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Abstract

Genomic effect variants associated with survival and protection against complex diseases vary between populations 
due to microevolutionary processes. The aim of this study was to analyse diversity and distribution of effect variants 
in a context of potential positive selection. In total, 475 individuals of Lithuanian origin were genotyped using high-
throughput scanning and/or sequencing technologies. Allele frequency analysis for the pre-selected effect variants was 
performed using the catalogue of single nucleotide polymorphisms. Comparison of the pre-selected effect variants with 
variants in primate species was carried out to ascertain which allele was derived and potentially of protective nature. 
Recent positive selection analysis was performed to verify this protective effect. Four variants having significantly 
different frequencies compared to European populations were identified while two other variants reached borderline 
significance. Effect variant in SLC30A8 gene may potentially protect against type 2 diabetes. The existing paradox of 
high rates of type 2 diabetes in the Lithuanian population and the relatively high frequencies of potentially protective 
genome variants against it indicate a lack of knowledge about the interactions between environmental factors, 
regulatory regions, and other genome variation. Identification of effect variants is a step towards better understanding 
of the microevolutionary processes, etiopathogenetic mechanisms, and personalised medicine.
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Introduction
Each population may have some exceptional genetic 

characteristics which might differentially affect health, lifestyle 
and evolution through adaptation. The Lithuanian population 
is genetically close to neighbouring European populations, 
for example, Slavs and Finno-Ugrians (Kasperavičiūtė 
et al., 2004). In addition, Y chromosome single nucleotide 
polymorphism (SNP) haplogroup analysis in the same study 
showed that Lithuanians are genetically closest to Latvians 
and Estonians. Recent studies show that Lithuanian population 
is homogeneous, genetically differentiated from neighbouring 
populations but within the general expected European context 
(Urnikyte et al., 2019). The characterization of genome 
variation in different populations, such as Lithuanian or any 
other, is important in order to understand the differences 
between populations and assessing these differences may 
be useful in understanding the biological mechanisms of 
adaptation, survival, as well as complex traits and diseases. 
Specific genomic loci and variants associated with adaptation 
vary qualitatively and quantitatively between populations and 
fluctuate over time, in part, due to microevolutionary processes, 
such as genetic drift and natural selection. In a changing 
environment, genetic variants that were once advantageous 
or neutral in relation to certain traits may become deleterious 
(and vice versa) and lead to changes in the genetic architecture 
of a population undergoing adaptation (Merilä et al., 2001). 

To understand the mechanisms of complex diseases and 
traits, the question of natural selection and adaptation through 
the genomic variation fluctuation process in the population 
over a period of time has to be answered. A critical point 
in understanding aforementioned mechanisms is that some 
derived genomic variants cannot simply be categorised as risk 
or protective (the neutral variation analysis is off the scope 
of this study), because of conflicting interpretations of their 
effect. Thus, we refer to these variants as effect variants as 
they can have various consequences such as the prevalence 
of complex diseases leading to high mortality: hypertension 
(Hancock et al., 2008), coagulation changes (Dahlbäck, 
2008), and hyperlipidaemia (Stengård et al., 1995). Such 
research findings have implications for population-specific 
(geographically and ethnically) diagnosis worldwide (Butler 
et al., 2017) and defining frequency of effect variants, origin 
and impact to protein structure is a necessity.

