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ABSTRACT: This study aims to manufacture and apply polymer-cementitious blends based on a 

combination of epoxy polymer and Ordinary Portland Cement (OPC) for timber beam repair. The 

material was used to repair timber beams of “Maçaranduba” (Manilkara sp.) and “Cedro doce” 

(Cedrella spp) wood species. A full factorial design was conducted to investigate the effect of 

cement particle content (0wt%, 30wt%, 40wt% and 50wt %), type of cement (ASTM-II and ASTM-

III), and pigment addition (0wt% and 0.2wt%) on the physical and mechanical properties of the 

blend. The cement content factor affected all properties investigated. The highest elastic modulus 

was achieved by the blends produced with 50wt% of cement and 0.2wt% of pigment inclusion. This 

condition was used to repair the timber beams evaluated under four-point bending test. The 

insertion of the blends in timber beams achieved superior load levels to the unreinforced woods in 

both species, inferior load levels to the reference condition (without defects) in “Cedro doce”, and 

superior to the reference condition in “Maçaranduba”. These results were justified by the low 

density of “Cedro doce”, providing a better blend-wood interface adhesion. 
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INTRODUCTION 

Beams and columns are structural elements present in most of architectural designs, which are 

commonly made of timber in both rural and urban buildings. Wood is a renewable resource which 

has the most suitable properties depending of its application, despite of its lightness as material. 

ALMEIDA et al. (2014) have reported the wood strength-density ratio is up to four times higher 

than steel. As reported for other materials, constructions made with timber beams require 

appropriate utilization and maintenance (CHRISTOFORO et al., 2013). Improper treatment can 

lead to problems which may compromise the purposes for which the wood beams were designed 

(FERREIRA et al., 2014). Repairs or reinforcements of certain areas may be necessary to increase 

the structural support capacity, so that the whole structure remains intact. Other factors, such as 

design or construction errors, strength degradation, aging of materials and changes in design 

standards (stricter provisions or accidents) have motivated the development of new materials for 

repairing. Composites have been widely used to repair structural beams (MARQUES et al., 2015), 

with immunity to corrosion, high strength and a simple application technique (aesthetics is not 

greatly affected). 

Laminate composite materials made with natural (sisal, palm fibre, jute, etc.) and synthetic 

fibres (glass and carbon) have been used to reinforce timber beams, as indicated in the literature 

(LYONS & AHMED, 2005; BORRI et al., 2005; CORRADI et al., 2006; ALAM et al., 2009; 

CAMPILHO et al., 2009; JANKOWSKI et al., 2010; MOHAMAD et al.,2011; FIORELLI &DIAS, 

2011; CARVALHO et al.,2012; GARCÍA et al.,2013; FERREIRA et al., 2014; and, MIOTTO & 

DIAS, 2015), wherein reinforcement with laminated composites in timber elements provide good 

results. 
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The use of particulate composites as reinforcement for timber beams has also been 

investigated in the literature. BRAZ et al. (2013) have reported the use of a polymer-ceramic blend 

(PANZERA et al., 2010) to repair the compressive zone of timber beams. The finite element 

analysis (FEA) has pointed out the polymer-cementitious blend as an alternative solution for 

reinforcement of timber beams, presenting excellent strength and stiffness properties in 

compression. 

Cementitious composites have been reinforced with synthetic and natural fibres. A thermoset 

polymer phase has also been added to enhance the mechanical properties of cementitious 

composites. PANZERA et al. (2010) have evaluated the effect of the epoxy polymer combined with 

the white Portland cement. The incorporation of 50wt% (weight fraction-wt%) of epoxy polymer 

into a Portland cement paste resulted in superior mechanical properties compared to the reference 

condition. 

PANZERA et al. (2012) have also reported the effect of carbon nanotube (CNT) inclusions 

into polymer-cementitious composites. The CNTs must be treated to avoid the clustering effect, in 

which hinders the mechanical properties of the composites. Composites made with 25wt% of 

polymeric phase, without water and CNTs inclusions have exhibited superior mechanical strength. 

