.99 7.09 0.95 4.97 4.73

1100-1500 4 0.89 14.61 0.93 6.28 3.74

1100-1300+ 1500-1700 27 0.99 5.71 0.96 4.76 4.94

1300-1700 26 0.99 7.68 0.97 3.73 6.30

1100-1700 26 0.99 10.18 0.97 3.59 6.55

Sesame lignan 1100-1300 17 0.99 11.94 0.95 6.83 4.78

1300-1500 7 0.98 15.60 0.85 13.8 2.37

1500-1700 8 0.99 7.38 0.94 8.85 3.69

1100-1500 11 0.99 13.54 0.94 8.36 3.91

1100-1300+ 1500-1700 4 0.99 7.82 0.95 7.89 4.14

1300-1700 10 0.99 7.08 0.94 8.26 3.95

1100-1700 10 0.99 6.67 0.94 7.96 4.10
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4 Conclusion
In this study, a portable NIR spectrometer combined with the 

PLS modeling method was used to establish the quantification 
of sesamin, sesamolin, and sesame lignans in sesame oil in 
the spectral range of 1100-1700 nm. For optimizing the PLS 
model, different spectral preprocessing methods (1st, 2nd, 
SNV, and spectral bands were used), as well as the choice of 
model master factor number. For the sesamin, sesamolin, 
and sesame lignans PLS models, the pretreatment conditions 
were 2nd, SNV, and 1st+SNV, respectively, and the spectral 
bands were 1300-1700 nm, 1300-1700 nm, and 1100-1700 nm, 
respectively, and the principal factor numbers were 12, 26, and 
10, respectively, which gave better results. The concentrations 
of sesamin, sesamolin, and sesame lignans in the predicted 
samples were calculated using the three optimal PLS models, 
and the findings showed that they were reasonably similar to 

the values found in the HPLC analysis. As a result, the portable 
NIR spectrometer can realize the nondestructive, simple, and 
convenient detection of sesamin, sesamolin, and sesame lignans 
content in sesame oil, which is more convenient and cheaper 
than the large-scale NIR spectrometer in the laboratory and has 
a great application prospect.
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