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1 Introduction
Most people in South East Asia consume rice as their staple 

food. However, consuming rice may not be suitable for some 
persons since it is classified as high glycemic index food which 
can induce high blood sugar (Kim et al., 2003). Moreover, older 
people should be more aware of the negative impact of daily 
and high rice consumption (Golozar et al., 2017). People with 
diabetes and other degenerative diseases should also avoid rice 
consumption since high blood sugar may induce organ or cell 
damage (Al-Ishaq et al., 2019). Therefore, alternative food with 
a low glycemic index should be introduced as a new staple food 
for people of South East Asia.

Amorphophallus tubers have been known as a source of food 
in Japan and China. People of Japan and China has consumed 
shirataki noodles prepared from the tuber as part of their daily 
food. However, food product from the tuber has not been 
widely known for people in South East Asia. Amorphophallus 
tuber contains a high percentage (up to 55% on a dry basis) 
of a precious carbohydrate substance namely glucomannan 
(Yanuriati et al., 2017). Glucomannan is classified as a soluble 
dietary fiber compound that contains tons of functional benefits 
for human health. It has the ability to lower the risk of developing 
hemorrhoids and small pouches in the colon (diverticular disease). 

It shows to lower cholesterol levels (Keithley et al., 2013) and 
helps control blood sugar levels (Shah et al., 2015). Therefore, 
food products developed from glucomannan of Amorphophallus 
tuber will be beneficial for health.

Most Amorphophallus tubers cannot be consumed directly 
since they contain calcium oxalate, an anti-nutrient compounds, 
that can irritate skin and is harmful to kidneys (Singh et al., 
2018; Chairiyah et al., 2016; Siener et al., 2021). Therefore, a 
processing step should be carried out to remove the calcium 
oxalate from the flour of Amorphophallus tuber before it can be 
further processed to be a food product. Calcium oxalate can be 
removed from the flour of Amorphophallus tuber by means of 
separation techniques such as water soaking (Coronell Tovar et al., 
2019) producing safe Amorphophallus flour (Witoyo et al., 2021; 
Kumar et al., 2017; Witoyo et al., 2020).

To date not so many analytical methods have been developed 
to evaluate calcium oxalate content in food. The most common 
methods to determine the calcium oxalate are titration and 
spectrophotometric methods (Mishra et al., 2017; Alavi & West, 
1983; Ilarslan et al., 1997; Burrows, 1950; Fiske & Adams, 1931) 
and chromatographic method (Minocha et al., 2015; Huang & 
Tanudjaja, 1992). These methods require a long time for sample 
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preparation and need a higher amount of toxic chemicals. 
Therefore, the development of a quick analytical method to 
estimate the calcium oxalate content in food samples specifically 
in Amorphophallus flour is required. This research was aimed to 
evaluate the use of some analytical methods in the determination 
of calcium oxalate in Amorphophallus muelleri flour.

2 Materials and methods
2.1 Materials

Amorphophallus muelleri tuber was purchased from a local 
farmer in the district of Subang, province of West Java, Indonesia. 
Sodium bisulfite and sodium chloride salt were purchased from 
the local market. All chemicals for analysis were analytical grade.

2.2 Sample preparation

Samples of Amorphophallus muelleri flour were prepared 
by the following procedure. Amorphophallus muelleri corms 
were washed, peeled, shredded, and soaked in different solutions 
including water (W), sodium bisulfite 1000 ppm (B), salt of 
sodium chloride 3% (S), sodium bisulfite 1000 ppm, and salt of 
sodium chloride 3% (BS) for 30 min. Subsequently, the sample 
was rinsed with 10 liters of water and dried finally dried in an 
oven at 55 °C for 12 h (UM500; Memmert, Germany). The dried 
sample was ground by a grinder (HR2115; Philips, Indonesia) 
and sieved by a laboratory test sieve (D-42757; Retsch Gmbh, 
Germany) with an aperture of 150 µm. The control sample (C) 
was prepared from the tuber without soaking in any solutions. 
All samples were prepared from triplicate treatments.

2.3 FTIR analysis of samples

The FTIR spectra of samples were assayed by using an 
FTIR Spectrometer ALPHA II (Bruker instrument, Billerica, 
MA-USA). For each sample, reading was taken three times. 
The FTIR spectra were processed according to the method of 
Goodacre et al. (1998) with some modifications. All data were 
baseline corrected by using Origin Pro Software 2016.