Effect variants which provide selective advantage against 
certain diseases are usually rare between individuals who 
have a disease, and tend to become common in part of the 
population that does not have it (Butler et al., 2017). That 
is why our analysis includes not only rare but also common 
effect variants. Besides, most of these variants are likely to 
be common in biologically redundant genes, thereby escaping 
the effects of purifying selection and preserving these variants 
at high frequencies in various populations (MacArthur et al., 
2012). Theoretically, it can be simplified as follows: if a person 
has an effect variant that protects against certain disease (e.g. 
HIV) and environment provides necessary selective pressure, 
this person may less likely have the disease and more likely to 
pass this variation to one’s offspring due to positive selection. 
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The beneficial allele at the selected locus increases in frequency 
while linked neutral variation diminishes, creating a so-called 
selective sweep. Based on this logic, complex disease rates in 
the population should drop in the future. However, complex 
disease rates are steady and one of the reasons might be 
exploding growth of the human population, which results 
in an accumulation of extremely rare variants (Maher et al., 
2012). Another reason is reduction of intensity of purifying 
selection and more frequent fixation of nonsynonymous 
mutations while getting older (Cheng and Kirkpatrick, 2021). 
Genome-wide association studies (GWASs) under-represent 
low frequency variants (minor allele frequency [MAF] 0.5–2%) 
and rare variants (MAF<0.5%) that could underlie much of 
the unexplained heritability of many complex traits (Lee 
et al., 2014). In addition, minor alleles are more likely to be 
characterised as risk alleles in published GWASs on complex 
diseases because minor alleles are more easily detected as 
risk alleles in GWASs (Kido et al., 2018).

The origin of the effect allele must also be addressed. 
Every disease-associated single nucleotide variant (SNV) 
consists of two alleles. When the specific environmental 
context and selective pressures acting on a given population 
are unknown, a common practice to ascertain whether a 
nonsynonymous SNV is protective (i.e., the derived allele is 
protective) is to deduce which allele is derived and which is 
ancestral. Ancestral alleles tend to have neutral effect (Butler 
et al., 2017). Therefore, the protective nature of genomic 
variants can be considered when the allele is derived. However, 
it is important to take into account that certain ancestral alleles 
may provide adaptive advantages in new environments, leading 
to their selection and maintenance in specific populations out 
of ancestral populations.

Frequency and origin are not the only criteria for 
including effect variants in this study. Mostly non-synonymous 
single nucleotide effect variants were chosen for this study to 
analyse those that affect the structure of the protein and may 
have a function-altering effect. Many effect variants protect 
against disease by disrupting protein function, typically via 
loss-of-function or gene knockout effects, and have an impact 
on clinically relevant phenotypic effects. In this case, most 
of the functionally relevant loss-of-function variants should 
be removed by purifying selection (Harper et al., 2015). 
However, recent studies have shown that synonymous variants 
can also influence the amount of protein that is produced; so-
called optimal codons are faster for cells to process and lead 
to increased protein production (Dhindsa et al., 2020). This 
reveals that synonymous variants likely play an underestimated 
role in human genomic variation. That is the reason why 
we included some of the synonymous effect variants in our 
analysis as well.

In this study, we aimed not only to characterize effect 
(risk, or protective) variants in the genomes of the individuals 
from the Lithuanian population, but also to evaluate the 
possible influence of positive natural selection on genomic 
loci in which these variants are. If genomic loci of the effect 
variants are under positive selection, it may be due to the 
advantageous nature of the genomic loci and the effect 
variant itself. Therefore, identification of signals of recent 
positive selection provides information about the adaptation 
of modern humans to local conditions. For example, in the 

Urnikyte et al. (2019) study, among the top signatures of 
positive selection detected in Lithuanians, there were several 
candidate genes identified which were related to diet (PNLIP, 
PPARD), pigmentation (SLC24A5, TYRP1, PPARD), and the 
immune response (BRD2, HLA-DOA, IL26 and IL22). This 
shows that the positive selection directly affects the lifestyle 
and certain traits (i.e. pigmentation), related to adaptation in 
the local population. In the same Urnikyte et al. (2019) study, 
candidate loci affected by positive selection were identified 
using traditional (FST and XP–EHH) analysis methods. 
To complement previous results with novel, unique, and more 
detailed results, this study aimed to analyse the influence of 
positive selection on a set of particular effect variants (and 
genomic loci) using RAiSD tool (Alachiotis and Pavlos, 2018) 
created to detect positive selection signatures.

The identification of effect variants, a better understanding 
of their role in microevolutionary processes, and interactions 
between these variants could provide the possibility to 
characterise candidate genomic regions and specify their 
role across different populations (Chattopadhyay and Lu, 
2019; Li et al., 2020). Moreover, we provide a discussion on 
challenges of effect variant role assessment in the context of 
complex diseases, traits, and potential positive selection in 
a local population, and our results might contribute to the 
quickly evolving opportunities of personalised medicine.