CNTs can be applied as a piezoresistive sensor being able to monitor the stress-strain field of civil 

structures. 

Cement mortars have been prepared with steatite (soapstone) particles and epoxy polymer for 

restoration proposals. A higher compressive strength (43 MPa) and a lower porosity level (0.19%) 

have been achieved when steatite particles ranging from 0.42 mm to 1.41 mm and 40wt% of epoxy 

polymer have been added. This setup condition presented similar aesthetic features when compared 

to a natural soapstone surface (COTA et al., 2012). 

The reinforcement and restoration of timber beams has also been conducted by using 

laminated composites. A similar research has been carried out on the use of particulate composites 

and blends for timber repairing proposal. Based on the previous research performed by PANZERA 

et al. (2010), this study evaluates the physical and mechanical properties of a polymer-cementitious 

blend manufactured with epoxy polymer and Ordinary Portland Cement (OPC) in order to repair or 

to reinforce timber beams. A powder pigment was added to the mixture to attain similar aesthetic 

characteristics of wood beam surface. The effect of the pigment particles into the physical and 

mechanical properties of the manufactured material was also assessed in this study. 

 

MATERIAL AND METHODS 

Epoxy resin (Araldite-M) and hardener (HY 956) were supplied by Huntsman Company 

(Brazil). They were manually mixed based on a ratio of 1:0.4 (resin:hardener) ratio, and the 

manufactured blend were inserted into silicone moulds (compressive test) and drawn after 72 hours 

of curing time. The Ordinary Portland Cement (OPC-Type II and III) was supplied by Cauê 

Company (Brazil). Brown-coloured powder pigment was supplied by Xadrez Company (Brazil). 

Compressive tests on the repairing material were carried out based on the American Standard 

D695-02 (ASTM, 1998) by the use of a universal testing machine Shimadzu AG-X Plus (100 KN 

load capacity) with a non-contacting video extensometer. Physical tests were conducted based on 

British Standard BS10545-3 (1997). Ten cylindrical specimens of 40mm in height and 20mm in 

diameter (H/D = 2) (ASTM, 1998) were fabricated for each experimental condition and replicate to 

perform the physical (five specimens) and the mechanical (five specimens) tests. Two replicates 

were considered in this experiment, with a total of 320 specimens. 

Experimental factors (levels) investigated in this research were: OPC content (0wt%, 30wt%, 

40wt% and 50wt%), OPC type (ASTM-II and ASTM-III), and pigment addition (0wt% and 

0.2wt%). A full factorial design of 4122 was conducted to evaluate the effect of the factors on the 

following response variables: modulus of elasticity (E) and compressive strength (S), apparent 

density (ρa), bulk density (ρb), and apparent porosity (P), running the total of 16 experimental 
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conditions (Table 1). The bulk density was obtained via Archimedes principle following the 

recommendations of BS10545-3 (1997). The bulk density was calculated by the quotient of dry 

mass (m1) divided by the external volume (V), including pores. The external volume (V) is 

determined subtracting the wet specimen mass (m2) by the suspended wet specimen mass (m3), both 

impregnated by immersion under vacuum. The apparent porosity, expressed as a percentage, is the 

relationship of the volume of the open pores of the test specimen to its exterior volume. The 

apparent porosity (P) is calculated using the equation: 

 
 

TABLE 1. Experimental conditions of the blend material. 

EC Pigment (wt%) OPC (Type) OPC (wt%) 

1 0.2 ASTM-II 0 

2 0.2 ASTM-II 30 

3 0.2 ASTM-II 40 

4 0.2 ASTM-II 50 

5 0.2 ASTM-III 0 

6 0.2 ASTM-III 30 

7 0.2 ASTM-III 40 

8 0.2 ASTM-III 50 

9 0 ASTM-II 0 

10 0 ASTM-II 30 

11 0 ASTM-II 40 

12 0 ASTM-II 50 

13 0 ASTM-III 0 

14 0 ASTM-III 30 

15 0 ASTM-III 40 

16 0 ASTM-III 50 

Experimental conditions (EC); weight fraction (wt%); ordinary Portland cement (OPC); American Society for Testing and Materials 

standards II and III (ASTM). 

