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Abstract

Telomere has a central role in chromosomal stability events. Chromosome ends organized in telomere-loop prevent 
activation of DNA damage response (DDR) mechanisms, thus keeping the chromosome structure organized. On the 
other hand, free chromosome ends, dysfunctional telomeres, and interstitial telomeric sequences (ITS) can trigger 
chromosome rearrangements. Here, the telomere organization, function, and maintenance mechanisms, in addition 
to ITS types and their involvement in chromosome changes, were revisited. Despite a general (TTAGGG)n sequence 
being present in vertebrate telomeres, insects show more diversification of their telomere motif. The relation between 
ITS and chromosome rearrangements was observed in insects and vertebrates, demonstrating different types of 
genome organization and distribution. Some ITS cannot be considered relicts of chromosome rearrangements because 
probable they were inserted during a double-strand break repair mechanism. On the other hand, the involvement of 
telomere sequences participating or triggering chromosome rearrangements or organizing satellite DNA components 
in several species groups is evident. The genomic assembling advances and applying other methodologies over ITS, 
and their flanking regions, can help to understand the telomere participation in the chromosomal evolution in species 
groups with highly diversified karyotypes.
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Telomeres organization and function

Telomere motifs

Telomeres are DNA regions at the end of eukaryotic 
chromosomes and are essential to their stability and integrity 
maintenance (Pisano et al., 2008; O’Sullivan and Karlseder, 
2010; Galati et al., 2013; Lazzerini-Denchi and Sfeir, 2016). 
In most organisms, the telomeres consist of tandemly repeated 
motifs (usually 5 – 8 bp) with telomeric proteins attached to 
them, capping and protecting the telomeric region (Zakian, 
1995). In vertebrates, the hexamer (TTAGGG)n is present 
(Figure 1A, B), but a considerable variation in the length of 
the repeated region has been reported (Zakian, 1995).

In other organisms, the size and organization of the 
telomeric motifs can be distinct. In insects, the presence of the 
called “insect” telomeric motif (TTAGG)n is common (Figure 
1C-F, and H-I), seems to be ancestral, and it is also shared by 

other arthropods (Frydrychová et al., 2004; Vítková et al., 2005). 
Although the structure of the telomeric motif could be quite 
variable within several insect groups because it can be lost 
or replaced by alternative mechanisms for maintaining 
telomere, making the study of the telomere structure and 
evolution of this class of animals interesting. Examples of 
the occurrence of non-canonical “insect” telomeric motif are 
observed in Coleoptera (beetles), with the description of the 
motif (TCAGG)n on chromosome termini in representatives of 
Tenebrionidae (Mravinac et al., 2011) and Cleridae (Prušáková 
et al. 2021), and the recently discovered motif (TTGGG)n 
on the Geotrupidae Anoplotrupes stercorosus (Prušáková et 
al., 2021). Remarkably among Diptera, the transposition of 
the non-long terminal repeat (non-LTR) retrotransposon was 
co-opted to maintain the telomere of Drosophila (Mason and 
Biessmann, 1995; Pardue and DeBaryshe, 2003; Figure 1G), 
and in basal dipterans, as chironomid midges, the recombination 
of long terminal repeats (LTR), i.e., satellite DNAs, maintains 
the telomeres (Nielsen and Edstrom, 1993). 

Interestingly, in Bombyx mori (Lepidoptera; Fujiwara 
et al., 2005), Myzus persicae (Hemiptera; Monti et al., 
2013), Pediculus humanus (Phthiraptera), and Tribolium 
castaneum (Coleoptera; Osanai et al., 2006), the (TTAGG)n is 
interspersed with inserted non-LTR retrotransposable elements. 
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Figure 1 – FISH mapping of telomeric repeats (red) in two vertebrates and seven species of insect, belonging to orders Orthoptera, Blattodea, Hemiptera, 
Hymenoptera, Lepidoptera, Coleoptera, and Diptera. In (A, B) it was used as probe the (TTAGGG)n motif, in (C-I) it was used as probe the “insect” 
telomere motif (TTAGG)n largely present in multiple groups, and in (G) it was mapped the HeT-A retrotransposon. (A) Apareiodon affinis fish, mitotic 
metaphase (2n = 54); (B) Glossophaga soricina bat, mitotic metaphase (2n = 32); (C) Cyclopltiloides americanus, mitotic metaphase from male embryo 
(2n = 12AA + X1X2); (D) Nauphoeta cinerea, spermatogonial mitotic metaphase from male (2n = 36AA + X); (E) Mahanarva spectabillis male, late 
diplotene (2n = 9AA + X); (F) Atta sexdens female, mitotic metaphase from brain larvae (2n = 22AA); (G) Helicoverpa armigera male, pachytene 
bivalents (n = 31); (H) Conoderus malleatus male, pachytene (n = 8 + X); (I) Drosophila melanogaster male, mitotic metaphase from brain larvae  
(2n = 6AA + XY). The chromosomes were counterstained with DAPI (in blue). The sex chromosomes were indicated in some metaphases. Bar = 5 μm.
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This condition could be putatively an intermediate state 
between the canonical insect telomere and retrotransposon-
based ones (Mason et al., 2016). In the honeybee (Apis 
mellifera, Hymenoptera), the telomere is also exceptionally 
non-canonical, forming a mosaic composed of TTAGG 
interspersed with TCAGGCTGGG, TCAGGCTGGGTTGGG, 
and TCAGGCTGGGTGAGGATGGG (Garavís et al., 2013). 
Finally, in some other groups of insects, the (TTAGG)n is 
facultatively present, as in Hemiptera, Odonata, Hymenoptera, 
Neuroptera, and Coleoptera. While, in other few orders, 
including Ephemeroptera, Dermaptera, Raphidioptera, 
Siphonaptera, and Mecoptera, until now, the (TTAGG)n was 
not evidenced, but no alternative telomeric motif was detected, 
deserving additional investigation, as just a few species were 
investigated (revised by Kuznetsova et al., 2020).

Based on genomic data, i.e., chromosome-level 
assemblies of 180 species of insects belonging to 8 orders, 
Lukhtanov (2022) added important data about the diversity 
of telomeres in this group. He confirmed some previous 
information about the insect-telomere structure and noticed 
new variations. In general, it was observed: (i) short repeats 
(the canonical telomeres); (ii) mononucleotide telomeres 
that consist of a long array of (A)n and (T)n at 5’and 3’ends, 
respectively; (iii) main short repeats with variants of short 
repeats; (iv) main short repeats interspersed with telomere-
specific non-LTR retrotransposon (TRAS, SART families or 
both); (v) long repeats; (vi) long repeats in one telomere and 
arrays of short repeats (TTAGGTCTGGG)n at the other end; 
(vii) non-LTR retrotransposons, including the HeT-A, TAHRE, 
and TART families (Lukhtanov, 2022).

Telomere organization

In most cases, the telomere organization has the 5’ 
cytosine (C)-rich at the end of one strand, while the 3’ strand 
end is guanine (G)-rich (Lazzerini-Denchi and Sfeir, 2016; 
Aksenova and Mirkin, 2019). The G-rich single-strand results 
from the inability of DNA polymerase to replicate chromosome 

ends (Watson, 1972; Lazzerini-Denchi and Sfeir, 2016). 
DNA replication requires a primer containing a free 3’ -OH 
group to start the DNA synthesis (Watson, 1972; Olovnikov, 
1973). During the replication (which must occur in the 5’→3’ 
direction), the telomeres generated by continuous strand 
synthesis have blunt ends or small 5’ protrusions (Lazzerini-
Denchi and Sfeir, 2016). The end of the discontinuous strand 
has a 3’ single-strand end, which comprises the segment from 
the removal of the RNA primer, referring to the beginning 
of the Okazaki fragment (Lazzerini-Denchi and Sfeir, 2016). 
The DNA polymerase inability to synthesize the end of 
chromosomes is named the end replication problem (Watson, 
1972; Olovnikov, 1973). 

According to the end replication problem mechanism, 
each discontinuous strand replication event leads to an 8-12 
bp gap on the 3’ termini, resulting in a DNA shortening 
at each cell cycle (Makarov et al., 1997; Blackburn et al., 
2006). The telomerase enzyme repairs the chromosome ends 
length in some specific cells by adding telomeric repeats in 
the 3’ G-rich strand as an important mechanism of damage 
prevention (Makarov et al., 1997; Blackburn et al., 2006). In 
addition to its participation in telomerase action, the G-rich 
strand end has an essential role in telomere organization. This 
strand is prone to form stable secondary structures, including 
quadruplex DNA (G4-DNA structures) (Sundquist and Klug, 
1989; Williamson et al., 1989) that impair the replication 
machinery as it progresses through telomeric DNA (Lazzerini-
Denchi and Sfeir, 2016). In this way, G4-DNA protects the 
chromosome ends and inhibits the telomerase action (Zahler 
et al., 1991; Smith et al., 2011).