Subjects and Methods

Study design

First, the aim was to make a catalogue (list) of effect 
variants (144 variants were selected according to the scientific 
literature and databases). Later, evaluation of variant frequency 
in the Lithuanian population was performed, and compared 
with other European populations. As this study dataset does 
not cover whole genomes, i.e. for some individuals, whole 
exome, and for some, microarray data was obtained, not all 
genomic positions were covered. Therefore, not all variants 
on the list could be evaluated in this dataset. 

Second, positive selection analysis was chosen to 
justify the possible protective effect if a variant falls within 
a region under positive selection. The dataset in this study 
was primarily used in the study of Urnikyte et al. (2019) 
and was re-evaluated using a new positive selection analysis 
method. Additionally, the main aim here was to conduct a 
targeted analysis for the specific list of variants and discuss 
their potential protectiveness in the Lithuanian population, 
which had not been performed previously. Selective sweep 
detection in this study was used as a tool to analyse genomic 
loci in which the statistically significant variants were present.

Participants and samples

The study was conducted according to the ethical 
standards and was approved by the Vilnius Regional Research 
Ethics Committee (approval No. 158200–05–329–79 and No. 
2019/4˗1119˗612). Informed consent was obtained from all 
individuals involved in the study. The study group included 
475 unrelated, self-reported healthy individuals (239 women 
and 236 men) of Lithuanian descent (with at least three 
generations living in Lithuania).
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DNA was extracted from peripheral blood leukocytes 
using the phenol-chloroform-isoamyl alcohol method 
according to laboratory-approved methodology or using an 
automated TECAN Freedom EVO®200 system (Tecan Group 
Ltd., Switzerland) using Promega beads assay according to the 
manufacturer’s user guidelines. Concentration and purity of the 
DNA were determined with a NanoDrop® spectrophotometer 
(Thermo Fisher Scientific, Wilmington, DE, USA).

Catalogue of effect variants

A catalogue of 144 effect variants from the ClinVar 
(Landrum et al., 2018) and OMIM (https://omim.org/) 
databases as well as scientific publications (Harper et al., 2015; 
Butler et al., 2017) was compiled. The criteria for including a 
variant from the databases were 1) clinical significance review 
status (protective or uncertain) and 2) count of submissions 
(more than 1). The criteria for including a variant from 
scientific publications were 1) the influence of the variant 
on gene function (i.e., the variant was expected to alter gene 
function; mostly loss-of-function) and 2) the frequency of the 
variant (i.e., rare or previously rare alleles, which increased 
in frequency possibly because of advantageous effect on the 
phenotype). The catalogue (Table S1) was used to filter out the 
genotypes of effect variants in the sample group and perform 
targeted effect variant frequency analyses.

Genotyping data and statistical analysis

The genotypes were extracted from data of exome 
sequencing and genome-wide genotyping arrays. Homo sapiens 
genome assembly GRCh37 (hg19) from Genome Reference 
Consortium was used. Whole exome sequencing was 
performed using 5500 series SOLiD™ systems protocol guides 
for 98 individuals of Lithuanian descent. High-throughput 
genotyping (Illumina HiScanSQ System, Illumina Inc., San 
Diego, CA, USA) was performed using Illumina Infinium® 
HD and HTS assay protocol guides (bead chip arrays Illumina 
770 HumanOmniExpress-12 v1.0, v.1.1. and Infinium 
OmniExpress-24v1-2) for 475 individuals of Lithuanian 
descent. The dataset was re-examined for duplicates. The 
relatedness of individuals for this dataset was evaluated in 
the previous study by Urnikyte et al. (2019). 

Quality control of exome sequencing data was performed 
using LifeScope™ Genomic Analysis Software v2.5. Sequence 
coverage value of more than 10-fold was considered acceptable 
(mean quality score of the reference allele: 28 [± 2.3], mean 
quality score of the new allele: 28.4 [± 1.8]) (Casals et al., 
2013).