 

The analysis of variance (ANOVA) at 5% of significance level (α) was applied to identify the 

main and interaction effects on the response-variables. Equivalence among mean values was 

assumed as a null hypothesis (H0), and non-equivalence as an alternative hypothesis (H1). P-values 

equal to or less than 0.05 imply rejection of H0, which reveals that the factor significantly affected 

the evaluated properties. ANOVA was evaluated with the support of Minitab® software, version 

14. 

ANOVA was validated by the Anderson-Darling test, which evaluates the normal distribution 

of the data, and Bartlett and Levene tests, which verify the homogeneity of variances between 

treatments. The Anderson-Darling test considers a normal distribution as null hypothesis and non-

normality as alternative hypothesis. A P-value greater than the significance level of (0.05) implies 

to accept H0, rejecting it otherwise. Bartlett and Levene test considers the equivalence of variances 

among treatments as the null hypothesis, and non-equivalence as alternative hypothesis. P-value 

greater than the significance level of (0.05) implies to accept H0, rejecting it otherwise. 

Timber beam dimensions were set at 1000 × 45 × 45 mm3 (Figure 1), which were evaluated 

via four-point static bending test to analyse the behaviour of the reinforcing material. A cavity of 1 

mm × 80 mm was made in the middle of the timber beam (Figure 1b) to insert a structural defect. 

The best setup condition (Table 1) which results in the highest compressive modulus of elasticity 

was used to repair the timber beams (Figure 1c) of “Maçaranduba” (Manilkara sp) and “Cedro 

doce” (Cedrella spp) wood species. 
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(a) 

 
(b) 

 
(c) 

FIGURE 1. Experimental conditions for timber beams: reference-RC (a), with failure-WF (b) and   

repaired failure-RF (c). 

 

Four-point bending tests were conducted in a non-destructive way, following the 

recommendations of the Brazilian Standard ABNT NBR 7190 (1997). The largest displacement 

value was limited to L/200 ratio (L is the support distance, L=1000 mm in Figure 1), in which 

ensured the serviceability limit state (SLS). The load was recorded when 5 mm of displacement was 

achieved. This methodology enabled to perform three consecutive tests in the same specimen for 

each experimental condition. Ten specimens per wood species with 12% moisture content were 

evaluated, running a total of 60 bending tests. The ANOVA was conducted to investigate the effect 

of the experimental conditions (RC, WF and RF) on the load values related to the limit 

displacement of 5 mm. After the load recording at L/200, the bending test was performed until 

failure in order to compare and evaluate the failure modes at reference (RC), with failure (WF) and 

repaired failure (RF) conditions (see Figure 1). 

Besides the bending tests, six specimens for each wood species were manufactured to be 

evaluated in compressive tests. The modulus of elasticity (Ec0) and the compressive strength (fc0) in 

a parallel direction to the grain were determined. Six specimens were also used to obtain the 

apparent density (ρ12%- density obtained for moisture content of 12%) and porosity (P) following 

the prescriptions of the Brazilian standard (ABNT NBR 7190:1997). These properties were useful 

to better assess the results achieved for the static bending tests. 

A micro structural analysis was conducted by scanning electron microscopy with energy 

dispersive spectroscopy (EDS) to verify the polymer-ceramic blends. Hitachi TM-3000 microscope 

was used in backscattered electron mode operating at 15 kV. 

 

RESULTS AND DISCUSSION 

Blend Evaluation 

Table 2 indicates the physical and mechanical properties attained for the polymer-

cementitious blends (C1-C16). It is also presented the variation coefficient (VC %) of the E, σf, ρB, 

ρA, and P ranged in the intervals [6%, 13%], [6%, 19%], [2%, 7%] [2%, 6 %], [5%, 15%] and [3%, 

18%], respectively, which consider the lowest and highest values found for the 16 experimental 

conditions investigated. 
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TABLE 2. Physical and mechanical properties of the blends. 