Besides the G4-DNA structures, the telomeres can also 
organize a structure called a telomere loop (t-loop) (Griffith 
et al., 1999). Telomeres end with a single-stranded G-rich 
overhang that can invade the preceding double-stranded region 
to generate a particular lariat-like structure, the t-loop (Griffith 
et al., 1999; Figure 2). In the t-loop generation, the G-rich 
single-strand extension invades a precedent segment containing 

Figure 2 – Schematic representation of the T-loop organization. The telomere DNA loops back on itself, forming the T-loop. The 3’ G strand extension 
invades the duplex telomeric repeats and forms a D-loop. During the organization, the telomeric DNA is bound by the specialized shelterin complex 
and packaged into a t-loop configuration. The shelterin complex is organized by TRF1, TRF2, TIN2, RAP1, TPP1, and POT1. The six-subunit proteins 
protect the chromosome ends from the DNA damage signaling pathway and DNA repair mechanisms.
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the duplex telomeric repeats and forms a displacement loop 
(d-loop) (Griffith et al., 1999; Figure 2). The d-loop binds 
telomeric proteins capping the chromosome ends (van Steensel 
et al., 1998; de Lange, 2005). The proper telomere capping 
depends on the interaction of some proteins with telomeric 
repeats, called the shelterin complex (Pisano et al., 2008; 
Galati et al., 2013; Lazzerini-Denchi and Sfeir, 2016). 

Telomeric proteins complex 

Shelterin organizes a specialized multiprotein complex 
on telomeric region composed of six distinct proteins: telomere 
repeat-binding factor 1 (TRF1), telomere repeat-binding 
factor 2 (TRF2), protection of telomere 1 (POT1), telomere 
protection 1 (TPP1), TRF1-interacting nuclear factor 2 (TIN2), 
and repressor activator protein 1 (RAP1) in vertebrates 
(Pisano et al., 2008; Galati et al., 2013; Lazzerini-Denchi 
and Sfeir, 2016; Figure 2), besides variants forms presented 
in some organisms. The shelterin complex is essential to 
telomere length maintenance and protects the chromosome 
ends (Ichikawa et al., 2015; Lazzerini-Denchi and Sfeir, 2016). 
TRFs 1 and 2 bind to the double-stranded DNA of telomeric 
sequences and organize the core of the shelterin complex (Court 
et al., 2005; Lazzerini-Denchi and Sfeir, 2016). In the t-loop 
organization, TRF1 attaches to an internal nucleosome site 
and induces the mobility and condensation of the telomeric 
DNA (Pisano et al., 2010; Ichikawa et al., 2015). The TRF2 
protein also participates in the telomeric chromatin structure, 
reducing nucleosome density and increasing the spacing among 
telomeric nucleosomes (Ichikawa et al., 2015). In addition, 
TRF2 plays an important role as a t-loop facilitator, and its 
loss leads to an increase in DNA damage response (DDR) 
pathways, chromosomal end-fusions, and cell senescence 
(van Steensel et al., 1998; de Lange, 2005; Fouché et al., 
2006). POT1 is the third DNA-binding component within 
shelterin (Wu et al., 2010; Lazzerini-Denchi and Sfeir, 2016). 
Telomeres recruits POT1 by interacting with TPP1 and coat 
the single-stranded part of the TTAGGG repeats with its 
oligonucleotide/oligosaccharide binding folds (Wu et al., 
2010; Lazzerini-Denchi and Sfeir, 2016). TIN2 and RAP1 
do not bind directly to telomeric repeats, although they 
interact with other shelterin in this region (Wu et al., 2010; 
Lazzerini-Denchi and Sfeir, 2016). In addition to shelterin, 
another protein complex called CST-complex (composed by 
Ctc1, Stn1, and Ten1 in humans) binds to telomeric G-rich 
single-stranded promoting telomere protection and telomerase 
recruitment (Gao et al., 2007; Rice and Skordalakes, 2016).

Telomeric RNA 

Although telomeres are highly condensed and 
heterochromatic, they show a dynamic chromatin structure 
as they are considered transcriptionally active (Azzalin et 
al., 2007; Xu et al., 2010). In addition to telomeric repeats 
and shelterin, telomeres are also made up of non-coding 
RNA molecules of the type (UUAGGG)n, called Telomeric 
Repeat-containing RNA (TERRA) (Azzalin et al., 2007; Xu 
et al., 2010). TERRA is transcribed from the C-rich telomere 
strand, interacts with some telomeric proteins, participates in 
the transitional states of euchromatin and heterochromatin, 
and regulates telomerase activity (Azzalin et al., 2007; Xu 
et al., 2010).

TERRA can also form stable DNA/RNA hybrids with 
the C-rich telomeric strand, thus resulting in the displacement 
of the G strand, giving rise to an R-loop structure (Chawla and 
Azzalin, 2008; Santos-Pereira and Aguilera, 2015). R-loops 
prevent DNA replication progress by causing replication-fork 
stalling, collapse, and double-strand breaks (DSBs) (Gómez-
González et al., 2011; Balk et al., 2013). Studies also suggest 
that TERRA is involved in telomere heterochromatin formation 
(Deng et al., 2009; Maicher et al., 2014).

Function

Telomeres protect the chromosome ends against 
inappropriate recombination, exonuclease attacks, and 
oxidative damage, thus maintaining the integrity and 
stability of the chromosome (de Lange, 2002). Therefore, 
the telomeres avoid chromosome ends recognition as DSBs 
by the DNA repair machinery (Lazzerini-Denchi and Sfeir, 
2016; Slijepcevic, 2016). At the same time, telomeres allow 
the correct anchoring of the chromosomes to the nuclear 
membrane, ensure the three-dimensional structure of the 
nucleus and the proper spatial distribution of the chromosomes 
during cell proliferation (Zakian, 1995; Luderus et al., 1996). 
On the other hand, the organization of a dysfunctional telomere 
generates unstable DNA sites, which behave as DSB regions, 
triggering chromosomal rearrangements (Perry et al., 2004; 
Slijepcevic, 2016; Bolzán, 2017).

X-rays were used as inducers of chromosomal aberrations 
and demonstrated that broken chromosomes usually fused with 
their sister chromatids, generating a Breakage Fusion-Bridge 
mechanism (McClintock, 1941, 1987). In this mechanism, 
the terminal regions at the fusion sites were always lost, thus 
evidencing that the broken chromosomes (without the intact 
terminal protective “caps” on telomeres, or t-loop) were 
subject to fusion events (McClintock, 1987). The McClintock 
studies were important landmarks in chromosomal instability 
proposal associated with chromosome ends. Interestingly, 
after irradiation and breaks the end of chromosomes can be 
healed by de novo telomere addition, as documented in some 
organisms, including the homopteran insect Planococcus 
lilacinus (Mohan et al., 2011).

Telomere length maintenance mechanisms
In each DNA replication round, naturally, telomeres lose 

a segment of their repetitive sequence (Watson, 1972). In the 
absence of mechanisms that prevent telomere shortening during 
cell proliferation, there would eventually be an excessive 
decrease in the terminal region and the activation of a DDR 
mechanism, leading to cellular senescence (de Lange, 2005). It 
is known that telomeric DNA has difficulties to replicates due 
to their repetitive organization, its ability to form secondary 
structures, as well as the presence of the shelterin complex 
(Sfeir et al., 2009; Bah et al., 2011; Lopes et al., 2011; Paeschke 
et al., 2011; Anand et al., 2012). Telomeric replication requires 
G4-DNA structures to relax and disassemble the t-loops, which 
demand specialized enzymes, such as several DNA helicases 
(Croteau et al., 2014; Vannier et al., 2014; Geronimo and 
Zakian, 2016; Mendoza et al., 2016; Poole and Cortez, 2016). 

Telomeric sequences are added to chromosome ends in 
specific tissues by the telomerase enzyme action (Kolquist 
et al., 1998). Telomerase acts as an RNA-dependent DNA 
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polymerase, a type of reverse transcriptase that uses an 
intrinsic RNA template to transcribe telomeric repeats at 
chromosome ends, avoiding telomere shortening (Greider, 
1995). Telomerase has a catalytic subunit ribonucleoprotein 
complex called Telomerase Reverse Transcriptase (TERT) and 
an RNA template, the Telomeric RNA Component (TERC) 
(Chen and Lingner, 2013). The function occurs by adding 
telomeric repeats to the G-rich single-stranded end from the 
reverse transcription of the telomerase RNA template into 
DNA (Greider, 1995). The activity is controlled by CST-
complex (Chen and Lingner, 2013), which after the G-rich 
strand extension, displaces telomerase, remove secondary 
structures, and recruit the DNA polymerase α/primase complex 
to synthesize the C-rich strand (Diede and Gottschling, 1999; 
Qi and Zakian, 2000; Aksenova and Mirkin, 2019). Thus, 
the absence of telomerase activity in somatic cells leads to 
a decrease in telomeric repeat number in each cell cycle, 
promoting cell senescence (Kolquist et al., 1998; Bolzán et 
al., 2000; Hines et al., 2005). 