Genotyping data was quality-controlled and prepared 
for further analysis by using GenomeStudio v2011.1 software 
(Illumina Inc.). Quality parameters for DNA samples were the 
following: call rate >97, p10GC>0.7 (Guo et al., 2014). Quality 
parameters for SNVs were the following: call frequency 
0.13–1.0, GenTrain 0.35–0.98, and ClusterSep higher than 
0.27 (Illumina, 2010). Subsequent data analysis (Hardy–
Weinberg equilibrium), SNV filtering, and SNV frequency 
calculations were performed using PLINK v1.9 software 
(Purcell et al., 2007).

Allele frequencies of effect variants included in our 
catalogue of effect variants were calculated and compared to 
the general European population (EUR) and distinct European 
populations (Utah residents with Northern and Western 
European ancestry [CEU]; Finnish in Finland [FIN]) based 
on the 1000 Genomes project data (1000 Genomes Project 
Consortium, 2015), which is accessible at the NCBI dbSNP 
database (Sherry et al. 1999). The general European population 
consisted of an aggregate of samples from all European 
populations, provided by the 1000 Genomes Project. This 
aggregate included genome data from CEU, FIN, British in 
England and Scotland, Iberian populations in Spanish, and 
Tuscany in Italy populations. Comparison with the general 
European population group was performed as the amount 
of differentiation within the European autosomal gene pool 
was found to be small (Lao et al., 2008). Particular CEU 
and FIN populations were chosen for the analysis according 
to Urnikyte et al. (2019), who showed that the Lithuanian 
population shares high proportions of ancestry components 
with the aforementioned populations. During the Urnikyte et al. 
(2019) study, a significant number of the candidate regions 
for positive selection detected in the Lithuanian population 
were also identified in FIN and/or CEU populations and thus 
pointed to common selection signals (Urnikyte et al., 2019). 
Allele frequencies of effect variants were compared using χ2 
or Fisher’s exact test [when the sample size was ≤5], α=0.05, 
and Bonferroni multiple testing was performed. Statistical 
analysis was performed using Rstudio v3.5.2. software (R 
Core Team, 2013).

To define the possible impact on the genome, effect 
variants were analysed using in silico tools and databases: 
ClinVar (Landrum et al., 2018), Varsome (Kopanos et al., 
2019), Uniprot (UniProt Consortium, 2019), Ensembl (Yates 
et al., 2020), and OMIM (https://omim.org/). Positive selection 
signature comparison with other populations was performed 
using the PopHumanScan database (Murga-Moreno et al. 
2019), which contains data of positive selection signatures 
identified in many populations using different methods and 
the 1000 Genome Project phase 3 dataset.

The Ensembl database was used to compare pre-selected 
effect variants with primate species variants (Gorilla gorilla, 
Pongo abelii, Theropithecus gelada, and Chlorocebus sabaeus) 
to ascertain which allele was ancestral and which was derived 
(and potentially is more likely to be protective). To test if 
identified genome variants may be under recent positive 
selection and, therefore, may potentially be protective, we 
used RAiSD (Raised Accuracy in Sweep Detection), an open-
source software that implements a novel and parameter-free 
detection mechanism that relies on multiple signatures of a 
selective sweep via the enumeration of SNV vectors. RAiSD 
calculates μ statistic, a test that combines three main distinct 
signatures that a sweep leaves in genomes – reduction of the 
polymorphism level, shift in the site frequency spectrum, and 
a localized pattern of linkage disequilibrium levels (Alachiotis 
and Pavlos, 2018), whereas other selection analysis methods 
are designed to detect one of the selection sweep signatures 
only. Another advantage of this tool is that it scans within the 
chosen cohort and does not require a reference population to 
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detect a selective sweep. Finally, this tool does not demand high 
amounts of computational resources and offers parameter-free 
detection (Alachiotis and Pavlos, 2018). To infer or reject the 
potentially protective nature of identified genomic variants in 
our study, it was examined if identified genomic variants are 
in the regions of potential selective sweeps within the study 
population. All genotyping data of around 700,000 SNVs from 
the genotyping chips were used. If the μ values were above 
neutrality (μ=0), it was assumed, that the genomic region is 
under (high or low) recent positive selection. The higher the 
μ statistic value, the stronger the selective sweep signature 
is. The potency of selective sweep signals was evaluated 
qualitatively by comparing different signals throughout the 
chromosomes that were analysed. The assumption was made 
that the majority of the genome is neutral and the top 5% 
scores were chosen as candidate sweep regions. The top 5% 
corresponds to a p-value used as a cut-off threshold. All top 
5% scores have p-values less than 0.05. This approach uses 
the empirical distribution of the scores and treats the majority 
of loci as control while the outlying 5% of the distribution is 
the candidate regions.