2.4 Morphological properties and mineral analysis by 
scanning electron microscope- energy dispersive X-ray 
spectroscopy (SEM-EDS) method

The morphological properties of samples were observed 
by a Scanning Electron Microscope (SEM) (JEOL JSM IT300, 
Japan). The mineral content of samples was estimated by surface 
map analysis using the Energy Dispersive X-Ray Spectroscopy 
(EDS) feature of the SEM. The sample was mounted on a metal 
stub then it was coated with gold. An accelerating voltage of 
2 kV was used during observation.

2.5 The crystalline structure analysis

The crystalline structures of samples were assayed by 
using XRD (X-ray Diffraction,, Bruker, Germany) technique 
using a method of Nakorn  et  al. (2009) with modifications. 
The diffractogram of the sample was reported in the 2θ range 
of 5 to 70°.

2.6 X-ray fluorescence analysis of samples

The calcium content of samples was also evaluated by using 
the XRF method (XRF Portable Thermo Scientific, type of Niton 
XL3t 500 analyzers, Thermo Scientific, USA).

2.7 Determination of calcium oxalate by titration method

Calcium oxalate in the sample was determined by the protocol 
of Mishra et al. (2017) with some modifications. H2SO4 of 0.5 N 
with an amount of 30 mL was added into the sample of 0.5 g in a 
test tube, then it was heated in a water bath (water bath shaker type 
1086; Gesellschaft für Labortechnik (GFL), Germany) at 100 °C 
for 15 min. The sample then was filtered with Whatman filter 
paper of number 41 and rinsed with an aqua distillate of 30 mL. 
Then, 10 mL of filtrate was mixed with 40 mL of H2SO4 0.5 N and 
heated at 100 °C for 5 min. The sample then was immediately 
titrated with KMnO4 0.05 N until the titration endpoint was 
reached as indicated by light red color. Prior to analysis, the 
KMnO4 0.05 N was standardized. C2H2O4.2H2O of 0.0405 gr was 
mixed with 30 mL of H2SO4 0.5 N in a test tube, subsequently, 
it was heated at 100 °C for 5 min. The standard sample then 
was titrated with KMnO4 0.05 N until the titration end point 
was reached as indicated by light red color. The calcium oxalate 
content was calculated according to the following Equation 1:

( )

( )

4titration volume mL x Normality of KMnO  x 

Molecular weight of Calcium oxalate x dilution factorCalcium oxalate content %
weight of sample gr

=    (1)

3 Results and discussion
3.1 FTIR spectra of sample

The FTIR spectra of all samples are presented in Figure 1. 
According to Derrick et al. (1995), the presence of oxalate salts 
in a sample can be identified by the FTIR technique. The identity 
peak of oxalate functional groups including C=O appears at a 
wavenumber of 1600-1700 cm-1 and C-O shows at a wavenumber 
of 1200 cm-1. The result of this experiment showed that the 
identity peak of oxalate in four different Amorphophallus flour 
samples including the C=O group appeared at 1610 cm-1 and 
the peak C-O was observed at 1322 cm-1 (Figure 1). Nurlela & 
Arizal (2020) reported that the C=O groups in the glucomannan 
structure (Figure 2) show two identity peaks at a wavenumber 

Figure 1. FTIR spectra of Amorphophallus muelleri flour from different 
treatments (Untreated (C), soaked in water (W), soaked in sodium 
bisulfite solution (B), soaked in sodium chloride solution (S), soaked 
in sodium bisulfite-sodium chloride solution (BS).
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1739 cm-1 and 1736 cm-1. Nurlela & Arizal (2020) also noted 
that the presence of the C-O group was seen at a wavenumber 
of 1230 cm-1 and 1247 cm-1. Based on the FTIR spectra of 
oxalic acid (Figure 3), the group of O-H, C=O, and C-O can 
be identified at wavenumber 3424 cm-1, 1685 cm-1, 1263 cm-1, 
and 1126 cm-1, respectively (Spectral Database for Organic 
Compounds, 1999). Shifting of FTIR peaks might be occurred 
due to the manifestation of gradual changes in the IR frequency 
associated with a specific chemical bond under the influence of 
molecular interactions (Ryu et al., 2010).

Figure  1 indicates that the peak intensity of the control 
sample was the highest among the samples. Meanwhile, the 
peak intensity of Amorphophallus flour from BS treatment was 
the lowest one. These results implied that the oxalate content of 
the BS sample was the lowest among the samples. In terms of 
preparation of Amorphophallus flour with low oxalate content, 
the BS treatment can be suggested as the best practice to remove 
oxalate from the flour compared to other treatments such as 
soaking in sodium chloride solution (Rofi’ana et al., 2018) and 
soaking in sodium metabisulfite solution (James et al., 2013). 
Moreover, a rapid quantitative analysis to determine the oxalate 
content in Amorphophallus flour might be applied by using 
an FTIR technique if the calcium oxalate standard is available 
(Sarifudin et al., 2021).