Interestingly, in addition to maintaining the length of 
telomeres, telomerase can catalyze telomeric repeats synthesis 
to non-telomeric sites on chromosomes (Melek and Shippen, 
1996; Aksenova and Mirkin, 2019). Thus, the telomerase repair 
activity can lead to chromosome instability and fragmentation 
when competing with DNA repair machinery on broken 
ends (Slijepcevic, 1998, 2016). Some proteins binding in the 
lesion point could prevent the telomerase attachment to DSBs 
(Slijepcevic and Al-Wahiby, 2005). As mentioned above, 
dysfunctional telomeres or DSBs appear to be repaired by 
DNA machinery, sometimes with telomere and telomerase 
action in chromosome rearrangements.

DNA repair mechanisms 
Free chromosomal ends appear as DSBs and can be 

targeted for DNA repair if not adequately protected from 
the DDR machinery. The DNA lesion repair could occur 
through many pathways, such as Non-homologous End Joining 
(NHEJ); Microhomology-mediated End Joining (MHEJ), 
also called alternative NHEJ; Homologous Recombination 
(HR); Break-induced DNA Replication (BIR); and Single 
Strand Annealing (SSA) (Heyer, 2015; Ceccaldi et al., 2016; 
Lazzerini-Denchi and Sfeir, 2016; Rodgers and McVey, 2016; 
Kramara et al., 2018; Seol et al., 2018). Sometimes, the DNA 
repair mechanisms can cause chromosomal rearrangements, 
leading to unequal distribution of genetic material to daughter 
cells, thus evidencing the importance of an intact telomeric 
region during cell division (Slijepcevic, 1998, 2016; Bolzán, 
2017; Aksenova and Mirkin, 2019).

NHEJ is the main DSB repair pathway in the cells 
(Lazzerini-Denchi and Sfeir, 2016). The mechanism receives 
this name because, during a DSB, the damaged region of 
DNA loses some nucleotides, generating non-complementary 
single-stranded ends subject to a complex repair mechanism 
(Figure 3). Thus, unlike the HR mechanism, the NHEJ does 
not require DNA strand homology to guide repair. There are 
two NHEJ pathways, classical NHEJ and alternative NHEJ 
(revised in Lazzerini-Denchi and Sfeir, 2016). Classical 
NHEJ (Figure 3A) repairs DSBs with minimal changes in the 
sequence, while alternative NHEJ (Figure 3B) can generate 

large segments possessing deletion or insertion (Lazzerini-
Denchi and Sfeir, 2016). During the alternative NHEJ, a 
probable involvement of telomerase inserting telomeric motifs 
(Figure 3B) to perform DSB repair was verified, generating 
short ITS (Ruiz-Herrera et al., 2008; Lazzerini-Denchi and 
Sfeir, 2016). SSA has a similar alternative NHEJ mechanism 
and involves the annealing of homologous repeat sequences 
that flank a DSB, which causes a deletion rearrangement 
between the repeats (for a review, see Bhargava et al., 2016). 
On the other hand, the HR mechanism (Figure 4) has action 
in repairing DSBs without rescuing paralyzed or collapsed 
replication forks in chromosomal rearrangements, horizontal 
gene transfer, and meiosis (Pierce et al., 2001). Sometimes, 
this DNA repair pathway could occur between two lengths 
of DNA that have high sequence similarity but are not alleles 
in a mechanism called non-homologous recombination or 
non-allelic homologous recombination (Parks et al., 2015). 
This mechanism could promote a concerted evolution of 
the repeat units and is a common mechanism for generating 
genome rearrangements (Parks et al., 2015; Barros et al., 
2017; Glugoski et al., 2018).

The Breakage-Induced-Replication (BIR), or 
recombination-dependent DNA replication, is a repair 
mechanism usually triggered when a single-stranded break 
in DNA occurs (Anand et al., 2013). Phosphodiester bond 
break in the polynucleotide strand is the primary type of 
spontaneous DNA damage. When the DNA duplication 
fork encounters one of these breaks, the single-stranded end 
formed needs to be repaired by HR. These breaks can also 
be detected at the chromosome ends in telomerase-deficient 
cells and trigger a BIR repair (Anand et al., 2013). The BIR 
mechanism begins with the invasion of the single-stranded to 
a homologous DNA sequence, which uses it as a template to 
replicate until the next duplication fork or the chromosome 
end (Anand et al., 2013).

In the telomeric region, the HR mechanism can occur 
in 3 main pathways: Telomere Sister Chromatid Exchange 
(T-SCE), T-loop Homologous Recombination (T-loop HR), 
and Alternative Lengthening of Telomeres (ALT). In some 
insects from the order Diptera that lost the telomerase, a 
retrotransposon-based mechanism (RM) is used to regenerate 
chromosomal ends (Mason et al., 2008).

T-SCE is a mechanism for exchanging telomeric 
sequences between sister chromatids. The mechanism has 
harmful consequences when unequal crossing-over occurs 
in the telomeric region, and, in this case, one of the daughter 
cells inherits a short telomere (Lazzerini-Denchi and Sfeir, 
2016). In the T-loop HR, an extrachromosomal duplex or 
single-stranded circular DNA molecule composed of t-arrays 
(t-circle) is used in a rolling-circle mechanism (forming σ-form 
‘tailed circles’), thus generating long extrachromosomal 
t-arrays (Tomaska and Nosek, 2009). In the ALT mechanism, 
the telomeres length maintenance depends on the strands’ 
recombination without telomerase action (Bryan et al., 1995; 
Henson et al., 2002; Muntoni and Reddel, 2005). It is believed 
that in ALT, the single-stranded telomeric termination invades 
double-stranded telomere sequence or, in the other way, 
anneals to single-stranded DNA and uses it as a template for 
the synthesis of a new telomeric DNA sequence (Cesare and 
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Figure 3 – Schematic representation of Non-homologous end joining mechanisms (NHEJ). In (A) classical-NHEJ (c-NHEJ), a free chromosome end 
generated by double-strand breaks (DSB) or dysfunctional telomere (DT) could be repaired with minimal sequence alterations. The mechanism is initiated 
with the Ku70/Ku80 heterodimer binding to free chromosome ends. Ku proteins recruit DNA-PKcs to promote phosphorylation. After, the terminal 
end-processing enzyme Artemis cleaves single-stranded overhangs, then DNA ligase 4 (LIG4) and the scaffold protein XRCC4 connect the free ends. In 
(B), the alternative-NHEJ (alt-NHEJ) can generate extensive nucleotide deletions or insertions during the DNA repair process. A series of proteins act in 
alt-NHEJ ends resection, among them poly(ADP-ribose) polymerase 1 (PARP1), MRN complex (MRE11-RAD50-NBS1), and CtBP-interacting protein 
(CtIP). After ends resection on lesion point, DNA polymerase θ (Pol θ) is recruited to promote end joining. In alt-NHEJ, sometimes in a differential way, 
the telomerase enzyme is proposed to perform telomere motifs addition to terminal ends after ends resection, thus generating short-ITS.

Reddel, 2010). The template can come from the own telomere 
(t-loop formation), sister chromatid or another chromosome 
telomere, or extrachromosomal telomeric DNA copies (Bryan 
et al., 1995; Cesare and Reddel, 2010). 

At least, in the RM pathway, a telomeric retrotransposon 
is transcribed and posteriorly translated in an element-encoded 
GAG-like protein. GAG binds the retrotransposon RNA, re-
entry the nucleus, and attaches to a chromosome end. So, a 
reverse transcriptase uses the free 3′ hydroxyl group at the 
chromosome end as a primer to copy the RNA intermediate 
into the first DNA strand. Second strand synthesis occurs 
by DNA repair and completes the addition of a new HeT-A 
retrotransposon (for a review, see Mason et al., 2008). 

In some cases, repairing telomere injuries appears 
harmful to the genome, leading to chromosome fusions and 
their subsequent breakage during cell proliferation, causing 
the unequal genetic material heritage among daughter cells. 

Interstitial telomeric sequences
Interstitial telomeric sequences (ITS) are composed 

of telomeric motifs located in non-terminal regions of the 
chromosomes, as in pericentromeric and interstitial regions 
(between the centromere and telomere) (Meyne et al., 1990; 
Slijepcevic, 1998; Bolzán and Bianchi, 2006; Ruiz-Herrera 
et al., 2008). Originally, the ITS occurrence was related to 
chromosome fusions (Meyne et al., 1990). This kind of ITS 

located in chromosome fusion points was posteriorly called 
heterochromatic ITS (het-ITS), which confers chromosome 
fragility and contributes to genome evolution (Ruiz-Herrera 
et al., 2008; Bolzán 2012, 2017; Slijepcevic, 2016; Barros 
et al., 2017; Glugoski et al., 2018). However, different ITS 
distribution patterns, even in closely related species, reveal 
their dynamic nature in chromatin composition and epigenetic 
changes (Swier et al., 2012; Rovatsos et al., 2015). 

