
Food Sci. Technol, Campinas,      v42, e51021, 2022 1

Food Science and Technology
ISSN 0101-2061 (Print)

ISSN 1678-457X (Online)

OI: D https://doi.org/10.1590/fst.51021

1 Introduction
Multiple transient myocardial ischemia/reperfusion can 

significantly attenuate the myocardial damage in the subsequent 
prolonged ischemia, also known as ischemic preconditioning 
(IPC), which is the most potent endogenous protective 
mechanism discovered so far (Huang et al., 2019a). Moreover, 
anaesthetics pretreatment has also been found to exert similar 
myocardial protective effects, however, most studies focus on 
normal myocardium (Pasqualin et al., 2016; Qi et al., 2019). As a 
new type of inhalation anesthetics, sevoflurane is widely used 
in pediatric anesthesia due to its rapid induction and recovery, 
stable and safe effect (Lavi et al., 2014). Animal experiments 
show that pretreatment and post-treatment of sevoflurane exert 
protective effects on the myocardium (Zhang  et  al., 2018a). 
In addition, sevoflurane pretreatment has also been investigated 
in adult cardiac surgery (Dong et al.,  2019).

Accumulative experimental results have suggested that 
ROS is closely associated with cellular events, such as protein 
oxidation and folding (Guo  et  al., 2018). Excessive cellular 
ROS production or changes in the state of redox reactions can 
directly or indirectly affect the homeostasis of the endoplasmic 
reticulum and protein folding, thereby inducing endoplasmic 
reticulum stress (Jun et al., 2019; Li et al., 2018).

PPARγ a ligand-activated transcription factor, belongs to 
the nuclear hormone receptor superfamily (Qi  et  al., 2020). 
It is highly expressed in tissues with vigorous metabolism of 
fatty acid, including liver, heart and kidney, and also exists in 

the microvessels of various organs, neurons and glia, including 
the retina (Rehman  et  al., 2020). PPARγ plays an important 
role in regulating glucose and lipid metabolism (Yuan et al., 
2019). Recent studies have found that in addition to metabolism 
regulation, PPARγ and its ligands exert important regulatory 
effects on oxidative stress, which have therapeutic effects in 
various disease models (Gao et al., 2020; Li et al., 2020b).

Fibrinogen-like protein 2 (FGL2) also known as fibrin, was 
first discovered in mice infected with type 3 murine hepatitis virus, 
with expression in other organs of the human body (Fan et al., 
2019). Fgl2 gene silencing has been confirmed to promote the 
proliferation and migration of cardiac microvascular endothelial 
cells, suggesting that Fgl2 is involved in the regulation of 
angiogenesis, which might be associated with the up-regulated 
expression of Angiopoietin 1 and 2 (Li T et al., 2020; Li et al., 
2019).This study aims to investigate the mechanism and 
effects of FGL2 in myocardial ischemia/reperfusion injury 
in mice following sevoflurane anesthetic.

2 Materials and methods
2.1 Animal experiment

Male BALB/c mice were kept under special pathogens free 
(SPF) condition at 22-23 °C with 65-70% relative humidity 
and 12 h light and dark cycles. All mice (n = 30) were grouped 
into sham (n = 10), ischemia/reperfusion (I/R) injury (n = 10), 
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I/R+SAP group (n = 10). Mice of SAP group were placed in a 
30 cm × 30 cm × 30 cm square box with oxygen and anesthetic 
gas (60 mg/kg, pentobarbital), 2.5% Sevoflurane was pumped 
into the box for 1 h as literature. All mice of were injected with 
1% pentobarbital sodium solution (Sigma-Aldrich USA). Mice 
were fixed in the supine position, the skin of the neck and thorax 
were disinfected, and skin of the anterior cervical area was cut 
using an ophthalmic scissor. The trachea was exposed, and the 
left coronary artery was ligated as literature (Zhao et al., 2019).

Next, All mice (n = 30) were grouped into control (n = 10), 
Anti-FGL2 (n = 10), Anti-FGL2+PPAR I group (n = 10). All mice 
were I/R+SAP group, mice of Anti-FGL2 were mice of I/R+SAP 
model were treated with anti-FGL2 body (1 μg of mice, i.p.), 
mice of Anti-FGL2+PPAR I group were mice of I/R+SAP model 
were treated with anti-FGL2 body (1 μg of mice, i.p.) and PPARγ 
antagonist (GW9662, 1 mg/kg, i.p.).

The heart rate (HR), left ventricular end-diastolic pressure 
(LVEDP), left ventricular developed pressure (LVDP), maximum 
rate of rise of left ventricular pressure [dp/dtmax (+)], and 
maximum rate of decline of the left ventricular pressure 
[dp/ dtmax (-)] were measured using the arched ST segment 
as literature (Zhao et al., 2019).