EC E (MPa) σf (MPa) ρB (g/cm3) ρA (g/cm3) P (%) 

C1 5198 75.82 0.22 1.25 1.70 

C2 5611 70.94 0.25 1.42 2.85 

C3 7347 78.64 0.28 1.63 2.68 

C4 8584 71.72 0.30 1.70 3.13 

C5 5095 76.25 0.22 1.25 1.70 

C6 5487 73,99 0.27 1.48 2.71 

C7 6318 74.38 0.26 1.57 2.97 

C8 7860 65.59 0.25 1.56 2.20 

C9 5336 74.73 0.20 1.18 4.05 

C10 6747 73.99 0.26 1.50 3.07 

C11 7190 79.55 0.29 1.59 2.65 

C12 8003 75,62 0.30 1.72 2.65 

C13 5337 74.73 0.20 1.18 4.05 

C14 6391 75.49 0.26 1.43 2.78 

C15 6707 77.48 0.28 1.59 2.30 

C16 8293 72.27 0.27 1.60 2.49 
Experimental conditions (EC); modulus of elasticity (E); compressive strength (σf), bulk density (ρB) apparent density (ρA); apparent 

porosity (P). 

 

Table 3 shows the results for normal distribution (Anderson-Darling), homogeneity of 

variances (Barlett and Levene) and ANOVA (159 degrees of freedom) for the mechanical and 

physical properties. The nomenclatures such as, Pig, T, and %C represent the mains factors 

pigment, type of cement, and cement content, respectively; and Pig×T, Pig×%C, T×%C and 

Pig×T×%C represent the interactions between factors. The P-values obtained from the Anderson-

Darling, Barlett and Levene tests (Table 3) were higher than 0.05 (confidence level), being in 

accordance to the normality and homogeneity conditions, consequently validating the ANOVA 

model. 

 

TABLE 3. Anderson-Darling, Barlett, Levene, and ANOVA Results. 

 P-value ≥ 0.05 ANOVA (P-value ≤ 0.05) 

Responses Anderson-Darling Bartlett Levene Pig T %C 

E 0.412 0.283 0.493 0.254 0.146 0.000 

σf 0.239 0.164 0.270 0.000 0.000 0.000 

ρB 0.591 0.331 0.419 0.972 0.000 0.000 

ρA 0.476 0.368 0.526 0.491 0.308 0.000 

P 0.799 0.458 0.603 0.000 0.083 0.006 

 P-value (ANOVA) 

Responses Pig×T Pig×%C T×%C Pig×T×%C   

E 0.000 0.000 0.000 0.000   

σf 0.061 0.000 0.000 0.003   

ρB 0.570 0.000 0.000 0.173   

ρA 0.002 0.000 0.000 0.000   

P 0.974 0.000 0.083 0.028   
Modulus of elasticity (E); compressive strength (σf), bulk density (ρB) apparent density (ρA); apparent porosity (P); pigment (Pig); 

type of cement (T); cement content (%C); factor interactions (Pig×T, Pig×%C, T×%C, Pig×T×%C). 

 

The factor “OPC content” significantly affected all properties (Table 3), but the same did not 

occur for the “cement type and pigment incorporation”. A third order interaction effect was evident 

(P ≤ 0.05) for all responses, except for bulk density. Table 4 shows the Tukey test for those 

significant factors revealed by the ANOVA. Tukey test indicates whether the experimental levels 

are significantly different. The treatment with the largest mean value is indicated by the letter A, the 
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treatment with the second largest mean value by the letter B, and so on; thus identical letters for 

different treatments indicate the statistical equivalence between means. 

The compressive modulus of elasticity (MOE) was affected only by the OPC content (Tab. 4), 

presenting the best result when the blend was made with 50wt% of cement. All main factors were 

significant for the compressive strength response. The powder pigment reduced the strength of the 

blends, since these particles cannot be considered a reinforcing phase; the OPC type II showed 

better results when compared to Brazilian cement ASTM-III; and 50wt% of cement content 

provided the best compressive strength. 