According to their organization, location, and flanking 
sequences, ITS can be classified into four types: short-
ITS, subtelomeric-ITS, fusion-ITS, and het-ITS. Short-ITS 
comprises chromosomal regions generally containing up to 
20 TTAGGG tandemly repeated sequences (Azzalin et al., 
2001; Nergadze et al., 2004). Based on mammalian genome 
data, short-ITS are grouped according to their organization 
and flanking sequences into five subclasses: (i) Class A: 
short-ITS flanked by the same repetitive element on both 
sides (Short Interspersed Nuclear Elements – SINEs, or Long 
Interspersed Nuclear Elements – LINEs, for example); (ii) 
Class B: short-ITS is flanked by repetitive units organized 
in the same direction, in both sides; (iii) Class C: short-ITS 
is flanked by single-copy DNA, in both sides; (iv) Class D: 
short-ITS is flanked by transposable elements in one side and 
single-copy DNA in another side; (v) Class E: short-ITS is 
located in the junction between two distinct repetitive elements 
(Azzalin et al., 2001).
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Figure 4 – Homologous recombination repair is schematized in (A). After a DSB, the newly released DNA ends are processed to produce long stretches 
of 3’-terminal single-stranded DNA (ssDNA). Replication Protein A (RPA) binds to ssDNA ends, avoiding potential secondary structure formation and 
protecting the ssDNA degradation by nucleases. The RPA is replaced with Rad51 mediator help, and the ATP-dependent DNA-binding protein extends 
the strand at the end of the DNA, organizing the pre-homologous complex. The pre-homologous complex is responsible for finding a double-stranded 
DNA sequence (dsDNA). The 3’ end of presynaptic ssDNA can initiate the duplication using homologous dsDNA as a template. From this point, the 
mechanism can be directed to several different molecules that restore DNA. Sometimes, the repair mechanism could find the same DNA repeat region of 
the DSB point in a non-homologous chromosome (B) and use this dsDNA as a template called non-homologous recombination or non-allelic homologous 
recombination. 

Some theories explain short-ITS occurrence by insertion 
of telomeric repeats during the DSB repairs, being the ITS 
considered relics of an ancestral break (Nergadze et al., 2004; 
Ruiz-Herrera et al., 2008). As abovementioned, short-ITS can 
be added in a canonical NHEJ with telomerase involvement in 
this pathway (for a review, see Ruiz-Herrera et al., 2008). A 
second proposal for short-ITS origin involves the possibility 
of being remnants of a transposable element insertion (Azzalin 
et al., 2001; Nergadze et al., 2004). Still, the short-ITS may 
have been simply the birth of a microsatellite containing the 
telomeric repeat unit, and its expansion or shortening would 
occur by DNA slippage (Mondello et al., 2000).

The subtelomeric-ITS is composed of thousands of 
TTAGGG units tandem repeats degenerated into a 5’-3’ 
organization (head to the tail cluster), which are present in 
subterminal regions of human chromosomes, as also seen 
in other vertebrate species (Bolzán, 2017). The proposal 
for subtelomeric-ITS admits that this degenerate region 
was originally a true telomere. In this pathway, since a 
translocation event has established a new telomere, posteriorly, 
the former telomere sequences degenerate in subtelomeric-
ITS (Bolzán, 2017).

The fusion-ITS is a terminology used to describe the 
TTAGGG repeats flanked by small subtelomeric sequences 
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present at human chromosome 2q13. This fusion-ITS 
maintain the remnants of end-to-end fusion (or telomere-
telomere fusion), related to the evolutionary origin of human 
chromosome 2 (Azzalin et al., 1997, 2001). Nowadays, 
fusion-ITS can be figured out in other organisms since genome 
assembling has expanded over numerous groups.

Het-ITS organize large blocks of telomeric repeats located 
into the heterochromatin, usually in some chromosomes’ 
centromeric or pericentromeric regions (Lin and Yan, 2008; 
Ruiz-Herrera et al., 2008). Telomeric proteins (TRF1, TRF2, 
and RAP1) could bind in the het-ITS, suggesting that the 
shelterin complex has an important role in these region’s 
organization and function (Zakian, 1995; Simonet et al., 
2011). Yet, the het-ITS could be relicts of chromosome 
rearrangements (e.g., Robertsonian – Rb fusion or, pericentric 
inversion) with fundamental importance in chromosome 
evolution in some groups (Paço et al., 2013; Matoso Silva et 
al., 2016; Viana et al., 2016; Deon et al., 2020). 

In the chromosome fusion model, het-ITS are 
consequences of end-to-end fusion between two dysfunctional 
telomeres located in ancestral chromosomes (usually in 
acrocentrics) and posteriorly inactivation of one centromere 
in the dicentric chromosome formed (Paço et al., 2013; 
Bolzán, 2017). Nevertheless, in vertebrate chromosomes 
were visualized that het-ITS are subject to TTAGGG units 
amplification by unequal crossing-over, DNA slippage, or 
gene conversion mechanisms, generating large het-ITS blocks 
in centromeric/pericentromeric chromosome regions (Meyne 
et al., 1990; Ruiz-Herrera et al., 2008; Schmid and Steinlein, 
2016). Once ITS are frequently flanked by satellite DNA and 
transposable elements, a mechanism based on transposable 
elements insertion containing telomeric repeats was also 
proposed in the het-ITS origin (Bolzán, 2017).

Furthermore, subsequent chromosomal rearrangements 
(inversions, translocations, and fusions) may involve these 
repeated sequences and redistribute them internally in the 
chromosomes (Ruiz-Herrera et al., 2008). Finally, chromosomal 

fissions on ITS, which are naturally prone to breakage, can 
serve as a substrate for forming a new telomere and generating 
new acrocentric chromosomes in the genome (Ruiz-Herrera et 
al., 2008), contributing to karyotype evolution (Bolzán, 2017).

ITS in situ localization method

The usual methodology to detect canonical telomeres 
and ITS is the fluorescence in situ hybridization (FISH) with 
a telomeric sequence probe (see full method description in 
supplementary material S1). The general telomeric sequence 
of the vertebrates is easily amplified by polymerase chain 
reaction (PCR) using the oligonucleotides (TTAGGG)5 and 
(CCCTAA)5, and no template DNA (Ijdo et al., 1991, Figure 5). 
For insect telomeric motif, the oligonucleotide used is 
(TTAGG)5 and (CCTAA)5. In insects, the tyramide signal 
amplification procedure has been used to detect shorter ITS 
(Rego and Marec, 2003). In addition, in vertebrates, telomeric 
sequences detection has been performed using Peptide Nucleic 
Acid (PNA) probes, or less commonly, by the Primed in situ 
Labeling (PRINS) method (Azzalin et al., 1997, 2001; Ruiz-
Herrera et al., 2008; Bolzán, 2017). A rigorous analysis of 
the chromosomal spreads is crucial in all methods due to the 
faint signals in some ITS/telomere chromosome markings.

ITS and chromosomal remodeling in insects 
and vertebrates

Terminal telomeric sequences are naturally prone to 
breakage, leading to chromosome plasticity (Slijepcevic, 
2016). In addition, telomere sequences could be considered 
hotspots for chromosomal breakage when organizing ITS 
(Slijepcevic et al., 1997). Some studies show that telomeric 
DNA damage can be irreparable, causing persistent DDR 
activation (Fumagalli et al., 2012) or remaining as fragile 
sites (Sfeir et al., 2009). Once ITS could act as an unstable 
chromosome site, in some animal groups it is noticed 
chromosome remodeling events as a consequence or cause 
of the ITS occurrence in their karyotypes. 

Figure 5 – Summary of steps to amplify the general telomeric sequence of the vertebrates (TTAGGG)n by polymerase chain reaction (PCR) using the 
oligonucleotides (TTAGGG)5 and (CCCTAA)5, and no template DNA. In (A), a schematic representation of the primer auto annealing, providing a 
double-strand terminal with free OH; (B) representation of the amplicons with different sizes due to distinct points of telomere units pairing during the 
PCR; (C) agarose gel 1% showing a smear resulted from the PCR (L = ladder 100 bp; 1 = telomere amplicons with desired sizes, i.e., 100 – 600 bp. For 
a detailed method, please see Supplementary Material S1.
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Insects

Insects present extreme variability of karyotypes, 
chromosome number and morphology, and types of sex 
chromosome systems (Kaiser and Bachtrog, 2010; Blackmon 
et al., 2017) due to chromosomal rearrangements, like fusions, 
fissions, translocations, and inversions. However, only a few 
ITS cases containing loci of (TTAGG)n were detected (see 
references below), even in species with highly rearranged 
karyotypes. They are limited to few species, representatives 
of orders Lepidoptera (Rego and Marec, 2003), Hemiptera 
(Chirino et al., 2017), and Orthoptera (López-Fernández et 
al., 2004; Jetybayev et al., 2012, 2017; Camacho et al., 2015; 
Grzywacz et al., 2019; Buleu et al., 2020; Warchałowska‑Śliwa 
et al., 2021).