2.2 Histological and immunohistochemistry analysis

After 24 hours of I/R, hearts tissues were cut from the root of 
the aorta and quickly washed with phosphate buffer saline (PBS). 
Then, tissue were fixed by paraformaldehyde for 24 h, slicing 
into pieces at a thickness of 5 μm by using a paraffin microtome.

2.3 Western blot analysis

Proteins were extracted from heart tissue samples or cell 
samples using RIPA lysis buffer. Proteins were resolved on 
polyacrylamide gels and transferred onto PVDF membranes.

Membranes were blocked with 5% milk for 1 h and incubated 
with primary antibodies. 

Membranes were washed with TBST for 15 min and incubated 
with secondary antibodies. Protein blanks were tested by an 
enhanced chemiluminescence system and densitometry was 
performed using ImageLab software.

2.4 Quantitative real-time PCR

Total RNA was extracted from liver tissues using TRIzol 
reagent. total RNA was reservetranscribed into cDNA with a 
ReverTra Ace qPCR RT Kit. Gene expression was detected using 
using SYBR Green Real-time PCR Master Mix by a real-time 
PCR system. Gene expressions were calculated based on the 
2-ΔΔCt method.

2.5 Cytokine enzyme-linked immunosorbent assay (ELISA)

Serum samples were collected and centrifuged and measured 
ROS production, MDA, SOD, GSH and GSH-px levels. ELISA kits 
were purchased from Shanghai Jingkang Biological Engineering 
Co., Ltd., (Shanghai, China).

2.6 Cell culture, treatment and lentivirus transduction

H9C2 cells were cultured with DMEM containing 10% FBS 
at 37 °C in 5% CO2. H9C2 cells were transfected with Fgl2, 
siFgl2, PPAR, siPPAR, negative mimics using Lipofectamine 
2000 (Invitrogen, USA). After 48 h, cells were treated by 3% 
sevoflurane for 6 h and a mixture of 95% O2 + 5% CO2 for 24 h 
as literature (Zhao et al., 2019; Kang & Wang, 2019)

2.7 Statistical analysis

Data are expressed as the means ± standard deviation (SD). 
Values of p < 0.05 was considered to be statistically significant. 
Comparisons among multiple groups were assessed by t-test or 
one-way analysis of variance (ANOVA).

3 Results
3.1 Fgl2 aggravates myocardial I/R injury following 
sevoflurane

To address the relevance of Fgl2 expression and I/R injury 
following sevoflurane, this study analyzed the expression of 
Fgl2 in mice of I/R injury following sevoflurane. Fgl2 mRNA 
expression was up-regulated in mice of I/R injury following 
sevoflurane (Figure 1A). Then, we used Fgl2 protein to investigate 
the role of fgl2 in I/R injury following sevoflurane. We found that 
Fgl2 protein reduced HR, LVDP, dp/dtmax (+) and dp/dtmax (-), 
increased LVEDP levels, myocardial infarct size and AI in mice 
of I/R injury following sevoflurane, compared with mice of I/R 
injury following sevoflurane (Figure 1B-1I).

3.2 Fgl2 suppressed PPAR signaling pathway in vivo model

The investigate that mechanism of FGL2 in myocardial ischemia/
reperfusion injury of mice following sevoflurane, we identified 
specific genes in ischemia/reperfusion injury with over-expression 
of FGL2 that are relevant to the pathway analysis (Figure 2A-2B). 
We found that Fgl2 suppressed PPAR signaling pathway in 
vivo and vitro model of myocardial ischemia/reperfusion 
injury following sevoflurane (Figure 2C). Over-expression of 
FGL2 induced Fgl2 protein expression, and suppressed PPARγ 
protein expression in vitro model (Figure 2D-2F). Down-regulation 
of FGL2 suppressed Fgl2 protein expression, and induced 
PPARγ protein expression in vitro model (Figure  2G-2I). 
Next, Fgl2 protein also suppressed PPARγ protein expression 
in myocardial ischemia/reperfusion injury of mice following 
sevoflurane, (Figure  2J-2K). IF showed that over-expression 
of FGL2 reduced PPARγ protein expression in vitro model 
(Figure 2L).