 

TABLE 4. Tukey test for the physical and mechanical properties of the blends. 

 Modulus of elasticity (E) 

 Pig (wt%) OPC (Type) OPC (wt%) 

 0.2% 0% ASTM-II ASTM-III 0% 30% 40% 50% 

Grouping A A A A D C B A 

 Compressive strength (S) 

 Pig (wt%) OPC (Type) OPC (wt%) 

 0.2% 0% ASTM-II ASTM-III 0% 30% 40% 50% 

Grouping B A A B B C D A 

 Bulk density (ρB) 

 Pig (wt%) OPC (Type) OPC (wt%) 

 0.2% 0% ASTM-II ASTM-III 0% 30% 40% 50% 

Grouping A A A B C B A A 

 Apparent density (ρA) 

 Pig (wt%) OPC (Type) OPC (wt%) 

 0.2% 0% ASTM-II ASTM-III 0% 30% 40% 50% 

Grouping A A A A D C B A 

 Apparent porosity (P) 

 Pig (wt%) OPC (Type) OPC (wt%) 

 0.2% 0% ASTM-II ASTM-III 0% 30% 40% 50% 

Grouping B A A A B AB A A 
Weight fraction (wt%); ordinary Portland cement (OPC); American Society for Testing and Materials standards II and III (ASTM); 

modulus of elasticity (E); compressive strength (σf), bulk density (ρB) apparent density (ρA); apparent porosity (P); pigment (Pig); 

type of cement (T); cement content (%C). 

 

The pigment incorporation did not affect the bulk and apparent densities. The OPC ASTM-III 

provided better results for the bulk density (lower mean value), and the progressive cement content 

led to increased apparent and bulk densities of the blends. 

Figure 2 shows the images obtained via scanning electron microscope (SEM) for the polymer-

ceramic blends prepared with 50wt% of OPC ASTM-III without pigment (Figure 2a) and with 

pigment (Figure 2b). A dark grey scale is more evident for the blend made with pigment inclusion 

(Figure 2b), which reveals a denser cementitious material as reported by DIAMOND (2004).This 

behaviour is in accordance to the porosity results which reveals larger porosity levels for the blend 

without pigment (Table 2). On the other hand, the blends without pigment achieved higher 

compressive strength. This behaviour indicates that the pigment particles act as fillers, reducing the 

porosity; however, the physical adhesions between phases were not enough to enhance the 

mechanical strength of the blends. 
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(a) (b) 

FIGURE 2. Polymer-cementitious blends: (a) without pigment–C16 and (b) with 0.2% of pigment-C8. 

 

Tukey test showed that the best setup material used to repair damaged timber beams was the 

experimental condition C4 (Table 4), made with 0.2wt% of pigment and 50wt% of ASTM-II OPC, 

considering that the use of the pigment did not cause significant changes in the blend stiffness 

values. 

Timber Repair Evaluation 

Table 5 shows the load values obtained via bending test for both wood species, with sample 

mean ( x ), variation coefficient (VC) and Tukey test results (grouping). Table 6 presents the sample 

mean and the variation coefficients of the physical (ρ12%) and mechanical properties (Ec0; fc0) 

obtained for both wood species. 

 

TABLE 5. Load results (FL/200) obtained via bending tests. 

 “Maçaranduba” – FL/200 

 RC WF RF 
x  (kN) 13.55 9.15 11.86 

VC (%) 18 19 17 

Grouping A C B 

 “Cedro doce” – FL/200 

 RC WF RF 
x  (kN) 6.43 4.32 6.17 

VC (%) 21 23 23 

Grouping A B A 

Reference condition (RC); condition with failure (WF); repaired failure condition (RF); variation coefficient (VC); sample mean ( x ). 

 

TABLE 6. Physical and mechanical properties obtained for the wood species. 