3.2 Scanning electron micrograph of samples

The SEM images of Amorphophallus muelleri flour samples 
are shown in Figure 4. Some particles with irregular shapes are 
observed which could be the agglomerates of flour components 

including glucomannan, protein, amyloplast, and starch 
(Takigami et al., 1997). Needle-shaped or raphide crystals are 
detected in the images of all treatments as indicated by arrows 
in the image. The length of the raphide is about 150 µm with a 
width of about 5 µm. Images of samples C and W show a higher 
number of the raphide crystals compared to those of samples B, 
S, and BS. Chairiyah et al. (2016) reported four shapes of calcium 
oxalate crystal found in amorphophallus tuber including styloid, 
prism, druse, and raphide shapes. Moreover, the raphide shapes 
of calcium oxalate can be seen by the microscope technique 
(Ramos et al., 2020). Therefore, in tandem with the microscopy 
technique, an image of SEM can be an early quick analytical 
technique to observe the presence of calcium oxalate in the 
Amorphophallus flour sample (Takigami et al., 1997).

3.3 EDS analysis of samples

The elemental analysis was performed by using an energy-
dispersive X-ray spectrometer (EDS) which is a feature of 
SEM analysis. The reported trace elements are minerals that 
are concerned in this study including calcium and sodium as 
shown in Table 1. As expected, the percentage of calcium in 
the control sample was the highest among the samples. This 
result indicated that the calcium mineral in Amorphophallus 
flour is contributed by calcium oxalate. Treatments S and BS 
left sodium mineral residue in the sample. In terms of calcium 
oxalate removal, treatment S was found as the most effective 
one as indicated by the lowest value of calcium. Overall, the 
result followed the treatments in that the sodium residue were 
higher in B, S, and BS samples compared to that of C and W 
samples, whereas the calcium residues of C and W samples 
were higher than that of B, S, and BS samples (Nurlela & Arizal, 
2020; Rofi’ana et al., 2018; Witoyo et al., 2020). Therefore, EDS 
analysis can be used to evaluate the presence of calcium oxalate 
in the Amorphophallus flour sample.

3.4 The crystalline structure of samples

X-ray diffractogram patterns of samples are presented in 
Figure 5. Overall, all samples exhibit X-ray diffractogram pattern 
of A-type starch as indicated by the presence of its identity peaks 
at 2θ  of 17°, 18.1° and 23.3° (Li et al., 2013; Buléon et al., 1997). 
The percentage of starch is about 10-30% in Amorphophallus 
flour (Supriati, 2016). The presence of calcium oxalate crystal can 

Figure 2. Chemical structure of glucomannan (M: Mannose, G: Glucose) 
(Behera & Ray, 2016).

Figure 3. The FTIR Spectra of Oxalic Acid (Spectral Database for 
Organic Compounds, 1999).

Table 1. EDS analysis of Amorphophallus muelleri flour from different 
treatments (Untreated (C), soaked in water (W), soaked in sodium 
bisulfite solution (B), soaked in sodium chloride solution (S), soaked 
in sodium bisulfite-sodium chloride solution (BS).

Sample Na [%] Ca [%]
C 0.00 ± 0.00* 1.76 ± 0.06
W 0.00 ± 0.00 1.34 ± 0.05
B 0.21 ± 0.06 1.2 ± 0.06
S 10.58 ± 0.16 0.32 ± 0.03

BS 8.64 ± 0.16 0.65 ± 0.04
*Average ± standard deviation.
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be detected in the X-ray diffractogram of all samples. Identity 
peaks of calcium oxalate are shown by the X-ray diffractogram 
at 2θ  of 15.0°, 15.4°, 24.5°, 30.2°, 31.6°, 36.1°, 38.4°, 40.1°, and 
43.8° (Ahmed  et  al., 2012; Orlando  et  al., 2008). Lastly, the 
presence of sodium chloride residue from treatment S and BS 
is also detected by the identity peaks of NaCl crystal at 2θ  of 
27.4°, 31.7°, 45.5°, 56.5°, and 66.2° (Nickels et al., 1949). Based 
on this result, XRD can be suggested as a rapid analytical tool to 
detect the calcium oxalate in the Amorphophallus flour sample.