In Lepidoptera, ITS were detected only in Ephestia 
kuehniella mutants with fused chromosomes induced from 
radiation (diploid number - 2n = 59) and in Orgyia antiqua, 
a species with 2n reduction (2n = 28) occasioned by multiple 
fusions (Figure 6A). Besides typical telomere on chromosome 
termini in both species, the hybridization signal for (TTAGG)n  
probe is observed. For O. antiqua, the ITSs are probably 
remnants of multiple chromosomal fusions, but in E. kuehniella 
although the ITS are present in multiple chromosomes, they 
are not on fused ones (Rego and Marec, 2003).

In hemipterans, ITS motifs were documented in the 
representatives of giant water bugs Belostoma (Belostomatidae). 
Striking macro-chromosomal variability is observed in this 
genus as a result of fragmentations and fusions involving 
autosomes-autosomes and autosomes-sex chromosomes 
(Chirino and Bressa, 2014; Gallo et al., 2017). Chirino et al. 
(2017), through chromosomal mapping of (TTAGG)n on six 
species with a different number of autosomes (6, 14, and 26 
chromosomes) and simple (XY/XX) and multiple (X1X2Y/
X1X1X2X2) sex chromosome systems, revealed the incidence of 
ITS in the species with 2n reduction. Moreover, these species 
with reduced 2n presented larger chromosomes. This supported 
that telomere-telomere fusions were the major chromosomal 
rearrangement involved in karyotype evolution in Belostoma 
bugs from an ancestral karyotype of 2n = 26+XY/XX.

Among insects, Orthoptera is the group with most ITS 
cases described until now, with occurrence in more than 
20 species. The ITS were noticed in species belonging to 
multiple groups, including representatives of Tettigoniidae, 
Pamphagidae, and Acrididae (López-Fernández et al., 2004; 
Jetybayev et al., 2012, 2017; Camacho et al., 2015; Grzywacz 
et al., 2019; Buleu et al., 2020; Warchałowska‑Śliwa et al., 
2021). In this last group, it was present on some representatives 
from subfamily Gomphocerinae and in Podisma pedestris 
(Cantatopinae), Eyprepocnemis plorans (Eyprepocneminae), 
and Schistocerca gregaria (Cyrtacanthacridinae) (Figure 6B). 
Interestingly, some Acrididae representatives with ITS have 2n 
= 23, X0 and acrocentric chromosomes, which are ancestral 
to the group (Husemann et al., 2022), with no apparent macro 
chromosomal rearrangement. According to Grzywacz et al. 
(2019), in P. pedestris (2n = 23), the occurrence of ITS could 
suggest rearrangements, like inversions, telomere fusion, 
unequal crossing over, or insertion of telomeric DNA on 
unstable sites.

A remarkable example of ITS occurrence in autosomes 
was observed on Gomphocerinae (Acrididae) representatives 
with the reduced 2n, i.e., 2n = 17. The ITS was reported in 
Chorthippus jacobsoni on the pericentric region of the biarmed 
pairs (pairs 1-3), revealing that the centric fusion between 
ancestral chromosomes that originated these pairs was not 
a Rb rearrangement but a true telomeric fusion that could 
generate true dicentric chromosomes. On Aeropus sibiricus, 
polymorphic occurrence of ITS was noticed on chromosome 
six, as a consequence of a paracentric inversion in which 
the breakpoint involved the true telomeric DNA block. In 
other species with 2n = 17, no ITS were observed on large 
metacentric rearranged chromosomes (Jetybayev et al., 2012). 
In the Tettigoniidae Gonatoxia helleri, the occurrence of ITS 
on all chromosomes seems to be in concordance with points 
of fusion and inversion rearrangements (Warchałowska‑Śliwa 
et al., 2021).

Besides occurrence on autosomes, the ITS were reported 
on sex chromosomes of orthopterans as a result of chromosome 
rearrangements involved in the origin of the neo-XY sex 
chromosomes. On Pamphagidae, multiple species with neo-
XY harbor ITS on the pericentromeric region of neo-X, as 
a consequence of chromosome fusion between an ancestral 
autosome and the X chromosome (Jetybayev et al., 2017), 
although pericentric inversions could also be involved in 
the posterior origin of the ITS (Buleu et al., 2020). ITS 
on ancestral X chromosome from X0/XX sex system was 
scarcely observed (Buleu et al., 2020; Warchałowska‑Śliwa 
et al., 2021). Finally, in multiple species of Orthoptera with 
neo-sex system, although resultant of fusion chromosome 
rearrangements no ITS are noticed, suggesting that the Rb 
fusions involved the loss of telomeres, originated from double 
chromosome breaks or the ITS were eliminated later along 
sex chromosomes differentiation. Furthermore, the absence 
of ITS signals detection could be resulted by the low number 
copies of telomeric repeats (Palacios-Gimenez et al., 2013, 
2015a, 2015b).

Figure 6 – Selected chromosomes showing the occurrence of ITS on insect 
chromosomes (arrowheads) in addition to regular telomeric signals on the end 
of chromosomes (in red). In (A), a pachytene bivalent from female stained 
by TSA-FISH (FISH with Tyramide Signal Amplification, see Carabajal 
Paladino et al., 2014) from the Lepidoptera Orgya antiqua (for details 
see Marec and Rego, 2003); In (B), Schistocerca gregaria (Orthoptera), a 
small mitotic chromosome from female embryo (for details see Camacho 
et al., 2015). In all images, the probe used was (TTAGG)n. Bar = 5 μm. 
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Fishes

In fish species, the ITS were classified into four categories: 
(i) telomeric DNA sequences located at the pericentromeric 
regions; (ii) ITS observed between centromeres and the 
telomeres located at terminal regions; (iii) telomeric DNA 
sequences that scatter along the nucleolar organizer regions 
(NORs); and (iv) telomeric DNA repeats interspersed with the 
entire chromosomes (Ocalewicz, 2013). These kinds of ITS 
were described in species into 12 fish orders (Ocalewicz, 2013). 
In some groups with chromosomal remodeling, most of the 
pericentromeric ITS was described as relicts of chromosome 
fusion events (Rocco et al., 2001, 2002; Chew et al., 2002; 
Harvey et al., 2002; Milhomem et al., 2008; Ocalewicz et al., 
2009; Felippe and Foresti, 2010; Mota-Velasco et al., 2010; 
Scacchetti et al., 2011; Blanco et al., 2012, 2017; Errero-
Porto et al., 2014; Favarato et al., 2016; Barbosa et al., 2017; 
Barros et al., 2017; Glugoski et al., 2018, 2022; Deon et al., 
2022a) or as unstable sites triggering DSBs and chromosome 
rearrangements (Rosa et al., 2012; Deon et al., 2020, 2022b). 
In other cases, e.g., in some Characidium species, a conserved 
karyotype with ITS was proposed due to ectopic transposition 
or events of homologous and non-homologous recombination 
(Scacchetti et al., 2015; Oliveira et al., 2021a).

ITS considered vestiges of chromosome fusions were 
also proposed in the origin of the multiple sex chromosome 
systems in fishes (Cioffi and Bertollo, 2010; Cioffi et al., 
2010; Blanco et al., 2017). In Erythrinus erythrinus and 
Hoplias malabaricus, the ITS are relicts of chromosome 
rearrangements on the X1X2Y sex chromosome system origin 
(Cioffi and Bertollo, 2010; Cioffi et al., 2010). Chromosome 
rearrangement with pericentromeric ITS maintaining was 
also described in the origin of the X chromosome in one 
Harttia lineage possessing XX/XY1Y2 sex chromosome 
system (Blanco et al., 2017; Deon et al., 2022a). The data 
reinforce the proposal of independent origin of multiple 
sex chromosome systems in some fish groups triggered by 
chromosome rearrangements without a previous simple sex 
chromosome system occurrence (Deon et al., 2020; Sassi et 
al., 2020). 

Acipenseriformes species are characterized by a 
large number of chromosomes, of which the majority are 
microchromosomes (Fontana et al., 1998, 2004). In this 
group, scattered telomeric signals along all microchromosome 
extensions were reported (Fontana et al., 1998, 2004; 
Ocalewicz, 2013). Extensive amplification processes extending 
telomeric arrays to an extraordinary length ranging from 40 kb 
to 2 Mb, or even longer, were proposed to explain the entire 
microchromosomes possessing interspaced telomeric DNA 
sequences (Delany et al., 2000; Ocalewicz, 2013).