Maçaranduba 

Stat. fc0 (MPa) Ec0 (MPa) ρ12% (kg/m3) 
x  106.32 23546 1228 

VC (%) 15.34 13.21 2.26 

Cedro doce 

Stat. fc0 (MPa) Ec0 (MPa) ρ12% (kg/m3) 
x  28.76 7623 473 

VC (%) 18.51 16.22 3.45 

- variation coefficient (VC); sample mean ( x ); modulus of elasticity (Ec0); compressive strength (fc0); apparent density at 12% of 

moisture content (ρ12%). 

 

Table 6 shows that the mean apparent density for “Maçaranduba” wood was 2.60 times higher 

than the apparent density for “Cedro doce” and 3 and 3.70 times higher than the compressive 

modulus and strength data, respectively. 

×1001mm 
×100 1mm 



André L. Christoforo, Tulio H. Panzera, Victor A. de Araujo, et al. 

Eng. Agríc., Jaboticabal, v.37, n.2, p.366-375, mar./abr. 2017 

373 

P-values lower than 0.05 presented by RC and RF factors indicate the repair effect was 

significant. P-values reached for Maçaranduba wood load response were superior to 0.05 for both 

Anderson-Darling (0.275) and Bartlett (0.538) tests. For Cedro doce wood, P-values of 0.153 and 

0.349 corresponds to the normality and homogeneity testing, respectively, which validates the 

ANOVA model. Tukey test (Table 5) indicated that the blend was not able to recover the load 

capacity of “Maçaranduba” timber beam; however, only 12% reduction on the load value (FL/200) 

was achieved when compared to the reference condition. Furthermore, blend repairing led to 30% 

increasing in load capacity over the beams in reference condition (RC) and without reinforcement 

(WF), indicating an enhancement effect. Tukey test (Table 5) revealed that the polymer 

cementitious blend was able to recover beam load capacity for “Cedro doce” wood. This material 

provided an appropriate characteristic for wood beams repair, as pointed out by BRAZ et al. (2013), 

and this fact can be attributed to the lower density of “Cedro doce” wood, allowing a major 

penetration of the epoxy polymer as compared to “Maçaranduba” wood species. Figure 3 shows the 

rupture modes obtained for “Maçaranduba” and “Cedro doce” wood specimens after four-point 

bending test. The rupture of the pieces presented the same profile behaviour, in which the crack was 

initiated by tension at the bottom side of the beam, and subsequently it was propagated at the blend-

wood interface with no damage across the blend and no delamination process, revealing a 

promising material for such application. 

 

  
(a) (b) 

FIGURE 3. Rupture modes with the blend: (a) “Maçaranduba” and (b) “Cedro doce”. 

 

CONCLUSIONS  

The main conclusions of this study are following described: 

- In general, the pigment inclusion and the cement type revealed different behaviours on the 

investigated mechanical and physical properties. The cement content factor significantly affected all 

the response variables. 

- The highest modulus of elasticity in compression was achieved when the polymer-cementitious 

blend was made with 50% of cement (ASTM-II) and 0.2wt% of powder pigment (C4). This setup 

was used to repair the timber beams under bending test. 

- The repaired “Maçaranduba” timber beam provided superior values of load (FL/200) when 

compared to those of reference conditions. Once more, the efficiency of the wood repair was 

revealed being considered acceptable. 

- Lower load values were achieved for “Maçaranduba” wood species when compared to the 

reference condition, being attributed to its higher compressive modulus when compared to the blend 

and its higher density (lower porosity), which hinders the physical adhesion at the wood-polymer 

interface. 
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- The repair of “Cedro doce” wood by C4 blend presented similar strength values compared to the 

reference condition. This behaviour can be attributed to the higher compressive modulus of the 

blend in comparison to “Cedro doce” wood. A lower density of “Cedro doce” specie might 

contribute to enhance the polymer-wood adhesion. 

- The repair of both beam species by the use of the polymer-cementitious blend was considered 

appropriated under four-point bending test. The crack was initiated at the bottom beam side where 

high tensile loadings are reached, and subsequently the fracture was propagated toward the blend-

wood interface due to the shear stress in the parallel direction to the grain of the wood. 
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