3.3 Fgl2 promoted ROS production in vitro model

To evaluate the function of Fgl2 in mice of I/R injury 
following sevoflurane, we examined the effects of Fgl2 on ROS 
production in vitro model. Over-expression of Fgl2 increased 
ROS production levels and MDA levels, and reduced SOD, 
GSH and GSH-px levels in vitro model (Figure  3A-3F). 
Down-regulation of Fgl2 reduced ROS production levels and 
MDA levels, and increased SOD, GSH and GSH-px levels in 
vitro model (Figure 3G-3L).
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3.4 The activation of PPAR signaling pathway reduced the 
function of Fgl2 in vivo and vitro model

The study rther investigate the role of PPAR signaling 
pathway the function of Fgl2 in vivo and vitro model. Anti-
body of Fgl2 induced PPARγ protein expression, elevated HR, 
LVDP, dp/dtmax (+) and dp/dtmax (-), reduced LVEDP levels, 
myocardial infarct size and AI, inhibited MDA levels, and 
enhanced SOD, GSH and GSH-px levels in mice of I/R injury 
following sevoflurane (Figure  4). Then, PPARγ antagonist 
(GW9662, 1 mg/kg, i.p.) suppressed PPARγ protein expression, 
repressed HR, LVDP, dp/dtmax (+) and dp/dtmax (-),induced 
LVEDP levels, myocardial infarct size and AI, promoted MDA 
levels, and restrained SOD, GSH and GSH-px levels in mice by 
anti-body of Fgl2 of I/R injury following sevoflurane, compared 
with anti-body of Fgl2 group (Figure 4).

Next, in vitro model, PPARγ plasmid induced PPARγ 
protein expression, reduced ROS production levels and MDA 
levels, increased SOD, GSH and GSH-px levels in vitro model by 
over-expression of Fgl2 group (Figure 5). SiPPARγ suppressed 
PPARγ protein expression, promoted ROS production levels and 
MDA levels, decreased SOD, GSH and GSH-px levels in vitro 
model by over-expression of Fgl2 group (Figure 6).

4 Discussion
Sevoflurane is a commonly used inhalation anesthetics in 

clinical practice at present (2). It has the advantages of rapid 
induction, rapid recovery, and mild circulation inhibition 
(Qiao et al., 2019). A large number of studies have shown that 
sevoflurane pretreatment can give rise to similar myocardial 

protection with ischemic preconditioning (Pasqualin et al., 2016; 
Zhao et al., 2019; Zhang et al., 2018b) Our findings provided 
evidence strongly suggested that Fgl2 mRNA expression was 
up-regulated in mice of I/R injury following sevoflurane. 
Fgl2 protein reduced HR, LVDP, dp/dtmax (+) and dp/dtmax 
(-), increased LVEDP levels, myocardial infarct size and AI in 
mice of I/R injury following sevoflurane. Zheng et al. showed that 
FGL2 knockdown improves heart function in the experimental 
autoimmune myocarditis rats (Zheng et al., 2018), which may be 
an effectively protective target for I/R injury following sevoflurane.

Studies have found that myocardial ischemia/reperfusion 
generally induces oxidative stress in the body to cause inflammatory 
response, which in turn aggravates cerebral ischemia and hypoxia 
(Zhao et al., 2018c). Therefore, how to effectively inhibit the 
oxidative stress response and inflammatory factor secretion in 
the course of myocardial ischemia/reperfusion is of great clinical 
significance for the clinical treatment of myocardial damage 
(Yu et al., 2015). Effectively, it was found that Fgl2 promoted 
ROS production in vitro or vivo model. Shafik et al. curcumin 
ameliorative effects against acute pancreatitis via fgl-2 expression 
(Shafik & Abou-Fard, 2016). Our data suggested that Fgl2 promoted 
ROS-induced oxidative stress, which facilitated the progression 
of I/R injury following sevoflurane.

PPAR is a member of the nuclear receptor superfamily 
and is a ligand-dependent transcription factor (Zhao YB et al., 
2019). PPAR can regulate the expression of specific target genes 
containing PPAR response elements in various promoter regions 
at the transcription level, and modulate various biological effects, 
including fatty acid and glucose metabolism, and oxidative stress 

Figure 1. Fgl2 aggravates myocardial I/R injury following sevoflurane. Fgl2 mRNA expression in mice of I/R injury following sevoflurane (A); 
LVDP (B), LVEDP (C), dp/dtmax (+) (D), dp/dtmax (-) (E), myocardial infarct size (F), myocardial tissues of mice by HE staining (G), AI (H) 
and HR (I) in mice of I/R injury following sevoflurane by Fgl2 protein. Sham, sham control mice group; I/R, I/R injury mice group; I/R+SAP, 
I/R injury mice with sevoflurane group; Fgl2+I/R+SAP, I/R injury mice with sevoflurane and Fgl2 protein group. ##p<0.01 compared with sham 
control mice group or I/R injury mice with sevoflurane group; ###p<0.01 compared with I/R injury mice group. 