3.5 X-ray fluorescence analysis of samples

The result of the XRF analysis for the determination of 
calcium is presented in Figure  6. As expected, the control 
sample exhibited the highest calcium content (8.87%). Even 
though the results of calcium content determination by XRF 
were different from those of EDS, however, their trends were 
similar. The difference could be caused by the different analytical 
parameters among the analysis. The X-ray fluorescence is a 

Figure 4. Micrograph of Amorphophallus muelleri flour from different treatments (Untreated (C), soaked in water (W), soaked in sodium bisulfite 
solution (B), soaked in sodium chloride solution (S), and soaked in sodium bisulfite-sodium chloride solution (BS) in different magnification 
levels (1000X and 5000X).
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fast, low cost, and non-destructive method for determining 
the concentration of elements in a sample (Peruchi et al., 2014) 
This technique has been used for screening inorganic nutrients 
in soybean (Otaka  et  al., 2014); wheat flour (Peruchi  et  al., 
2014); and cassava (Udoro et al., 2020). Therefore, XRF can be 
used as an analytical tool to determine calcium oxalate in the 
Amorphophallus flour sample.

3.6 Calcium oxalate content by titration method

The results of calcium oxalate determination by using the 
titration method are shown in Figure 7. As expected, the control 
sample contained the highest percentage of calcium oxalate 
residue (13.5%). Meanwhile, treatments of S and BS produced 
Amorphophallus flour with low calcium oxalate content of 
6.2 and 6.4%, respectively. Potassium permanganate titration 
is the most common method to determine calcium oxalate 
content in food samples (Karamad et al., 2019; Naik et al., 2014). 
However, this method is limited due to time and chemical 
consumption. Therefore, other methods are developed in order 
to overcome the limitation of the titration method in calcium 

oxalate determination such as capillary electrophoresis (Trevaskis 
& Trenerry, 1996) and high-performance liquid chromatography 
(Martz et al., 1990). Despite many limitations of the potassium 
permanganate titration technique, this method might be used 
as a comparison method in detecting calcium oxalate in the 
Amorphophallus flour by other rapid analytical methods. This 
is because the method can determine total oxalic content in 
the Amorphophallus flour sample including soluble oxalic 
acid and non-soluble form of calcium oxalate (Karamad et al., 
2019). Prior to the permanganate titration, all oxalic contents 
in the sample are being solubilized by a strong acid solution 
i.e. sulfuric acid. The titration method uses the redox principle 
in which the oxidating agent, i.e. KMnO4, oxidizes the soluble 
oxalate through titration. The deviation between replicates 
usually comes from the titration endpoint. In fact, in nature 
oxalate compounds can be found in dissolved and undissolved 
forms. Dissolved oxalate is usually formed when oxalate bind 
with potassium (K+) ions. In contrast, the undissolved form of 
oxalate will be formed if oxalate compounds bind with calcium 
(Ca2+) ions (Chairiyah et al., 2016). Therefore, in this context, the 
titration method could be a more sensitive method compared 
to the other instrumental methods.

4 Conclusions
Some analytical instruments have been evaluated in the 

determination of calcium oxalate in Amorphophallus muelleri 
flour. The identity peak of oxalate in Amorphophallus muelleri 
flour can be identified by FTIR technique including C=O group 
which appeared at a wavenumber of 1610 cm-1. Needle-shaped 
or raphide crystals of calcium oxalate in Amorphophallus 
flour can be observed by SEM. The peaks identity of calcium 
oxalate crystals in X-ray diffractogram were observed at 2θ  of 
15.0°, 15.4°, 24.5°, 30.2°, 31.6°, 36.1°, 38.4°, 40.1°, and 43.8°. 
XRF can be used to estimate the calcium oxalate content in 
Amorphophallus flour based on the determination of calcium 
minerals. The potassium permanganate titration technique can 
be used to determine total oxalic in the Amorphophallus flour 
sample including soluble oxalic acid and non-soluble form of 
calcium oxalate. Treatment S was found as the most effective 

Figure 5. X-ray diffraction patterns of Amorphophallus muelleri flour 
from different treatments (Untreated (C), soaked in water (W), soaked 
in sodium bisulfite solution (B), soaked in sodium chloride solution 
(S), soaked in sodium bisulfite-sodium chloride solution (BS).

Figure 6. Calcium content of Amorphophallus muelleri flour from 
different treatments (Untreated (C), soaked in water (W), soaked in 
sodium bisulfite solution (B), soaked in sodium chloride solution (S), 
soaked in sodium bisulfite-sodium chloride solution (BS) using XRF 
method.

Figure 7. Calcium oxalate content of Amorphophallus muelleri flour 
from different treatments (Untreated (C), soaked in water (W), soaked 
in sodium bisulfite solution (B), soaked in sodium chloride solution 
(S), soaked in sodium bisulfite-sodium chloride solution (BS).
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