Results
After quality control of the genotyping data, 465 

samples were set for further analysis (10 samples did not 
reach the cut-off value of the call rate parameter). Filtered 
sequencing and genotyping data were also tested for the 
Hardy–Weinberg equilibrium. Out of 144 catalogue variants, 
only 70 were present in our dataset and met the filtering criteria 
(these variants were found in the Lithuanian population; 39 
variants from genotyping and sequencing data, 7 variants from 
genotyping data alone, and 24 variants from sequencing data 
alone). The frequencies of four missense variants stood out 
as statistically significantly different between the study group 
and other European populations (Tables 1 and 2). Two other 
genome variants reached borderline significance in PPARG 
and ADH1C genes (p=0.05). After the Bonferroni multiple 
testing correction (p=2×10-4 210 tests performed for 70 effect 
genome variants in three different population comparison 
groups [LTU vs CEU, LTU vs FIN, LTU vs EUR]) none of 
the variants reached statistical significance. This does not 
necessarily indicate that there are no significant associations. 
One of the major drawbacks of multiple-comparison studies 

Table 1 – Effect variants and sample sizes. Sample sizes used for allele frequency analysis in the Lithuanian and European populations.

Variant ID Gene Related condition LITGEN CEU FIN EUR

rs1801282 PPARG T2D 168

99 99 504

rs13266634 SLC30A8 T2D 464

rs11556924 ZC3HC1 CHD 465

rs2274223 PLCE1 Oesophageal cancer 463

rs7498665 SH2B1 Obesity 98

rs698 ADH1C Alcohol dependence 98

CEU – Utah residents (CEPH) with Northern and Western European ancestry; CHD – coronary heart disease, EUR – general European population, FIN 
– Finnish in Finland, LTU – Lithuanian population, T2D – type 2 diabetes.

Table 2 – Comparison of frequencies of effect variants in the Lithuanian and European populations. Distribution of the effect allele genotypes and the 
statistics for the evaluation of differences in frequencies of effect variants in the Lithuanian and European populations. Only significant or borderline 
significant (PPARG and ADH1C) results are shown.

Variant ID Gene Change* EP
HOMO ALT HETERO HOMO REF MAF 

(LTU)
MAF 
(EP) χ2 p

LTU EP LTU EP LTU EP

rs1801282 PPARG NM_001354668.2:
c.34C>G EUR 4 5 46 111 118 387 0,161 0,120 3,632 0,05

rs13266634 SLC30A8 NM_001172815.2:
c.826C>T CEU 50 6 195 36 219 57 0,318 0,242 4,387 0,04

rs11556924 ZC3HC1 NM_001282190.1:
c.1025G>A FIN 77 5 225 40 163 54 0,408 0,377 16,642 <0,01

rs2274223 PLCE1 NM_001165979.2:
c.4856A>G EUR 65 59 223 222 175 222 0,381 0,338 3,919 0,04

rs7498665 SH2B1 NM_001145812.1:
c.1450A>G EUR 19 52 36 227 43 224 0,378 0,329 7,015 0,03

rs698 ADH1C NM_000669.5:
c.1048A>G EUR 25 93 48 221 25 189 0,5 0,405 5,878 0,05

EP – the population to which the comparison is made, CEU – Utah residents (CEPH) with Northern and Western European ancestry; EUR – general 
European population; FIN – Finnish in Finland; HETERO – heterozygous genotype count, HOMO ALT – homozygous alternative genotype count, 
HOMO REF – homozygous reference genotype count LTU – Lithuanian population; MAF – minor allele frequency.
* All effect alleles were minor alleles.
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is multiple testing. As a result, the significance of associations 
may be lost and potentially important data can be lost as well 
(Goldstein, 2009; Tam et al., 2019). This demonstrates the 
importance of targeted association analyses, where genomic 
regions of interest are specified and analyses are performed 
only for those specific regions. That is why we chose the 
aforementioned six suggestive-significant genome variants 
for further investigation. 