ITS are also collocated or adjacent to NORs, usually 
related to CMA3-positive GC-rich heterochromatin in some 
fish species (Reed and Phillips, 1995; Ocalewicz et al., 2004; 
Pomianowski et al., 2012; Ocalewicz, 2013; Sember et al., 
2015, 2018). Telomeric motifs scattered into NORs were 
detected in species from Anguilliformes, Mugiliformes, 
Salmoniformes, Syngnathiformes, and Cypriniformes (Reed 
and Phillips, 1995; Salvadori et al., 1995; Gornung et al., 
2004; Ocalewicz et al., 2004; Rossi et al., 2005; Libertini et 
al., 2006; Pomianowski et al., 2012; Ocalewicz, 2013; Sember 

et al., 2015, 2018). The colocalization of ribosomal repeats 
and telomeric sequences was proposed to stabilize broken 
chromosomal ends (Pich et al., 1996; Liu and Fredga, 1999). 
On the other hand, consistent evidence of the association 
between 5S or 45 rDNA clusters and ITS (collocated or 
adjacent sites) organizing evolutionary breakpoint regions was 
proposed in some armored catfish genera (Rosa et al., 2012; 
Barros et al., 2017; Glugoski et al., 2018; Deon et al., 2020, 
2022b). In some species of Rineloricaria and Ancistrus, the 
adjacent regions of ITS and 5S rDNA sites organize unstable 
chromosome sites (Rosa et al., 2012; Barros et al., 2017; 
Glugoski et al., 2018, 2022; Figure 7A). In addition, Harttia 
species possesses 5S and 45S rDNAs close to or inside ITS 
promoting extensive chromosomal remodeling in the lineage 
(Deon et al., 2020; Figure 7B).

Amphibians

Amphibians are a diverse class of vertebrates, with most 
cytogenetic studies concentrated in species of the order Anura. 
Few species of the orders Caudata and Gymnophiona have 
been investigated cytogenetically, and most of the available 
data are limited to conventional karyotype descriptions 
and base-specific fluorochrome staining. To the best of our 
knowledge, we found only two reports of the chromosomal 
mapping of the telomeric motif in the karyotype of Caudata 
species. While the FISH with (TTAGGG)n motif detected the 
terminal region of all chromosomes of Bolitoglossa paraenses 
(Silva et al., 2014), the chromosomal mapping experiments in 
Cynops pyrrhogaster did not detect any hybridization signal 
in the karyotype (Murakami et al., 2007). The absence of a 
hybridization signal with (TTAGGG)n probe in chromosomes 
of Cynops pyrrhogaster suggests the need for future molecular 
characterization of terminal regions of these chromosomes 
to understand better these unexpected results (Murakami et 
al., 2007).

The occurrence of ITS has already been reported in more 
than 50 species of the order Anura (Schmid and Steinlein, 2016; 
Schmid et al., 2018; Teixeira et al., 2016; Zattera et al., 2019; 
Suárez et al., 2020) belonging to the families Centrolenidae, 
Dicroglossidae, Hylidae, Leptodactylidae, Pelodryadidae, 
Phyllomedusidae, Pipidae, and Strabomantidae. Despite most 
of these descriptions, the ITS occurrence could not be explained 
as a vestige of interchromosomal rearrangement events, but 
the case observed in Scarthyla is one interesting exception. 
The hypothesis of the 2n reduction from 2n = 24 to 2n = 22 
by chromosome fusion event in Scarthyla is supported by a 
conspicuous signal of centromeric ITS in chromosome pair 3 
(Suárez et al., 2013). 

The ITS of Anura chromosomes are frequently associated 
with heterochromatic regions that suggest the (TTAGGG)n 
sequences are an essential component of repetitive DNA of 
this group (Schmid and Steinlein, 2016). For example, the 
karyotype of Boana faber showed conspicuous centromeric 
heterochromatic blocks also FISH-positive with (TTAGGG)n 
probe in all chromosome pairs (Schmid and Steinlein, 2016; 
Schmid et al., 2018; Figure 7C). These centromeric segments 
are AT-rich repetitive sequences and ITS signals, revealing 
the importance of the telomeric-like motifs to compose these 
heterochromatic portions (Schmid and Steinlein, 2016). 
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Figure 7 – Metaphases of distinct groups of vertebrate species submitted to FISH using (TTAGGG)n probes, evidencing ITS markings (in red).  
(A) The fish species Rineloricaria sp. (Loricariidae) showed a polymorphic karyotype with 2n = 41 chromosomes, the arrowheads showed het-ITS, and 
the arrow evidenced a chromosome bearing the co-located het-ITS/5S rDNA (box). (B) Another fish species Harttia sp. (Loricariidae) (2n = 62) showed 
8 het-ITS (arrowheads and arrows), the arrows indicated co-located het-ITS/45S rDNA sites, the chromosome pair bearing 45S rDNA is highlighted in 
the box. (C) The amphibian Boana faber (Hylidae) showed ITS blocks in all chromosomes in the centromeric regions, suggesting that the telomere motifs 
could compound the centromeric satellite DNA units. (D) The karyotype of the snake Eunectes murinus (Boidae) (2n = 36) showed ITSs (arrowheads). 
(E) The turtle Phrynops sp. (Chelidae) (2n = 58) presented ITS distributed in the centromeric and interstitial regions (arrowheads). (F) The bat species 
Sturnira lilium (Phyllostomidae) (2n = 30) showed 14 ITS in the chromosomes. Bar = 10 μm.

However, large clusters of ITS detected in euchromatic 
chromosome regions represent a unique feature in some Anuran 
karyotypes (Schmid and Steinlein, 2016). For example, the 
karyotype of Boana boans showed conspicuous ITS in the 
non-heterochromatic chromosome region of the short arms 
of pairs 2 and 9 (Mattos et al., 2014; Schmid and Steinlein, 
2016; Schmid et al., 2018). A similar condition was reported 
to Phyllomedusa vailantti (Bruschi et al., 2014) and in the 
Sphaenorhynchus lacteus (Suárez et al., 2013). Also, these 
chromosomal segments did not reveal heterochromatin features 
by C-banding or fluorochromes staining (Suárez et al., 2013; 
Bruschi et al., 2014; Mattos et al., 2014; Schmid et al., 2018).

The screening of karyotypes of natural hybrids of anuran 
reveals interesting contributions to the distribution and dynamic 
of ITS in these individuals. For example, Phyllomedusa 
distincta (2n = 26) hybridized with P. tetraploidea (2n = 52) 
in high frequency in one stable secondary contact zone in 
the Atlantic Forest of Brazil, originating a natural triploid 
population (3n = 39). Both parental species collected from 
the hybridization zone showed het-ITS accumulated on 
centromeric regions of the homologs of pairs 6, 7, and 11, 
cytogenetic markers present and stable all triploid individuals 

analyzed (Gruber et al., 2013). Curiously, populations of P. 
distincta collected outside of the hybridization zone showed 
an identical FISH signal of the homologs of pair 11 but differs 
by the absence of the het-ITS signal on pairs 6 and 7, and 
by the additional signal in the centromeric region of pair 8 
(Bruschi et al., 2014), reveling an interpopulation variation. 
Cytogenetic studies of the triploid hybrid (3n = 36) from 
Dryophytes chrysosceli (2n = 24) and Dryophytes versicolor 
(4n = 48) also allow identifying sharing het-ITS from parental 
in the hybrid karyotype (Wiley et al., 1992). In this case, the 
polymorphic condition absence/presence of het-ITS in the 
long arm of chromosome pair 1 reveals interesting founds 
about the population dynamics of these chromosomal markers. 
Among individuals of the D. chrysoscel from hybridization 
zone is observed in heterozygous (+/–) and homozygous 
(+/+ and –/–) to the condition of chromosome pair 1 while 
in D. vesicolor, tetraploid species, exhibits individuals with 
complete absence of ITS signal (homozygous -/-/-/-) or with 
only two chromosomes of the 4 homologs with FISH-signal 
(heterozygous +/+/-/-) (Wiley et al., 1992). The karyotype 
of the natural triploid hybrid between this species exhibits 
only one chromosome 1 with ITS signal (Wiley et al., 1992). 
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Reptiles

The karyotype of non-avian reptiles exhibits complex 
chromosomal evolution scenarios and a recent accumulation 
of knowledge about ITS distribution. The Archosauromorpha 
included the turtle sister group of the crocodile+birds. The 
species of order Crocodylia show karyotype composed 
exclusively of macrochromosomes probably due to fusions 
between microchromosomes that resulted in the disappearance 
of all microchromosomes in this lineage, estimated around 230 
Mya (Deakin and Ezaz, 2019). Currently, just six crocodilian  
species were analyzed by chromosomal mapping with 
(TTAGGG)n probe: Crocodylus siamensis (Kawagoshi et 
al., 2008), Caiman latirostris, Caiman crocodiles crocodiles, 
Paleosuchus palpebrosus, Alligator mississippiensis, and 
Aligator sinensis (Oliveira et al., 2021b). The unique case of 
the ITS was reported in the karyotype of Caiman crocodilus 
crocodiles (FN = 60; 24t + 18m/sm) from the Amazon region, 
Brazil (Oliveira et al., 2021b), with (TTAGGG)n signal on 
centromeric/pericentromeric part of pairs 14, 15, and 16. This 
karyotype differs from the specimens of C. crocodilos from the 
United States (FN = 62; 22t + 20m/sm), and the presence of 
ITS could be represented as the signature of the chromosomal 
rearrangements that occurred during the chromosomal evolution 
of C. crocodilos (Oliveira et al., 2021b). 