Original Article



Food Sci. Technol, Campinas,      v42, e51021, 20224

FGL2 aggravates myocardial I/R injury in mice following sevoflurane

inhibition (Xu et al., 2005; Zhu et al., 2018). In the later part of the 
study, we found that Fgl2 suppressed PPAR signaling pathway in 
vivo and vitro model; The activation of PPAR signaling pathway 

reduced the function of Fgl2 in vivo and vitro model. Hu et al. 
(2020) suggest that Fgl2 aggravates nonalcoholic steatohepatitis 
via interaction with PPAR (Hu et al., 2020; Momchilova et al., 

Figure 2. Fgl2 suppressed PPAR signaling pathway in vivo model. Heat map, results figure and refine results of gene chip (A, B and C); Fgl2 
and PPARγ protein expression in vitro model by over-expression of Fgl2 (D, E and F); Fgl2 and PPARγ protein expression in vitro model by 
down-regulation of Fgl2 (G, H and I); PPARγ protein expression in mice of I/R injury following sevoflurane by Fgl2 protein (J and K); PPARγ 
protein expression in vitro model by over-expression of Fgl2 (IF, L). Negative, negative mimics group; Fgl2, over-expression of Fgl2 group; SiFgl2, 
down-regulation of Fgl2 group; I/R injury mice with sevoflurane group; Fgl2+I/R+SAP, I/R injury mice with sevoflurane and Fgl2 protein group. 
##p<0.01 compared with negative mimics group or I/R injury mice with sevoflurane group. 
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Figure 3. Fgl2 promoted ROS production in vitro model. ROS production (A and B), MDA (C), SOD (D), GSH (E) and GSH-px (F) levels 
in vitro model by over-expression of Fgl2; ROS production (G and H), MDA (I), SOD (J), GSH (K) and GSH-px (L) levels in vitro model by 
down-regulation of Fgl2. Negative, negative mimics group; Fgl2, over-expression of Fgl2 group; SiFgl2, down-regulation of Fgl2 group. ##p<0.01 
compared with negative mimics group. 

Figure 4. The activation of PPAR signaling pathway reduced the function of Fgl2 in vivo and vitro model. PPARγ protein expression (A and B), 
HR (C), LVDP (D), LVEDP (E), dp/dtmax (+) (F), dp/dtmax (-) (G), myocardial infarct size (H), myocardial tissues of mice by HE staining (G), 
AI (I) and HR (J), MDA (K), SOD (L), GSH (M) and GSH-px levels (N) in mice of I/R injury following sevoflurane. Control, I/R injury mice 
with sevoflurane group; Anti-Fgl2, I/R injury mice with sevoflurane by anti-Fgl2 group; Anti-Fgl2+PPAR i, I/R injury mice with sevoflurane 
by anti-Fgl2 and GW9662 group.  ##p<0.01 compared with I/R injury mice with sevoflurane group; ###p<0.01 compared with I/R injury mice 
with sevoflurane by anti-Fgl2 group. 
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Figure 6. The activation of PPAR signaling pathway reduced the function of Fgl2 in vivo and vitro model. PPARγ protein expression (A and B), 
ROS production (C and D), MDA (E), SOD (F), GSH (G) and GSH-px (H) levels. Negative, negative mimics group; Fgl2, over-expression of 
Fgl2 group; Fgl2+PPAR, over-expression of Fgl2 and PPAR group. ##p<0.01 compared with negative mimics group; ###p<0.01 compared with 
over-expression of Fgl2 group. 

Figure 5. The inactivation of PPAR signaling pathway reduced the function of siFgl2 in vitro model. PPARγ protein expression (A and B), ROS 
production (C and D), MDA (E), SOD (F), GSH (G) and GSH-px (H) levels. Negative, negative mimics group; SiFgl2, down-regulation of Fgl2 
group; SiFgl2+siPPAR, down-regulation of Fgl2 and PPAR group. ##p<0.01 compared with negative mimics group; ###p<0.01 compared with 
down-regulation of Fgl2 group. 
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2020; Huang et al., 2019b). These data suggested that fgl2 may 
cooperate with PPAR signaling pathway in the progression of 
I/R injury following sevoflurane.

In conclusion, our results demonstrate thatFgl2 promoted 
ROS-induced oxidative stress in I/R injury following sevoflurane by 
PPARγ signaling pathway. Thus, Fgl2 might serve as a therapeutic 
target in the treatment of I/R injury following sevoflurane. 
We hope that our findings will pave a way for future therapies 
against I/R injury following sevoflurane.
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