According to the scientific literature, these missense 
variants may protect against alcohol dependence (ADH1C, 
rs698), type 2 diabetes (T2D) (PPARG, rs1801282; SLC30A8, 
rs13266634), coronary heart disease (CHD) (ZC3HC1, 
rs11556924), obesity (SH2B1, rs7498665), and oesophageal 
cancer (PLCE1, rs2274223).

Identified candidate effect variants were compared with 
primate species to ascertain which allele is derived and which 
is ancestral to avoid the erroneous assumption for common 
variants that the rare allele is the derived allele. The analysis 
showed that several of our catalogue-selected effect variants (in 
PLCE1, ADH1C, and SH2B1 genes) in humans are ancestral, 
meaning their effect is more conservative. Finally, we have 
hypothesised that the derived alleles (in PPARG, SLC30A8, 
and ZC3HC1 genes) tend to have more of a dynamic effect and 
may have a protective effect. To test this hypothesis, we have 
performed μ statistic test using RAiSD software (Alachiotis and 
Pavlos, 2018) to detect selective sweeps which might indicate 
recent positive selection in the aforementioned genes. Figure 1 
shows the μ statistic curves for the chromosomes of PPARG, 
SLC30A8, and ZC3HC1 genes. SLC30A8 had a significant 
selective sweep signal (μ=2.34, p≥0.05). Genes PPARG and 
ZC3HC1 did not reach the threshold of the top 5% values.

Discussion
According to freely available in silico analysis tools, 

five of the six effect variants for which frequencies in the 
Lithuanian population differed from the European populations 
are considered benign (regarding Varsome or UniProt) or 
risk-determining (Ensembl). These five variants (PPARG: 
rs1801282, SLC30A8: rs13266634, ZC3HC1: rs11556924, 
PLCE1: rs2274223, SH2B1: rs7498665) were selected from 
scientific publications for our catalogue of the effect variants 
(Table S1). In these publications, variants were identified 
as potentially protective after GWAS data was filtered for 
nonsynonymous SNVs to increase the likelihood of them 
being functional. Besides, variants were considered protective 
when they were more frequent in the control group than in the 
study group. Evidence of positive natural selection for these 
variants was found and the probability of the variant being 
damaging was estimated (Butler et al., 2017). 

According to the Ensembl, ClinVar, and OMIM 
databases, the sixth variant (ADH1C: rs698) is classified 
as a protective variant with an impact on the metabolism of 
ethanol. However, studies suggest that this variant is associated 
with slower ethanol metabolism, which could lead to a longer 
period of consuming alcohol and the consumption of greater 
quantities. Therefore, people carrying the variant have a 
higher risk of heavy and excessive drinking (Edenberg, 2007; 
Tolstrup et al., 2008). In general, common SNVs could be 
responsible for as much as 30% of the variance in alcohol 

Figure 1 – μ statistic curves for the chromosomes 3, 7, and 8. The highest 
μ statistic value point indicates the strongest recent positive selection (a 
selective sweep). Preliminary genomic locations of the candidate protective 
genes PPARG (chromosome 3), ZC3HC1 (chromosome 7), and SLC30A8 
(chromosome 8) are indicated by the arrows. The dotted line indicates the 
cut-off value of the top 5% of μ values (μ=0.98 for chromosomes analysed).
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dependence, but only a few have been identified (Palmer 
et al., 2015). However, analyses indicate that additional SNVs 
associated with alcohol dependence are likely to have minor 
effects and are more consistent with more common psychiatric 
disorders (Walters et al., 2018). This shows that there is a lack 
of understanding of the molecular mechanisms involved in 
excessive alcohol consumption and other complex conditions 
and that the collection of large numbers of well-characterised 
cases and controls is needed. 