Few turtle karyotypes have been reported with ITS. 
From 65 species cytogenetically analyzed (Clemente et al., 
2020, 2021) with this chromosome marker, only ten showed 
hybridization signals of telomere-like motifs in interstitial 
regions of chromosomes (Clemente et al., 2020). Curiously, 
the non-telomeric repeats in turtles were majoritarian detected 
in the centromeric region of chromosomes (Cavalcante et 
al., 2018; Clemente et al., 2020; Figure 7D). The unique 
exception observed was in the karyotype of Elseya 
novaeguineae (Mazzoleni et al., 2020), in which an interesting 
heteromorphism male-specific was observed with (TTAGGG)n  
probe, revealing richness of the telomeric-like motifs in the 
interstitial position of the chromosome Y. In sea turtles, the 
ITS were also observed on the microchromosomes (Machado 
et al., 2020a, 2020b). Despite the prevalence of centromeric 
ITS in turtle chromosomes, when the karyotypes were analyzed 
in the phylogenetic context, any occurrence of ITS could be 
assigned as interchromosomal rearrangements (Clemente et al., 
2020). The optimization of chromosomal data on phylogenetic 
trees helped to understand the putative origins of the ITS in 
genomes, which discarded the “a priori” hypothesis of the 
intrachromosomal fusions. 

Squamate reptiles include lizards, snakes, and 
amphisbaenian species. The karyotype of Squamata showed 
a high variation of macrochromosomes and microchromosomes 
numbers, including one lineage that showed karyotypes 
exclusively composed of macrochromosomes. Cytogenetic 
data were reported on more than 100 species with evidence of 
ITS in their karyotypes (Rovatsos et al., 2015; Clemente et al. 
2020; Kostmann et al., 2020; Augstenová et al., 2021). The 
non-telomeric (TTAGGG)n motifs are randomly distributed in 
the centromeric, pericentromeric, and interstitial chromosomes 
regions (Rovatsos et al., 2015; Figure 7E). They have revealed 
higher levels of chromosomal diversity predicted by classical 
cytogenetic studies in this group (Rovatsos et al., 2015).

Birds

FISH experiments detecting telomeric sequences 
in birds usually show just terminal signals (Nanda et al., 
2002; Nishida et al., 2008; dos Santos et al., 2015, 2017; 
Rodrigues et al., 2017; Kretschmer et al., 2018), with the 
interesting finding that more prominent signals are observed in 
microchromosomes compared to macrochromosomes (Nanda 
et al., 2002; dos Santos et al., 2015, 2017). On the other hand, 
ITS are considered vestiges of chromosomal rearrangements 
that are particularly frequent in the chicken and primitive 
Palaeognathae birds (Nanda et al., 2002; Nishida et al., 2008), 
but also have been seen in other bird groups (Nanda et al., 
2002; Derjusheva et al., 2004).

Some studies anchored in phylogenetic analyses 
showed that many ITS observed in Palaeognathae lineage 
due to ancestral fusions gradually disappeared along with the 
divergence of Palaeognathae and Neognathae (Nanda et al., 
2002; Kretschmer et al., 2018). In some bird species, where 
ITSs were expected to be present due to tandem chromosome 
fusions or centric fusions occurrence, it has been proposed 
that the telomeric DNA was lost during the chromosomal 
rearrangements (Nanda et al., 2007; de Oliveira et al., 2008; 
Nishida et al., 2013).

Mammals

The organization causes and consequences of the 
ITS occurrence in the human genome are reasonably well 
understood, as abovementioned. Mammals generally show a 
vast quantity of studies discussing ITS causes and consequences 
in chromosome evolution. A concise description of ITS cases 
in mammal genomes is shown here. In several mammalian 
groups, the presence of ITS located in the centromere, 
pericentromere, or those found between the centromere and 
the telomere were classified into short-ITS, subtelomeric-ITS 
and het-ITS (Ijdo et al., 1991; Farré et al., 2009; Ventura et 
al., 2012; Dumas et al., 2016; Matzenbacher et al., 2022). 
ITS occurrence or het-ITS as a vestige of the chromosomal 
rearrangement is an usual condition in the main descriptions 
of mammalian species (Lee et al., 1993; Scherthan, 1995; 
Metcalfe et al., 1998, 2002, 2004; Zou et al., 2002; Hartmann 
and Scherthan, 2004; Ventura et al., 2006; Rovatsos et al., 2011; 
Nagamachi et al., 2013; Colomina et al., 2017; Mazzoleni et 
al., 2017; Matzenbacher et al., 2022, among others). Despite 
the het-ITS indicating a chromosome rearrangement, some 
studies also demonstrate the occurrence of telomeric repeats 
constituting a new component of the satellite DNA in the 
genomes (Faravelli et al., 2002; Rovatsos et al., 2011).

The Indian muntjac deer karyotype is differentiated by 
tandem fusion, a rare evolutionary chromosome rearrangement, 
leading to an extremely reduced karyotype of 6/7 (female/
male) chromosomes (Lee et al., 1993; Frönicke and Scherthan, 
1997). Posteriorly, Hartmann and Scherthan (2004) proposed 
that telomere and GC-rich satellite DNA sequences were 
involved during muntjac chromosome fusions. In addition 
to deer, ITS and chromosome changes were proposed in 
other mammalian groups: Chiroptera (Calixto et al., 2014), 
Perissodactyla (Danielak-Czech et al., 2013), marsupials 
(Metcalfe et al., 1998, 2002, 2004), primates (Dumas et al., 
2016; Mazzoleni et al., 2017), and Rodentia (Ventura et al., 
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2006; Rovatsos et al., 2011; Nagamachi et al., 2013; Lanzone 
et al., 2015; Colomina et al., 2017).

In Phyllostomidae bats, the het-ITS were proposed 
as vestiges of Rb fusion during the chromosomal evolution 
(Calixto et al., 2014). Unstable chromosome regions with 
t(7;13)(q13;q46) reciprocal translocation showed an ITS as 
a relict of the chromosomal rearrangement in pigs (Danielak-
Czech et al., 2013). In Australian marsupial, the distribution 
of the (TTAGGG)n sequence into moderate and large 
centromeric heterochromatin blocks reflect its presence as a 
native component of satellite DNA rather than its involvement 
in past rearrangements (Metcalfe et al., 2004). On the other 
hand, in marsupial karyotypes with little heterochromatin, the 
ITS was proposed as relicts of chromosome rearrangements 
and 2n reduction (Metcalfe et al., 2007).

Subtelomeric-ITS and het-ITS have been proposed 
in some primate genomes (Meyne et al., 1990; Garagna et 
al., 1997; Go et al., 2000; Azzalin et al., 2001; Hirai, 2001; 
Ruiz-Herrera et al., 2002, 2005; Wijayanto et al., 2005; 
Mudry et al., 2007; Dumas et al., 2016; Mazzoleni et al., 
2017). Among the Old World monkeys (Cercopithecini), 
a centromeric het-ITS in C. petaurista and C. guereza 
(Colobini) was described (Mazzoleni et al., 2017). ITS were 
not observed in Hylobates lar and Pongo pygmaeus, while 
Macaca fascicularis (Papionini), Pan paniscus, and Pan 
troglodytes (Hominoidea) have multiple het-ITS (Azzalin 
et al., 2001; Hirai, 2001; Hirai et al., 2005; Ruiz-Herrera et 
al., 2005; Mazzoleni et al., 2017). Pericentromeric het-ITS 
and many large telomeric/subtelomeric signals, presumably 
resultant of the amplification of telomeric sequences were 
described in Lemur catta (Mazzoleni et al., 2017). In other 
Lemuriformes, many interspersed telomeric sites (het-ITS) 
were observed in the karyotypes (Meyne et al., 1990; Garagna 
et al., 1997; Go et al., 2000; Mazzoleni et al., 2017).