Besides function, the origin of the effect allele must 
also be addressed. A common practice to ascertain whether 
a nonsynonymous SNV is protective (i.e., the derived allele 
is protective) is to deduce which allele is derived and which 
is ancestral. A minor allele does not necessarily equal the 
derived (mutant) one, therefore the origin of the allele could be 
determined by using genomic alignments with primate species. 
The effect variants that were analysed were mostly not rare 
(MAF>0.5%). If a derived allele provides a protective function 
and gives an individual a selective advantage, one might expect 
positive selection to sweep it to become the most common 
allele in the population (Butler et al., 2017). This may be the 
reason why the effect variants that were analysed have allele 
frequencies greater than 0.5%. Moreover, this could explain 
why databases and SNV analysis tools call these variants as 
polymorphisms. Comparison with primate species showed 
that variants analysed in PLCE1, ADH1C, and SH2B1 are 
indeed ancestral. The protective nature of genomic variants 
can be considered when the allele is derived, which is why 
we did not interpret these variants as protective and excluded 
these variants from further analysis. Despite contradicting 
data, significant variants still may have some effects on the 
etiopathogenesis of particular complex diseases.

Large-scale GWASs have identified a substantial 
number of genetic variants associated with T2D (Sanghera 
and Blackett, 2012), and only a few have been associated 
with protection against this disease. Our study indicates 
that the effect variant (rs13266634) in the SLC30A8 gene 
may have an impact on protection against T2D. This gene 
encodes a protein that is involved in the optimisation of 
insulin secretion. Flannick et al. (2014) and Brunke-Reese 
et al. (2019) proposed that this variant, together with other 
less common, loss-of-function variants is associated with 
a lower-than-expected likelihood of T2D. Selective sweep 
signature analysis supports our hypothesis that this gene might 
have undergone recent natural selection. The μ statistic value 
for the SLC30A8 gene reached the top 5% cut-off value of 
significance, although it is not as high as compared to other 
regions in chromosome 8. Nevertheless, the identification 
of weaker selective sweep signatures is not less important, 
as selective sweep has the potential to grow stronger and 
should be examined further. Also, the SLC30A8 gene is not 
under positive selection in other populations, according to 
the PopHumanScan database (Murga-Moreno et al., 2019). 
This suggests that this selection signature may be important 
for the differentiation of the Lithuanian population.

A recent meta-analysis (Sarhangi et al., 2020) suggests 
that the variant rs1801282 in PPARG, which also emerged in 
our study, is associated with a decreased risk of T2D. SNVs of 
PPARG (nuclear receptor) have an important role in controlling 

lipid and glucose metabolism. The protective effect of the 
derived allele was detected to be significantly more common 
in some populations, including European (18%), East Asian 
(20%), and South-East Asian (18%) (Sarhangi et al., 2020). 
Moreover, our results correspond to this study, which suggests 
that Northern Europeans who carry the PPARG derived allele 
had a lower risk of T2D than Central or Southern Europeans. 
Moreover, T2D is closely related to CHD progression (Shadrina 
et al., 2020). During the frequency analysis step, we detected 
the ZC3HC1 gene variant rs11556924, which is classified in 
scientific publications as most likely causing CHD. ZC3HC1 
is associated with the KLHDC10 gene, which is involved in 
oxidative stress-induced cell death and inflammation. These 
processes are known to play a role in atherosclerosis and, in 
turn, CHD (Shadrina et al., 2020). However, an integrated 
haplotype score (Butler et al., 2017) for the effect variants in 
the ZC3HC1 and PPARG genes showed that these variants 
may have undergone recent positive selection (Voight et al., 
2006). This suggests that derived alleles could be beneficial 
for an individual’s fitness and may be protective. On the 
contrary, our study results of selective sweep analysis show 
no signature of recent positive selection for the PPARG and 
ZC3HC1 gene loci (Figure 1).