Neotropical monkeys (Platyrrhini) characterized 
by highly derived karyotypes show no or few het-ITS, 
while species with less reshuffled karyotypes in terms of 
interchromosomal rearrangements present many het-ITS 
(Ruiz-Herrera et al., 2005; Mudry et al., 2007; Dumas et al., 
2016; Mazzoleni et al., 2017). Some New World monkey 
species also have ITS in their karyotypes (Ruiz-Herrera et 
al., 2002, 2005; Dumas et al., 2016), sometimes without 
heterochromatin correspondence (Mazzoleni et al., 2017). 
Based on the ITS in situ localization in several primate groups, 
Mazzoleni et al. (2017) suggested a correlation between ITS 
and rearrangements in many species, thus correlating with 
chromosomal plasticity.

An extensive (TTAGGG)n in situ localization 
demonstrated that pericentromeric het-ITS are a common 
feature in arvicolid rodents allied to examples of het-ITS 
amplification at non-pericentromeric regions, and some 
descriptions of short-ITS at the euchromatic regions (Rovatsos 
et al., 2011). In the same study, Rovatsos et al. (2011) 
proposed no direct correlation between the presence or 
absence of het-ITS and the genus or subgenus classification 
of the Arvicolinae, in which the variation and amplification 
of ITS occurred independently in each species. Yet, het-ITS 
have played a significant role in karyotypic variation and 
evolution of Arvicolinae species, but het-ITS cannot explain the 

rearrangements that occurred during the karyotype evolution 
of Chionomys, Arvicola, and Microtus (Rovatsos et al., 2011). 
In Cerradomys (Sigmodontinae), ITS accumulate at the 
breakpoints, although the possibility of resulting from old 
fusions was not ruled out (Nagamachi et al., 2013).

Het-ITS repeats and a satellite DNA (named CH5) 
located in centromeric heterochromatin were described in the 
chinese hamster (Faravelli et al., 2002). In other rodents, het-
ITS have been localized within or at the margins of constitutive 
heterochromatin (Meyne et al., 1990; Vermeesch et al., 1996; 
Ono and Yoshida, 1997; Go et al., 2000). In arvicolids, a 
co-distribution for het-ITS and Msat-160 satellites has been 
proposed in centromeric heterochromatin’s organization and 
structure (Rovatsos et al., 2011). 

In the African pygmy mice, Mus species, a large 
amplification of telomeric repeats was identified in the 
pericentromeric region of acrocentric and most metacentric 
chromosomes (Colomina et al., 2017). According to the 
authors, Mus musculus domesticus has a different Rb fusion 
mechanism than African pygmy mice. The number of 
telomere repeats in the ITS could be a signature of the Rb 
fusion age of formation (Colomina et al., 2017). Yet, the 
large amplification of TTAGGG repeats in pericentromeric 
regions of the acrocentric chromosomes in African pygmy 
mice were proposed to mediate the formation of Rb fusions 
(Colomina et al., 2017). At least, the occurrence of the ITS 
in the differentiation of the sex chromosomes was described 
in Arvicolinae species (Rovatsos et al., 2011) and in the 
sex-autosome fusion in African pygmy from the Mus genus 
(Colomina et al., 2017). All data presented here demonstrated 
the extensive ITS participation in mammal chromosome 
remodeling events.

Genomic instability, ITS, and chromosomal 
rearrangements

Although ITS do not organize functional telomeres and 
their functions are not entirely elucidated, many studies indicate 
that ITS plays a fundamental role in the genomic instability 
and chromosomal evolution in several groups (Perry et al., 
2004; Ruiz-Herrera et al., 2008; Slijepcevic, 2016; Bolzán, 
2017). Besides ITS presence in species possessing a highly 
rearranged karyotype, ITS also occurs in close relationship 
species showing a conservative chromosome structure, i.e., 
ancestral karyotypes (Nergadze et al., 2004; Swier et al., 
2012). In general, the ITS are hotspots for chromosome breaks, 
recombination, chromosomal rearrangements, amplification 
sites, and thus, organizing genomic instability sites (Perry et 
al., 2004; Bolzán, 2017). The nucleotide sequence feature 
of the ITS contributes to genomic instability (Perry et al., 
2004). The guanine-rich segment could organize DNA 
secondary structures prone to break, triggering chromosomal 
rearrangements (Salvati et al., 2010; Vannier et al., 2012). 

It is known that het-ITS organize unstable genomic sites, 
while this role remains controversial in short-ITS (Ruiz-Herrera 
et al., 2008). Short-ITS are unable to bind telomere proteins or 
organize complex structures, a condition to prone DSB sites 
(Ruiz-Herrera et al., 2008). Nevertheless, a study proposed 
that even short-ITS possessing TTAGGG repetition in minus 
100 bp interval are related to genomic recombination increase 
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(Kong et al., 2010, 2013). Dysfunctional telomeres also are 
considered unstable genomic sites since the inactivation or 
telomere loss are characteristics for triggering Rb fusions 
(Slijepcevic, 1998, 2016; Bolzán, 2017). 

Rb fusions are consequences of telomere shortening, 
centromere chromosome breaks, or telomere inactivation 
(Meyne et al., 1990; Slijepcevic, 2016; Bolzán, 2017). 
Still, there are three causes of loss of telomeric function 
without complete loss of telomere sequences: (i) telomeric 
proteins inactivation; (ii) loss of telomere function; and 
(iii) loss of telomerase function (Slijepcevic, 1998). Bolzán 
(2017) described chromatin conformation’s central role in 
ITS stability. The nucleosome organization in the telomeric 
chromatin is around 40 bp shorter than nuclear nucleosomes 
(Tommerup et al., 1994; Lejnine et al., 1995), and the high 
compacted regions in het-ITS results in DNA bents, unpaired 
segments, and DSBs (Rivero et al., 2004). 

Chromatin changes related to epigenetic modifications 
significantly influence telomere and ITS stability (Gonzalo et 
al., 2006; Lin and Yan, 2008; Slijepcevic, 2016; Bolzán, 2017). 
Hypermethylation states help ITS stability, while demethylated 
or hypomethylated ITS tend to be unstable (Lin and Yan, 2008) 
favoring telomeric sequences recombination (Gonzalo et al., 
2006). Still, the correct association of shelterin complex in 
ITS helps with chromatin stability, decreasing the unequal 
crossing-over events between telomeric sequences (Zakian, 
1995; Mignon-Ravix et al., 2002; Yang et al., 2011; Bolzán, 
2017) and, on the other hand, lacking one or more shelterin 
associations, the ITS instability increases (Slijepcevic, 2016; 
Lin and Yan, 2008).

Telomeres ensure the correct anchoring of chromosomes 
on the nuclear membrane internal surface, usually interacting 
with the nuclear lamin A/C protein, but ITS association with 
the nuclear matrix is unclear (Wood et al., 2014). On the 
other hand, ITS association with end chromosome telomere 
sequences described as Interstitial Telomeric Loops (ITLs) 
depend on the TRF2 and nuclear lamin A/C protein binding 
(Wood et al., 2015). The ITLs act in the telomere stability, 

gene expression regulation of closely located genes and ITL, 
and the interaction mechanism with the nuclear membrane 
(Robin et al., 2014, 2015; Wood et al., 2014, 2015; Robin 
and Magdinier, 2016).

The ITS/telomere interaction could result in chromosome 
rearrangements (Figure 8). This interaction was also proposed 
to cause terminal inversions, reshuffling the gene locations 
on the chromosomes, thus, promoting gene expression 
modifications (Robin et al., 2014, 2015; Wood et al., 2014, 
2015; Robin and Magdinier, 2016; Bolzán, 2017). The ITLs 
organization far away from the chromosome ends also acts on 
the chromosome condensation during mitosis (Wood et al., 
2014, 2015). Through all the features presented of the ITS/
telomere association, it is evident that these structures are 
important for chromosomal remodeling (Wood et al., 2014, 
2015; Bolzán, 2017).

Perspectives
Characterizing the telomere motifs and structure is 

still necessary, mainly for several non-vertebrate groups. 
Advances in genome assembling in non-model organisms 
could figure out distinct telomeric motifs. In addition, the 
studies about chromosomal remodeling involving telomere 
sequences are incipient in lower vertebrates, besides a vast 
group of insects and other invertebrates. The participation 
of het-ITS in chromosome changes in these groups is 
emerging, but the data still need more robust information 
on DNA sequencing and epigenetic modifications. ITS 
trigger DSBs, transpositions, inversions, translocations, and 
Rb rearrangements in species groups with highly rearranged 
karyotypes, making the ITS and chromosome ends a central 
subject of the genomic instability. Thus, advances in ITS 
characterization are necessary. For that, the DNA sequence 
characterization over ITS segments, the recognition of 
telomeric proteins binding and loops formation between 
telomere and ITS, the evaluation of ITS types, and their 
epigenetic modifications, allied to in situ characterization, 
could illuminate the karyotype evolution in many groups.

Figure 8 – Scheme representing the interstitial telomeric loop (ITL) interacting with interstitial telomere sequences (ITS). TRF2 could facilitate the 
association between ITL and ITS (yellow). This kind of interaction could generate DSBs, thus triggering chromosome rearrangements.
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