In silico analysis tools and databases may describe effect 
variants not necessarily correctly and the data may not be 
up-to-date, inconsistent, and not relevant to all populations. 
This example of inconsistent findings on ADH1C, PPARG, 
and ZC3HC1 and their variants’ effects shows the importance 
and need for the multi-level analysis approach for the effect 
variants. The study results of potential positive selection 
signatures may be strengthened and elaborated by performing 
the comparison of the results obtained with other populations 
(identified genomic loci under positive selection can be also 
under selective pressures in other populations) and/or different 
positive selection methods (e.g. Integrative Haplotype Score 
[iHS] or Cross Population Extended Haplotype Homozygosity 
[XP–EHH] analysis). A bigger dataset, i.e. whole-genome 
sequencing data, could also complement the analysis. It may 
give a better understanding of positive selection signatures 
in the Lithuanian population as it shows variation of the 
whole genome and not only specific genomic loci. To further 
investigate potential selection and account for demographic 
effects, simulations of demographic scenarios specific to the 
Lithuanian population would be required. This could be the 
aim of the follow-up study.

Additionally, it is important to keep in mind the effects of 
environmental factors. According to data from the Lithuanian 
Health Information Centre of the Institute of Hygiene (2021), 
diseases of the cardiovascular system caused the highest 
proportion of deaths (48.3%) in 2021 in Lithuania. In 2021, 
5.57% of the population had T2D and 7.3% had CHD. 
In comparison, diseases of the cardiovascular system in the 
Finnish population were also one of the leading causes of death 
(33.9%) in 2019, according to the Statistics Finland. Estimates 
from a Finnish health survey in 2018 state that the prevalence 
of diabetes among adults over 30 years of age was 7.8% 
(Koponen et al., 2018). The majority of cases are of T2D (85%) 
(Sund and Koski, 2009). These diseases are more common 
among individuals whose reproductive period may be finished 
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meaning an increase in lethality of these individuals should 
not affect the fitness of the individuals in the next generation 
too much. However, some individuals have these diseases at a 
young age (Pulgaron and Delamater, 2014; De Venecia et al., 
2016). In this case, the next generations may benefit from the 
knowledge of positive selection signatures in the loci related to 
these diseases. Also, some of the younger individuals who do 
not have these conditions although living a high-risk lifestyle, 
may hold disease-specific protective genome variation, and 
specific loci under positive selection may protect from a 
disease from generation to generation in a population. Even 
though our population gene pool holds effect variants that may 
protect against these complex diseases, lifestyle, and other 
environmental factors influence the frequency of morbidity. 
This contradiction of the high frequency of described diseases 
and present protective genomic variation could also suggest 
that the ancestors of the Lithuanian population faced unique 
selective influences, especially in relation to genes associated 
with energy metabolism. Furthermore, analysed genes 
may influence on other diseases and phenotypes as well. 
For instance, ZC3HC1 is associated with rheumatoid arthritis 
(López-Mejías et al., 2013) while PPARG is associated with 
various types of cancer (Ogino et al., 2009; Ahmad et al., 
2016; Goldstein et al., 2017). However, these genes are most 
commonly associated with the diseases which were discussed 
in this article. 

Conclusions
We identified a plausible effect variant rs13266634 in 

SLC30A8 in the Lithuanian population group that may protect 
against T2D. In addition, we suggested a new analysis strategy 
for the evaluation of genome variants. A better understanding 
of common variation and its effects can help build more 
informative databases and avoid sometimes misleading 
information on the effects of the variant, as demonstrated 
by this study with the ADH1C, PPARG, and ZC3HC1 gene 
variants. Identification of effect variants is crucial for a 
better understanding of etiopathogenetic mechanisms and 
microevolutionary processes. Many studies analyse coding 
effect variants and important interactions between coding and 
non-coding variants remain understudied (Kido et al., 2018). 
Thus, when we define the underlying genetic population 
structure, we should further move our research toward the 
intricate genetic mechanisms, processes, and interactions that 
control the balance between health and disease. Analysis of 
effect variants can broaden knowledge about the differences 
between populations and tackle some problems regarding 
personalised medicine. Population-specific effect variants 
can become targets for the development of disease prevention 
programs and novel therapies and the use of genome editing 
tools. 
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